Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(23): e108271, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605059

RESUMO

Mutations in the gene encoding the CDKL5 kinase are among the most common genetic causes of childhood epilepsy and can also give rise to the severe neurodevelopmental condition CDD (CDKL5 deficiency disorder). Despite its importance for human health, the phosphorylation targets and cellular roles of CDKL5 are poorly understood, especially in the cell nucleus. Here, we report that CDKL5 is recruited to sites of DNA damage in actively transcribed regions of the nucleus. A quantitative phosphoproteomic screen for nuclear CDKL5 substrates reveals a network of transcriptional regulators including Elongin A (ELOA), phosphorylated on a specific CDKL5 consensus motif. Recruitment of CDKL5 and ELOA to damaged DNA, and subsequent phosphorylation of ELOA, requires both active transcription and the synthesis of poly(ADP-ribose) (PAR), to which CDKL5 can bind. Critically, CDKL5 kinase activity is essential for the transcriptional silencing of genes induced by DNA double-strand breaks. Thus, CDKL5 is a DNA damage-sensing, PAR-controlled transcriptional modulator, a finding with implications for understanding the molecular basis of CDKL5-related diseases.


Assuntos
Quebras de DNA de Cadeia Dupla , Dano ao DNA , Elonguina/metabolismo , Neurônios/patologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ativação Transcricional , Elonguina/genética , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Síndromes Epilépticas/patologia , Humanos , Mutação , Neurônios/metabolismo , Fosfoproteínas/genética , Fosforilação , Poli Adenosina Difosfato Ribose/metabolismo , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Espasmos Infantis/patologia
2.
Mol Cell ; 68(5): 872-884.e6, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29153392

RESUMO

Polycomb repressive complex 2 (PRC2-EZH2) methylates histone H3 at lysine 27 (H3K27) and is required to maintain gene repression during development. Misregulation of PRC2 is linked to a range of neoplastic malignancies, which is believed to involve methylation of H3K27. However, the full spectrum of non-histone substrates of PRC2 that might also contribute to PRC2 function is not known. We characterized the target recognition specificity of the PRC2 active site and used the resultant data to screen for uncharacterized potential targets. The RNA polymerase II (Pol II) transcription elongation factor, Elongin A (EloA), is methylated by PRC2 in vivo. Mutation of the methylated EloA residue decreased repression of a subset of PRC2 target genes as measured by both steady-state and nascent RNA levels and perturbed embryonic stem cell differentiation. We propose that PRC2 modulates transcription of a subset of low expression target genes in part via methylation of EloA.


Assuntos
Diferenciação Celular , Metilação de DNA , Elonguina/metabolismo , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Transcrição Gênica , Células 3T3-L1 , Animais , Elonguina/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Camundongos , Mutação , Complexo Repressor Polycomb 2/genética , Transfecção
3.
Proc Natl Acad Sci U S A ; 119(40): e2207332119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161924

RESUMO

Rpb1, the largest subunit of RNA polymerase II (RNAPII), is rapidly polyubiquitinated and degraded in response to DNA damage; this process is considered to be a "mechanism of last resort'' employed by cells. The underlying mechanism of this process remains elusive. Here, we uncovered a previously uncharacterized multistep pathway in which the polymerase-associated factor 1 (Paf1) complex (PAF1C, composed of the subunits Ctr9, Paf1, Leo1, Cdc73, and Rtf1) is involved in regulating the RNAPII pool by stimulating Elongin-Cullin E3 ligase complex-mediated Rpb1 polyubiquitination and subsequent degradation by the proteasome following DNA damage. Mechanistically, Spt5 is dephosphorylated following DNA damage, thereby weakening the interaction between the Rtf1 subunit and Spt5, which might be a key step in initiating Rpb1 degradation. Next, Rad26 is loaded onto stalled RNAPII to replace the Spt4/Spt5 complex in an RNAPII-dependent manner and, in turn, recruits more PAF1C to DNA lesions via the binding of Rad26 to the Leo1 subunit. Importantly, the PAF1C, assembled in a Ctr9-mediated manner, coordinates with Rad26 to localize the Elongin-Cullin complex on stalled RNAPII, thereby inducing RNAPII removal, in which the heterodimer Paf1/Leo1 and the subunit Cdc73 play important roles. Together, our results clearly revealed a new role of the intact PAF1C in regulating the RNAPII pool in response to DNA damage.


Assuntos
Proteínas Culina , Dano ao DNA , Elonguina , Proteínas Nucleares , RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Elonguina/genética , Elonguina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
4.
Hum Mol Genet ; 31(16): 2728-2737, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35323939

RESUMO

Around 95% of patients with clinical features that meet the diagnostic criteria for von Hippel-Lindau disease (VHL) have a detectable inactivating germline variant in VHL. The VHL protein (pVHL) functions as part of the E3 ubiquitin ligase complex comprising pVHL, elongin C, elongin B, cullin 2 and ring box 1 (VCB-CR complex), which plays a key role in oxygen sensing and degradation of hypoxia-inducible factors. To date, only variants in VHL have been shown to cause VHL disease. We undertook trio analysis by whole-exome sequencing in a proband with VHL disease but without a detectable VHL mutation. Molecular studies were also performed on paired DNA extracted from the proband's kidney tumour and blood and bioinformatics analysis of sporadic renal cell carcinoma (RCC) dataset was undertaken. A de novo pathogenic variant in ELOC NM_005648.4(ELOC):c.236A>G (p.Tyr79Cys) gene was identified in the proband. ELOC encodes elongin C, a key component [C] of the VCB-CR complex. The p.Tyr79Cys substitution is a mutational hotspot in sporadic VHL-competent RCC and has previously been shown to mimic the effects of pVHL deficiency on hypoxic signalling. Analysis of an RCC from the proband showed similar findings to that in somatically ELOC-mutated RCC (expression of hypoxia-responsive proteins, no somatic VHL variants and chromosome 8 loss). These findings are consistent with pathogenic ELOC variants being a novel cause for VHL disease and suggest that genetic testing for ELOC variants should be performed in individuals with suspected VHL disease with no detectable VHL variant.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Doença de von Hippel-Lindau , Carcinoma de Células Renais/genética , Elonguina/genética , Humanos , Hipóxia , Neoplasias Renais/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/genética
5.
Cell Biol Toxicol ; 40(1): 24, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653919

RESUMO

Elongin B (ELOB), a pivotal element in the ELOB/c-Cullin2/5-SOCS-box E3 ubiquitin-protein ligase complex, plays a significant role in catalyzing the ubiquitination and subsequent degradation of a broad spectrum of target proteins. Notably, it is documented to facilitate these processes. However, the regulatory role of ELOB in breast cancer remains ambiguous. In this study, through bio-informatic analysis of The Cancer Genome Atlas and Fudan University Shanghai Cancer Center database, we demonstrated that ELOB was over-expressed in breast cancer tissues and was related to unfavorable prognosis. Additionally, pathway enrichment analysis illustrated that high expression of ELOB was associated with multiple cancer promoting pathways, like cell cycle, DNA replication, proteasome and PI3K - Akt signaling pathway, indicating ELOB as a potential anticancer target. Then, we confirmed that both in vivo and in vitro, the proliferation of breast cancer cells could be significantly suppressed by the down-regulation of ELOB. Mechanically, immunoprecipitation and in vivo ubiquitination assays prompted that, as the core element of Cullin2-RBX1-ELOB E3 ligase (CRL2) complex, ELOB regulated the ubiquitination and the subsequent degradation of oncoprotein p14/ARF. Moreover, the anticancer efficacy of erasing ELOB could be rescued by simultaneous knockdown of p14/ARF. Finally, through analyzing breast cancer tissue microarrays and western blot of patient samples, we demonstrated that the expression of ELOB in tumor tissues was elevated in compared to adjacent normal tissues. In conclusion, ELOB is identified to be a promising innovative target for the drug development of breast cancer by promoting the ubiquitination and degradation of oncoprotein p14/ARF.


Assuntos
Neoplasias da Mama , Proliferação de Células , Elonguina , Ubiquitinação , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Elonguina/metabolismo , Elonguina/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Camundongos Nus , Camundongos , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Camundongos Endogâmicos BALB C , Células MCF-7 , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
6.
Mol Cell ; 64(4): 645-658, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863225

RESUMO

The cellular plasticity of pluripotent stem cells is thought to be sustained by genomic regions that display both active and repressive chromatin properties. These regions exhibit low levels of gene expression, yet the mechanisms controlling these levels remain unknown. Here, we describe Elongin BC as a binding factor at the promoters of bivalent sites. Biochemical and genome-wide analyses show that Elongin BC is associated with Polycomb Repressive Complex 2 (PRC2) in pluripotent stem cells. Elongin BC is recruited to chromatin by the PRC2-associated factor EPOP (Elongin BC and Polycomb Repressive Complex 2 Associated Protein, also termed C17orf96, esPRC2p48, E130012A19Rik), a protein expressed in the inner cell mass of the mouse blastocyst. Both EPOP and Elongin BC are required to maintain low levels of expression at PRC2 genomic targets. Our results indicate that keeping the balance between activating and repressive cues is a more general feature of chromatin in pluripotent stem cells than previously appreciated.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Células-Tronco Pluripotentes/metabolismo , Complexo Repressor Polycomb 2/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Cromatina/química , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Elonguina , Implantação do Embrião , Embrião de Mamíferos , Histonas/genética , Histonas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes/citologia , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
Mol Cell ; 64(4): 659-672, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863226

RESUMO

Gene regulatory networks are pivotal for many biological processes. In mouse embryonic stem cells (mESCs), the transcriptional network can be divided into three functionally distinct modules: Polycomb, Core, and Myc. The Polycomb module represses developmental genes, while the Myc module is associated with proliferative functions, and its mis-regulation is linked to cancer development. Here, we show that, in mESCs, the Polycomb repressive complex 2 (PRC2)-associated protein EPOP (Elongin BC and Polycomb Repressive Complex 2-associated protein; a.k.a. C17orf96, esPRC2p48, and E130012A19Rik) co-localizes at chromatin with members of the Myc and Polycomb module. EPOP interacts with the transcription elongation factor Elongin BC and the H2B deubiquitinase USP7 to modulate transcriptional processes in mESCs similar to MYC. EPOP is commonly upregulated in human cancer, and its loss impairs the proliferation of several human cancer cell lines. Our findings establish EPOP as a transcriptional modulator, which impacts both Polycomb and active gene transcription in mammalian cells.


Assuntos
Cromatina/química , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Complexo Repressor Polycomb 2/genética , Fatores de Transcrição/genética , Proteases Específicas de Ubiquitina/genética , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Elonguina , Embrião de Mamíferos , Redes Reguladoras de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo , Transcrição Gênica , Peptidase 7 Específica de Ubiquitina , Proteases Específicas de Ubiquitina/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544872

RESUMO

The bZIP transcription factor ATF6α is a master regulator of endoplasmic reticulum (ER) stress response genes. In this report, we identify the multifunctional RNA polymerase II transcription factor Elongin as a cofactor for ATF6α-dependent transcription activation. Biochemical studies reveal that Elongin functions at least in part by facilitating ATF6α-dependent loading of Mediator at the promoters and enhancers of ER stress response genes. Depletion of Elongin from cells leads to impaired transcription of ER stress response genes and to defects in the recruitment of Mediator and its CDK8 kinase subunit. Taken together, these findings bring to light a role for Elongin as a loading factor for Mediator during the ER stress response.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Elonguina/metabolismo , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Elonguina/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Células HeLa , Humanos , Complexo Mediador/genética , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Ratos , Transdução de Sinais , Ativação Transcricional
9.
Mod Pathol ; 36(8): 100194, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37088333

RESUMO

Approximately 70% of clear cell renal cell carcinoma (ccRCC) is characterized by the biallelic inactivation of von Hippel-Lindau (VHL) on chromosome 3p. ELOC-mutated (Elongin C-mutated) renal cell carcinoma containing biallelic ELOC inactivations with chromosome 8q deletions is considered a novel subtype of renal cancer possessing a morphologic overlap with ccRCC, renal cell carcinoma (RCC) with fibromyomatous stroma exhibiting Tuberous Sclerosis Complex (TSC)/mammalian Target of Rapamycin (mTOR) mutations, and clear cell papillary tumor. However, the frequency and consequences of ELOC alterations in wild-type VHL and mutated VHL RCC are unclear. In this study, we characterize 123 renal tumors with clear cell morphology and known VHL mutation status to assess the morphologic and molecular consequences of ELOC inactivation. Using OncoScan and whole-exome sequencing, we identify 18 ELOC-deleted RCCs, 3 of which contain ELOC mutations resulting in the biallelic inactivation of ELOC. Biallelic ELOC and biallelic VHL aberrations were mutually exclusive; however, 2 ELOC-mutated RCCs showed monoallelic VHL alterations. Furthermore, no mutations in TSC1, TSC2, or mTOR were identified in ELOC-mutated RCC with biallelic ELOC inactivation. Using High Ambiguity Driven biomolecular DOCKing, we report a novel ELOC variant containing a duplication event disrupting ELOC-VHL interaction alongside the frequently seen Y79C alteration. Using hyper reaction monitoring mass spectrometry, we show RCCs with biallelic ELOC alterations have significantly reduced ELOC expression but similar carbonic anhydrase 9 and vascular endothelial growth factor A expression compared with classical ccRCC with biallelic VHL inactivation. The absence of biallelic VHL and TSC1, TSC2, or mTOR inactivation in RCC with biallelic ELOC inactivation (ELOC mutation in combination with ELOC deletions on chromosome 8q) supports the notion of a novel, molecularly defined tumor entity.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Fator A de Crescimento do Endotélio Vascular , Elonguina/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Serina-Treonina Quinases TOR
10.
Biochem Soc Trans ; 51(1): 125-135, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36651856

RESUMO

Interaction scaffolds that selectively recognize disordered protein strongly shape protein interactomes. An important scaffold of this type that contributes to transcription is the TFIIS N-terminal domain (TND). The TND is a five-helical bundle that has no known enzymatic activity, but instead selectively reads intrinsically disordered sequences of other proteins. Here, we review the structural and functional properties of TNDs and their cognate disordered ligands known as TND-interacting motifs (TIMs). TNDs or TIMs are found in prominent members of the transcription machinery, including TFIIS, super elongation complex, SWI/SNF, Mediator, IWS1, SPT6, PP1-PNUTS phosphatase, elongin, H3K36me3 readers, the transcription factor MYC, and others. We also review how the TND interactome contributes to the regulation of transcription. Because the TND is the most significantly enriched fold among transcription elongation regulators, TND- and TIM-driven interactions have widespread roles in the regulation of many transcriptional processes.


Assuntos
Fatores de Transcrição , Fatores de Elongação da Transcrição , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Elonguina/metabolismo , Regulação da Expressão Gênica
11.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835292

RESUMO

The basic helix-loop-helix factors play a central role in neuronal differentiation and nervous system development, which involve the Notch and signal transducer and activator of transcription (STAT)/small mother against decapentaplegic signaling pathways. Neural stem cells differentiate into three nervous system lineages, and the suppressor of cytokine signaling (SOCS) and von Hippel-Lindau (VHL) proteins are involved in this neuronal differentiation. The SOCS and VHL proteins both contain homologous structures comprising the BC-box motif. SOCSs recruit Elongin C, Elongin B, Cullin5(Cul5), and Rbx2, whereas VHL recruits Elongin C, Elongin B, Cul2, and Rbx1. SOCSs form SBC-Cul5/E3 complexes, and VHL forms a VBC-Cul2/E3 complex. These complexes degrade the target protein and suppress its downstream transduction pathway by acting as E3 ligases via the ubiquitin-proteasome system. The Janus kinase (JAK) is the main target protein of the E3 ligase SBC-Cul5, whereas hypoxia-inducible factor is the primary target protein of the E3 ligase VBC-Cul2; nonetheless, VBC-Cul2 also targets the JAK. SOCSs not only act on the ubiquitin-proteasome system but also act directly on JAKs to suppress the Janus kinase-signal transduction and activator of transcription (JAK-STAT) pathway. Both SOCS and VHL are expressed in the nervous system, predominantly in brain neurons in the embryonic stage. Both SOCS and VHL induce neuronal differentiation. SOCS is involved in differentiation into neurons, whereas VHL is involved in differentiation into neurons and oligodendrocytes; both proteins promote neurite outgrowth. It has also been suggested that the inactivation of these proteins may lead to the development of nervous system malignancies and that these proteins may function as tumor suppressors. The mechanism of action of SOCS and VHL involved in neuronal differentiation and nervous system development is thought to be mediated through the inhibition of downstream signaling pathways, JAK-STAT, and hypoxia-inducible factor-vascular endothelial growth factor pathways. In addition, because SOCS and VHL promote nerve regeneration, they are expected to be applied in neuronal regenerative medicine for traumatic brain injury and stroke.


Assuntos
Neurogênese , Proteínas Supressoras da Sinalização de Citocina , Fator A de Crescimento do Endotélio Vascular , Proteína Supressora de Tumor Von Hippel-Lindau , Humanos , Diferenciação Celular , Proteínas Culina/metabolismo , Elonguina/metabolismo , Janus Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
12.
J Biol Chem ; 296: 100202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334895

RESUMO

Elongin A (EloA) is an essential transcription factor that stimulates the rate of RNA polymerase II (Pol II) transcription elongation in vitro. However, its role as a transcription factor in vivo has remained underexplored. Here we show that in mouse embryonic stem cells, EloA localizes to both thousands of Pol II transcribed genes with preference for transcription start site and promoter regions and a large number of active enhancers across the genome. EloA deletion results in accumulation of transcripts from a subset of enhancers and their adjacent genes. Notably, EloA does not substantially enhance the elongation rate of Pol II in vivo. We also show that EloA localizes to the nucleoli and associates with RNA polymerase I transcribed ribosomal RNA gene, Rn45s. EloA is a highly disordered protein, which we demonstrate forms phase-separated condensates in vitro, and truncation mutations in the intrinsically disordered regions (IDR) of EloA interfere with its targeting and localization to the nucleoli. We conclude that EloA broadly associates with transcribed regions, tunes RNA Pol II transcription levels via impacts on enhancer RNA synthesis, and interacts with the rRNA producing/processing machinery in the nucleolus. Our work opens new avenues for further investigation of the role of this functionally multifaceted transcription factor in enhancer and ribosomal RNA biology.


Assuntos
Elonguina/metabolismo , Elementos Facilitadores Genéticos , Células-Tronco Embrionárias Murinas/metabolismo , RNA/genética , Ativação Transcricional , Animais , Linhagem Celular , Elonguina/genética , Deleção de Genes , Camundongos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Sítio de Iniciação de Transcrição
13.
J Biol Chem ; 296: 100170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33298525

RESUMO

Elongin is an RNA polymerase II (RNAPII)-associated factor that has been shown to stimulate transcriptional elongation in vitro. The Elongin complex is thought to be required for transcriptional induction in response to cellular stimuli and to ubiquitinate RNAPII in response to DNA damage. Yet, the impact of the Elongin complex on transcription in vivo has not been well studied. Here, we performed comprehensive studies of the role of Elongin A, the largest subunit of the Elongin complex, on RNAPII transcription genome-wide. Our results suggest that Elongin A localizes to actively transcribed regions and potential enhancers, and the level of recruitment correlated with transcription levels. We also identified a large group of factors involved in transcription as Elongin A-associated factors. In addition, we found that loss of Elongin A leads to dramatically reduced levels of serine2-phosphorylated, but not total, RNAPII, and cells depleted of Elongin A show stronger promoter RNAPII pausing, suggesting that Elongin A may be involved in the release of paused RNAPII. Our RNA-seq studies suggest that loss of Elongin A did not alter global transcription, and unlike prior in vitro studies, we did not observe a dramatic impact on RNAPII elongation rates in our cell-based nascent RNA-seq experiments upon Elongin A depletion. Taken together, our studies provide the first comprehensive analysis of the role of Elongin A in regulating transcription in vivo. Our studies also revealed that unlike prior in vitro findings, depletion of Elongin A has little impact on global transcription profiles and transcription elongation in vivo.


Assuntos
Cromatina/metabolismo , Elonguina/genética , RNA Polimerase II/genética , RNA Mensageiro/genética , Elongação da Transcrição Genética , Linhagem Celular Tumoral , Cromatina/química , Biologia Computacional/métodos , Elonguina/antagonistas & inibidores , Elonguina/metabolismo , Elementos Facilitadores Genéticos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Fosforilação , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA , Serina/metabolismo , Transdução de Sinais
14.
J Biol Chem ; 297(1): 100862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34116057

RESUMO

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Elonguina/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase II/genética , Ubiquitina-Proteína Ligases/genética , Animais , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , DNA Helicases/química , DNA Helicases/ultraestrutura , Reparo do DNA/genética , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Elonguina/química , Elonguina/ultraestrutura , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/química , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação/genética
15.
Mol Cancer ; 21(1): 210, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376892

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have driven research focused on their effects as oncogenes or tumor suppressors involved in carcinogenesis. However, the functions and mechanisms of most lncRNAs in colorectal cancer (CRC) remain unclear. METHODS: The expression of DLGAP1-AS2 was assessed by quantitative RT-PCR in multiple CRC cohorts. The impacts of DLGAP1-AS2 on CRC growth and metastasis were evaluated by a series of in vitro and in vivo assays. Furthermore, the underlying mechanism of DLGAP1-AS2 in CRC was revealed by RNA pull down, RNA immunoprecipitation, RNA sequencing, luciferase assays, chromatin immunoprecipitation, and rescue experiments. RESULTS: We discovered that DLGAP1-AS2 promoted CRC tumorigenesis and metastasis by physically interacting with Elongin A (ELOA) and inhibiting its protein stability by promoting tripartite motif containing 21 (Trim21)-mediated ubiquitination modification and degradation of ELOA. In particular, we revealed that DLGAP1-AS2 decreases phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) expression by inhibiting ELOA-mediated transcriptional activating of LHPP and thus blocking LHPP-dependent suppression of the AKT signaling pathway. In addition, we also demonstrated that DLGAP1-AS2 was bound and stabilized by cleavage and polyadenylation specificity factor (CPSF2) and cleavage stimulation factor (CSTF3). CONCLUSIONS: The discovery of DLGAP1-AS2, a promising prognostic biomarker, reveals a new dimension into the molecular pathogenesis of CRC and provides a prospective treatment target for this disease.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Neoplasias Colorretais/patologia , Elonguina/genética , Elonguina/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
16.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30166453

RESUMO

Multi-subunit cullin-RING ligases (CRLs) are the largest family of ubiquitin E3 ligases in humans. CRL activity is tightly regulated to prevent unintended substrate degradation or autocatalytic degradation of CRL subunits. Using a proteomics strategy, we discovered that CRL4AMBRA1 (CRL substrate receptor denoted in superscript) targets Elongin C (ELOC), the essential adapter protein of CRL5 complexes, for polyubiquitination and degradation. We showed that the ubiquitin ligase function of CRL4AMBRA1 is required to disrupt the assembly and attenuate the ligase activity of human CRL5SOCS3 and HIV-1 CRL5VIF complexes as AMBRA1 depletion leads to hyperactivation of both CRL5 complexes. Moreover, CRL4AMBRA1 modulates interleukin-6/STAT3 signaling and HIV-1 infectivity that are regulated by CRL5SOCS3 and CRL5VIF, respectively. Thus, by discovering a substrate of CRL4AMBRA1, ELOC, the shared adapter of CRL5 ubiquitin ligases, we uncovered a novel CRL cross-regulation pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Elonguina/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Elonguina/genética , Células HEK293 , Infecções por HIV/genética , HIV-1/genética , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ubiquitina-Proteína Ligases/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
17.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941780

RESUMO

Vif counteracts the host restriction factor APOBEC3G (A3G) and other APOBEC3s by preventing the incorporation of A3G into progeny virions. We previously identified Vif mutants with a dominant-negative (D/N) phenotype that interfered with the function of wild-type Vif, inhibited the degradation of A3G, and reduced the infectivity of viral particles by increased packaging of A3G. However, the mechanism of interference remained unclear, in particular since all D/N Vif mutants were unable to bind Cul5 and some mutants additionally failed to bind A3G, ruling out competitive binding to A3G or the E3 ubiquitin ligase complex as the sole mechanism. The goal of the current study was to revisit the mechanism of D/N interference by Vif mutants and analyze the possible involvement of core binding factor beta (CBFß) in this process. We found a clear correlation of D/N properties of Vif mutants with their ability to engage CBFß. Only mutants that retained the ability to bind CBFß exhibited the D/N phenotype. Competition studies revealed that D/N Vif mutants directly interfered with the association of CBFß and wild-type Vif. Furthermore, overexpression of CBFß counteracted the interference of D/N Vif mutants with A3G degradation by wild-type Vif. Finally, overexpression of Runx1 mimicked the effect of D/N Vif mutants and inhibited the degradation of A3G by wild-type Vif. Taken together, we identified CBFß as the key player involved in D/N interference by Vif.IMPORTANCE Of all the accessory proteins encoded by HIV-1 and other primate lentiviruses, Vif has arguably the strongest potential as a target for antiviral therapy. This conclusion is based on the observation that replication of HIV-1 in vivo is critically dependent on Vif. Thus, inhibiting the function of Vif via small-molecule inhibitors or other approaches has significant therapeutic potential. We previously identified dominant-negative (D/N) Vif variants whose expression interferes with the function of virus-encoded wild-type Vif. We now show that D/N interference involves competitive binding of D/N Vif variants to the transcriptional cofactor core binding factor beta (CBFß), which is expressed in cells in limiting quantities. Overexpression of CBFß neutralized the D/N phenotype of Vif. In contrast, overexpression of Runx1, a cellular binding partner of CBFß, phenocopied the D/N Vif phenotype by sequestering endogenous CBFß. Thus, our results provide proof of principle that D/N Vif variants could have therapeutic potential.


Assuntos
Desaminase APOBEC-3G/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Ligação Competitiva , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas Culina/metabolismo , Elonguina/metabolismo , Genes Dominantes , Células HEK293 , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/metabolismo , Mutação , Fenótipo , Vírion
18.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941775

RESUMO

Mosquito-borne La Crosse virus (LACV; genus Orthobunyavirus, family Peribunyaviridae, order Bunyavirales) causes up to 100 annual cases of severe meningoencephalitis in children and young adults in the United States. A major virulence factor of LACV is the nonstructural protein NSs, which inhibits host cell mRNA synthesis to prevent the induction of antiviral type I interferons (IFN-α/ß). To achieve this host transcriptional shutoff, LACV NSs drives the proteasomal degradation of RPB1, the large subunit of mammalian RNA polymerase II. Here, we show that NSs acts in a surprisingly rapid manner, as RPB1 degradation was commencing already at 1 h postinfection. The RPB1 degradation was partially dependent on the cellular E3 ubiquitin ligase subunit Elongin C. Consequently, removal of Elongin C, but also of the subunits Elongin A or B by siRNA transfection partially rescued general RNAP II transcription and IFN-beta mRNA synthesis from the blockade by NSs. In line with these results, LACV NSs was found to trigger the redistribution of Elongin C out of nucleolar speckles, which, however, is an epiphenomenon rather than part of the NSs mechanism. Our study also shows that the molecular phenotype of LACV NSs is different from RNA polymerase II inhibitors like α-amanitin or Rift Valley fever virus NSs, indicating that LACV is unique in involving the Elongin complex to shut off host transcription and IFN response.IMPORTANCE The mosquito-borne La Crosse virus (LACV; genus Orthobunyavirus, family Peribunyaviridae, order Bunyavirales) is prevalent in the United States and can cause severe childhood meningoencephalitis. Its main virulence factor, the nonstructural protein NSs, is a strong inhibitor of the antiviral type I interferon (IFN) system. NSs acts by imposing a global host mRNA synthesis shutoff, mediated by NSs-driven proteasomal degradation of the RPB1 subunit of RNA polymerase II. Here, we show that RPB1 degradation commences as early as 1 h postinfection, and identify the E3 ubiquitin ligase subunit Elongin C (and its binding partners Elongins A and B) as an NSs cofactor involved in RPB1 degradation and in suppression of global as well as IFN-related mRNA synthesis.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Elonguina/metabolismo , Vírus La Crosse/enzimologia , Proteínas não Estruturais Virais/metabolismo , Células A549 , Alfa-Amanitina/metabolismo , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Interferons/metabolismo , Vírus La Crosse/genética , Fenótipo , RNA Interferente Pequeno/metabolismo , Vírus da Febre do Vale do Rift/metabolismo , Transcrição Gênica , Células Vero , Fatores de Virulência/metabolismo
19.
PLoS Pathog ; 15(2): e1007566, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716138

RESUMO

The cellular invasion machinery of the enteric pathogen Salmonella consists of a type III secretion system (T3SS) with injectable virulence factors that induce uptake by macropinocytosis. Salmonella invasion at the apical surface of intestinal epithelial cells is inefficient, presumably because of a glycosylated barrier formed by transmembrane mucins that prevents T3SS contact with host cells. We observed that Salmonella is capable of apical invasion of intestinal epithelial cells that express the transmembrane mucin MUC1. Knockout of MUC1 in HT29-MTX cells or removal of MUC1 sialic acids by neuraminidase treatment reduced Salmonella apical invasion but did not affect lateral invasion that is not hampered by a defensive barrier. A Salmonella deletion strain lacking the SiiE giant adhesin was unable to invade intestinal epithelial cells through MUC1. SiiE-positive Salmonella closely associated with the MUC1 layer at the apical surface, but invaded Salmonella were negative for the adhesin. Our findings uncover that the transmembrane mucin MUC1 is required for Salmonella SiiE-mediated entry of enterocytes via the apical route.


Assuntos
Adesinas Bacterianas/metabolismo , Mucina-1/fisiologia , Infecções por Salmonella/metabolismo , Proteínas de Bactérias , Linhagem Celular , Elonguina/metabolismo , Enterócitos , Células Epiteliais , Humanos , Mucina-1/genética , Mucina-1/metabolismo , Salmonella enterica/patogenicidade , Salmonella typhimurium/patogenicidade , Fatores de Virulência
20.
J Med Genet ; 57(11): 744-751, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32303605

RESUMO

BACKGROUND: Von Hippel-Lindau (VHL) disease is an autosomal dominant genetic tumour syndrome resulting from mutations in the VHL gene lineage, and its prognosis is generally poor. This study aimed to provide a more valuable genotype-phenotype correlation based on the Elongin C binding site in VHL disease. METHODS: This study included 553 patients (194 families) who were diagnosed with VHL disease in our centre from September 2010 to February 2019. According to the type of gene mutation, the patients were divided into the Elongin C binding site missense mutation (EM) group, the non-Elongin C binding site missense mutation (nEM) group and the truncation mutation (TR) group. We analysed and compared the age-related tumour risk and prognosis of the three groups. RESULTS: A total of 14 new intragenic mutations were found in this cohort. The age-related risk of central nervous system haemangioblastoma (CHB) and pancreatic tumour in the EM group was lower than in the combined nEM-TR group, while the corresponding risk of pheochromocytoma (PHEO) was higher. Additionally, the prognoses of EM and nEM-TR were analysed. The median survival period in the EM group was longer than that in the nEM-TR group, and both the total survival and the CHB-specific survival of the EM group were better than those of the nEM-TR group. CONCLUSION: In conclusion, our study demonstrated that the EM was an independent risk factor for PHEO. The EM is also an independent protective factor for CHB age-related risk, overall survival and CHB-specific survival in VHL disease. This modified genotype-phenotype correlation integrates gene mutation, the Elongin B binding site, and phenotypic diversity and provides a reference for clinical diagnosis.


Assuntos
Elonguina/genética , Predisposição Genética para Doença , Hemangioblastoma/genética , Doença de von Hippel-Lindau/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Sítios de Ligação/genética , Intervalo Livre de Doença , Feminino , Estudos de Associação Genética , Hemangioblastoma/epidemiologia , Hemangioblastoma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Fatores de Risco , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA