Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Annu Rev Biochem ; 87: 239-261, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29494238

RESUMO

The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Reparadoras do DNA/classificação , DNA Polimerase Dirigida por DNA/classificação , Humanos , Modelos Biológicos , Modelos Moleculares
2.
Biochem J ; 452(3): 509-18, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23577621

RESUMO

ALKBH1 (AlkB homologue 1) is a mammalian AlkB (2-oxoglutarate-dependent dioxygenase) homologue that possesses AP (abasic or apurinic/apyrimidinic) lyase activity. The AP lyase reaction is catalysed by imine formation with an active site lysine residue, and a covalent intermediate can be trapped in the presence of NaBH4. Surprisingly, ALKBH1 also forms a stable protein-DNA adduct in the absence of a reducing agent. Experiments with different substrates demonstrated that the protein covalently binds to the 5' DNA product, i.e. the fragment containing an α,ß-unsaturated aldehyde. The N-terminal domain of ALKBH1 was identified as the main site of linkage with DNA. By contrast, mutagenesis studies suggest that the primary catalytic residue forming the imine linkage is Lys133, with Lys154 and other lysine residues in this region serving in opportunistic roles. These findings confirm the classification of ALKBH1 as an AP lyase, identify the primary and a secondary lysine residues involved in the lyase reaction, and demonstrate that the protein forms a covalent adduct with the 5' DNA product. We propose two plausible chemical mechanisms to account for the covalent attachment.


Assuntos
Adutos de DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Homólogo AlkB 1 da Histona H2a Dioxigenase , Domínio Catalítico/genética , Adutos de DNA/química , Adutos de DNA/genética , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/classificação , Ativação Enzimática/genética , Humanos , Lisina/genética , Estabilidade Proteica , Especificidade por Substrato
3.
Nucleic Acids Res ; 40(16): 8163-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718974

RESUMO

Exonuclease VII (ExoVII) is a bacterial nuclease involved in DNA repair and recombination that hydrolyses single-stranded DNA. ExoVII is composed of two subunits: large XseA and small XseB. Thus far, little was known about the molecular structure of ExoVII, the interactions between XseA and XseB, the architecture of the nuclease active site or its mechanism of action. We used bioinformatics methods to predict the structure of XseA, which revealed four domains: an N-terminal OB-fold domain, a middle putatively catalytic domain, a coiled-coil domain and a short C-terminal segment. By series of deletion and site-directed mutagenesis experiments on XseA from Escherichia coli, we determined that the OB-fold domain is responsible for DNA binding, the coiled-coil domain is involved in binding multiple copies of the XseB subunit and residues D155, R205, H238 and D241 of the middle domain are important for the catalytic activity but not for DNA binding. Altogether, we propose a model of sequence-structure-function relationships in ExoVII.


Assuntos
Enzimas Reparadoras do DNA/química , Proteínas de Escherichia coli/química , Exodesoxirribonucleases/química , Sequência de Aminoácidos , Sequência de Bases , Enzimas Reparadoras do DNA/classificação , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleases/classificação , Exodesoxirribonucleases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Alinhamento de Sequência , Relação Estrutura-Atividade
4.
Nucleic Acids Res ; 37(21): 7124-36, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19786499

RESUMO

The iron(II)- and 2-oxoglutarate (2OG)-dependent dioxygenase AlkB from Escherichia coli (EcAlkB) repairs alkylation damage in DNA by direct reversal. EcAlkB substrates include methylated bases, such as 1-methyladenine (m(1)A) and 3-methylcytosine (m(3)C), as well as certain bulkier lesions, for example the exocyclic adduct 1,N(6)-ethenoadenine (epsilonA). EcAlkB is the only bacterial AlkB protein characterized to date, and we here present an extensive bioinformatics and functional analysis of bacterial AlkB proteins. Based on sequence phylogeny, we show that these proteins can be subdivided into four groups: denoted 1A, 1B, 2A and 2B; each characterized by the presence of specific conserved amino acid residues in the putative nucleotide-recognizing domain. A scattered distribution of AlkB proteins from the four different groups across the bacterial kingdom indicates a substantial degree of horizontal transfer of AlkB genes. DNA repair activity was associated with all tested recombinant AlkB proteins. Notably, both a group 2B protein from Xanthomonas campestris and a group 2A protein from Rhizobium etli repaired etheno adducts, but had negligible activity on methylated bases. Our data indicate that the majority, if not all, of the bacterial AlkB proteins are DNA repair enzymes, and that some of these proteins do not primarily target methylated bases.


Assuntos
Proteínas de Bactérias/classificação , Enzimas Reparadoras do DNA/classificação , Dioxigenases/classificação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biologia Computacional , DNA/metabolismo , Dano ao DNA , Metilação de DNA , Reparo do DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , DNA de Cadeia Simples/metabolismo , Dioxigenases/química , Dioxigenases/genética , Proteínas de Escherichia coli/química , Teste de Complementação Genética , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Filogenia , RNA/metabolismo , Análise de Sequência de Proteína
5.
BMC Evol Biol ; 10: 331, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20979629

RESUMO

BACKGROUND: The patterns of emergence and diversification of the families of ubiquitin ligases provide insights about the evolution of the eukaryotic ubiquitination system. U-box ubiquitin ligases (UULs) are proteins characterized by containing a peculiar protein domain known as U box. In this study, the origin of the animal UUL genes is described. RESULTS: Phylogenetic and structural data indicate that six of the seven main UUL-encoding genes found in humans (UBE4A, UBE4B, UIP5, PRP19, CHIP and CYC4) were already present in the ancestor of all current metazoans and the seventh (WDSUB1) is found in placozoans, cnidarians and bilaterians. The fact that only 4-5 genes orthologous to the human ones are present in the choanoflagellate Monosiga brevicollis suggests that several animal-specific cooptions of the U box to generate new genes occurred. Significantly, Monosiga contains five additional UUL genes that are not present in animals. One of them is also present in distantly-related protozoans. Along animal evolution, losses of UUL-encoding genes are rare, except in nematodes, which lack three of them. These general patterns are highly congruent with those found for other two families (RBR, HECT) of ubiquitin ligases. CONCLUSIONS: Finding that the patterns of emergence, diversification and loss of three unrelated families of ubiquitin ligases (RBR, HECT and U-box) are parallel indicates that there are underlying, linage-specific evolutionary forces shaping the complexity of the animal ubiquitin system.


Assuntos
Evolução Molecular , Filogenia , Ubiquitina-Proteína Ligases/classificação , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal/classificação , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Coanoflagelados/genética , Enzimas Reparadoras do DNA/classificação , Enzimas Reparadoras do DNA/genética , Humanos , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Fatores de Processamento de RNA , Proteínas Supressoras de Tumor/classificação , Proteínas Supressoras de Tumor/genética , Complexos Ubiquitina-Proteína Ligase/classificação , Complexos Ubiquitina-Proteína Ligase/genética
6.
J Mol Biol ; 382(3): 610-27, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18619468

RESUMO

DNA mismatch repair (MMR) is responsible for correcting replication errors. MutLalpha, one of the main players in MMR, has been recently shown to harbor an endonuclease/metal-binding activity, which is important for its function in vivo. This endonuclease activity has been confined to the C-terminal domain of the hPMS2 subunit of the MutLalpha heterodimer. In this work, we identify a striking sequence-structure similarity of hPMS2 to the metal-binding/dimerization domain of the iron-dependent repressor protein family and present a structural model of the metal-binding domain of MutLalpha. According to our model, this domain of MutLalpha comprises at least three highly conserved sequence motifs, which are also present in most MutL homologs from bacteria that do not rely on the endonuclease activity of MutH for strand discrimination. Furthermore, based on our structural model, we predict that MutLalpha is a zinc ion binding protein and confirm this prediction by way of biochemical analysis of zinc ion binding using the full-length and C-terminal domain of MutLalpha. Finally, we demonstrate that the conserved residues of the metal ion binding domain are crucial for MMR activity of MutLalpha in vitro.


Assuntos
Adenosina Trifosfatases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ferro/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Proteínas Repressoras/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/classificação , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Modelos Moleculares , Dados de Sequência Molecular , Proteínas MutL , Filogenia , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/classificação , Subunidades Proteicas/genética , Proteínas Repressoras/química , Proteínas Repressoras/classificação , Proteínas Repressoras/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA