Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.033
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Reprod Dev ; 68(3): 198-208, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35228412

RESUMO

Spermatozoa acquire fertilization ability through post-translational modifications. These membrane surface alterations occur in various segments of the epididymis. Quiescin sulfhydryl oxidases, which catalyze thiol-oxidation reactions, are involved in disulfide bond formation, which is essential for sperm maturation, upon transition and migration in the epididymis. Using castration and azoospermia transgenic mouse models, in the present study, we showed that quiescin sulfhydryl oxidase 1 (QSOX1) protein expression and secretion are positively correlated with the presence of testosterone and sperm cells. A two-dimensional in vitro epithelium-sperm co-culture system provided further evidence in support of the notion that both testosterone and its dominant metabolite, 5α-dihydrotestosterone, promote epididymal QSOX1 secretion. We also demonstrated that immature caput spermatozoa, but not mature cauda sperm cells, exhibited great potential to stimulate QSOX1 secretion in vitro, suggesting that sperm maturation is a key regulatory factor for mouse epididymal QSOX1 secretion. Proteomic analysis identified 582 secretory proteins from the co-culture supernatant, of which 258 were sperm-specific and 154 were of epididymal epithelium-origin. Gene Ontology analysis indicated that these secreted proteins exhibit functions known to facilitate sperm membrane organization, cellular activity, and sperm-egg recognition. Taken together, our data demonstrated that testosterone and sperm maturation status are key regulators of mouse epididymal QSOX1 protein expression and secretion.


Assuntos
Epididimo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Espermatozoides , Animais , Técnicas de Cocultura , Epididimo/citologia , Epididimo/enzimologia , Epididimo/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Masculino , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteômica , Espermatozoides/citologia , Espermatozoides/enzimologia , Espermatozoides/metabolismo , Testosterona/metabolismo
2.
Toxicol Appl Pharmacol ; 415: 115449, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577919

RESUMO

Cadmium (Cd) was a serious heavy metal pollutant. Cd exposure will cause damage to reproductive organs. It was largely unknown whether Cd exposure caused inflammation and apoptosis in epididymis. In this study, we established models of Cd exposure in swine, and the apoptotic level of epididymis was detected by in situ TUNEL fluorescence staining assay, the results showed that Cd exposure significantly increased TUNEL-apoptosis index. Furthermore, the results of qRT-PCR and Western blot showed that Cd activated the proto-oncogenic serine/threonine kinase-1 (RAF1)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signal pathway (RAF1/MEK/ERK) and led to the subsequent up-regulation of the nuclear factor-κB (NF-κB), tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), caused inflammation in epididymis. NF-κB inflammation pathway also mediated the tumor protein P53 (P53) and indirectly activated the Cytochrome c (Cytc), B-cell lymphoma-2 (Bcl-2), Bcl-2-Associated X protein (Bax), Caspase 3, Caspase 9. In summary, we believed that the RAF1/MEK/ERK pathway came into play in the apoptosis of epididymal tissues exposed to Cd by activating the NF-κB Inflammation pathway, followed by activation of the mitochondrial apoptotic pathway. This study provides more abundant data for exploring the reproductive toxicity of Cd.


Assuntos
Apoptose/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Epididimo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular , Inflamação/induzido quimicamente , Mitocôndrias/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Epididimo/enzimologia , Epididimo/patologia , Proteínas de Choque Térmico/metabolismo , Inflamação/enzimologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Transdução de Sinais , Sus scrofa
3.
Reprod Fertil Dev ; 32(9): 851-861, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32527375

RESUMO

The aim of the present study was to characterise key enzymes involved in polyunsaturated fatty acid (PUFA) synthesis in the testis and epididymis collected from 2-year-old healthy warmblood stallions (n=10). The mRNA expression of fatty acid synthase, the Δ9-, Δ6-, Δ5- and Δ4-desaturases and elongases 6, 5 and 2 (encoded by the fatty acid synthase (FASN), the stearoyl-CoA desaturase (SCD), the fatty acid desaturase 2 (FADS2), the fatty acid desaturase 1 (FADS1), the delta 4-desaturase, sphingolipid 1 (DEGS1), ELOVL fatty acid elongase 6(ELOVL6), ELOVL fatty acid elongase 5 (ELOVL5), ELOVL fatty acid elongase 2 (ELOVL2) genes respectively) was determined in equine testis and epididymis. All enzymes were present in testicular tissue and along the epididymis, but mRNA expression differed among localisations. The protein localisation of FADS1, FADS2 and ELOVL5 was determined by immunohistochemistry. In the testes, FADS1 was expressed in the germinal cells and ELOVL5 was expressed in germinal and Leydig cells; FADS2 was not detected. In the epididymis, FADS1 and FADS2 were expressed in the principal and basal cells, whereas ELOVL5 was found only in the principal cells of the caput. All three enzymes were present in epididymal vesicles secreted by an apocrine mechanism. These results suggest active PUFA metabolism during spermatogenesis and epididymal sperm maturation in stallions.


Assuntos
Epididimo/enzimologia , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/biossíntese , Cavalos , Testículo/enzimologia , Animais , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Regulação Enzimológica da Expressão Gênica , Masculino
4.
Int J Mol Sci ; 21(1)2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906257

RESUMO

This study shows for the first time that an iminosugar exerts anti-spermiogenic effect, inducing reversible infertility in a species that is not related to C57BL/6 male mice. In CD rats, N-butyldeoxygalactonojirimycin (NB-DGJ) caused reversible infertility at 150 mg/kg/day when administered daily as single oral dose. NB-DGJ inhibited CD rat-derived testicular ß-glucosidase 2 (GBA2) activity at 10 µM but did not inhibit CD rat-derived testicular ceramide-specific glucosyltransferase (CGT) at doses up to 1000 µM. Pharmacokinetic studies revealed that sufficient plasma levels of NB-DGJ (50 µM) were achieved to inhibit the enzyme. Fertility was blocked after 35 days of treatment and reversed one week after termination of treatment. The rapid return of fertility indicates that the major effect of NB-DGJ may be epididymal rather than testicular. Collectively, our in vitro and in vivo studies in rats suggest that iminosugars should continue to be pursued as potential lead compounds for development of oral, non-hormonal male contraceptives. The study also adds evidence that GBA2, and not CGT, is the major target for the contraceptive effect of iminosugars.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Fertilidade/efeitos dos fármacos , Glucosiltransferases/metabolismo , Infertilidade Masculina , Testículo , beta-Glucosidase , 1-Desoxinojirimicina/efeitos adversos , 1-Desoxinojirimicina/farmacocinética , 1-Desoxinojirimicina/farmacologia , Animais , Epididimo/enzimologia , Epididimo/patologia , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/enzimologia , Infertilidade Masculina/patologia , Masculino , Camundongos , Ratos , Testículo/enzimologia , Testículo/patologia , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/metabolismo
5.
Biochem Biophys Res Commun ; 503(1): 51-55, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29842884

RESUMO

Male germ cells are transformed from undifferentiated stem cells into spermatozoa through a series of highly regulated steps together termed spermatogenesis. Spermatogonial stem cells undergo mitosis and differentiation followed by two rounds of meiotic division and then proceed through a series of dramatic cell shape changes to form highly differentiated spermatozoa. Using indirect immunofluorescence, we investigated a role for the mitotic kinase, Aurora A (AURKA), in these events through localization of this protein in mouse testis and spermatozoa. AURKA is expressed in several cell types in the testis. Spermatogonia and spermatocytes express AURKA as expected based on the known role of this kinase in cell division. Surprisingly, we also found AURKA localized to spermatids and the flagellum of spermatozoa. Total AURKA and activated AURKA are expressed in different compartments of the sperm flagellum with total AURKA found in the principal piece and its phosphorylated and activated form found in the sperm midpiece. In addition, active AURKA is enriched in the flagellum of motile sperm isolated from cauda epididymis. These results provide evidence for a unique role for AURKA in spermatogenesis and sperm motility. Defining the signaling mechanisms that govern spermatogenesis and sperm cell function is crucial to understanding and treating male infertility as well as for development of new contraceptive strategies.


Assuntos
Aurora Quinase A/metabolismo , Espermatogênese/fisiologia , Testículo/citologia , Testículo/enzimologia , Animais , Epididimo/citologia , Epididimo/enzimologia , Técnica Indireta de Fluorescência para Anticorpo , Infertilidade Masculina/enzimologia , Masculino , Camundongos , Transdução de Sinais , Motilidade dos Espermatozoides/fisiologia , Cauda do Espermatozoide/enzimologia , Espermátides/enzimologia , Espermatócitos/enzimologia , Espermatogônias/enzimologia , Espermatozoides/enzimologia
6.
Biol Reprod ; 99(5): 1022-1033, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800099

RESUMO

Sulfhydryl oxidation is part of the sperm maturation process essential for the acquisition of sperm fertilization competency and its structural stabilization; however, the specific sulfhydryl oxidases that fulfill these roles have yet to be identified. In this study, we investigate the potential involvement of one atypical thiol oxidase family called quiescin Q6/sulfhydryl oxidase (QSOX) using the mouse epididymis as our model system. With multidisciplinary approaches, we show that QSOX isoform 1 and 2 exhibit complementary distribution throughout the epididymal duct, but that each variant possesses distinct subcellular localization within the epididymal principal cells. While QSOX2 was exclusively present in the Golgi apparatus of the caput and corpus epididymis, QSOX1c, the most profusely express QSOX1 variant, was abundantly present in the cauda luminal fluids. Moreover, immunohistochemistry studies together with proteomic identification in isolated epididymosomes provided evidence substantiating the release of QSOX2, but not QSOX1c, via an apocrine secretory pathway. Furthermore, we demonstrate for the first time, distinct association of QSOX1c and QSOX2 with the sperm acrosome and implantation fossa, during different stages of their epididymal maturation. In conclusion, our study provides the first comprehensive comparisons between QSOX1 and QSOX2 in the mouse epididymis, revealing their distinct epididymal distribution, cellular localization, mechanisms of secretion and sperm membrane association. Together, these data suggest that QSOX1 and QSOX2 have discrete biological functions in male germ cell development.


Assuntos
Epididimo/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Espermatozoides/enzimologia , Animais , Epididimo/crescimento & desenvolvimento , Complexo de Golgi/enzimologia , Imuno-Histoquímica , Isoenzimas , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Maturação do Esperma
7.
Andrologia ; 50(2)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28737015

RESUMO

This study assessed the effects of caffeine combined with caffeic acid on some biomarkers of male reproductive function using normal albino Wistar rats. Rats were divided into four groups (n = 6) and treated for seven successive days; group 1 represents the control rats; group 2 rats were treated with 50 mg/kg body weight (BW) of caffeine only; group 3 rats were treated with 50 mg/kg BW of caffeic acid, while the rats in group 4 were cotreated with an equal combination of caffeine and caffeic acid. The results revealed significant increase in reproductive hormone, testicular and epididymal nitric oxide levels of the rats. Moreover, decreased oxidative stress in the testes and epididymides of the treated rats was evidenced by significant increase in total and nonprotein thiol levels, catalase and superoxide dismutase activities. Similarly, decreased testicular cholesterol level with concomitant elevation in testicular steroidogenic enzyme activities, glycogen and zinc levels were observed in the treated rats. No morphological changes were observed as revealed by the photomicrographs from light microscopy in treated rats. Nevertheless, the combination therapy exhibited additive/synergistic effect on these biochemical indices than when they were administered singly. This study suggests the combination therapy of caffeine and caffeic acid at the dose tested for improving male reproductive function.


Assuntos
Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Fertilidade/efeitos dos fármacos , Animais , Antioxidantes/uso terapêutico , Biomarcadores/análise , Ácidos Cafeicos/uso terapêutico , Cafeína/uso terapêutico , Catalase/metabolismo , Estimulantes do Sistema Nervoso Central/uso terapêutico , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Epididimo/efeitos dos fármacos , Epididimo/enzimologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Modelos Animais , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Testículo/efeitos dos fármacos , Testículo/enzimologia , Testosterona/biossíntese
8.
Br Poult Sci ; 59(5): 591-603, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29848062

RESUMO

1. To show hormonal differences between male turkeys with yellow semen syndrome (YSS) and white, normal semen (WNS), the expression of aromatase, oestrogen receptor α (ERα), and oestrogen receptor ß (ERß) as well as testosterone and oestradiol concentrations in YSS and WNS testes, epididymis, and ductus deferens were examined. 2. To measure gene expression levels of aromatase and oestrogen receptors (ERs), three complementary techniques (real-time PCR, Western blot, and immunohistochemistry) were used, whereas steroid hormone levels were determined radio-immunologically. 3. Upregulation of aromatase and ERα mRNAs in YSS testes (P < 0.05; P < 0.01), epididymis (P < 0.001; P < 0.001), and ductus deferens (P < 0.05; P < 0.01) compared to those of WNS tissues was detected. Significant increases in the levels of aromatase and ERα proteins were detected in YSS testes (P < 0.001; P < 0.05), epididymis (P < 0.001; P < 0.001), and ductus deferens (P < 0.001; P < 0.05). The expression of ERß mRNA and protein level was upregulated in the testes (P < 0.05; P < 0.01) and epididymis (P < 0.001; P < 0.01) but not in ductus deferens where it was downregulated (P < 0.01; P < 0.01). Increased intensity of immunoreactive proteins in YSS versus WNS reproductive tissues corroborated gene expression results. 4. Testosterone concentration diminished in YSS epididymis (P < 0.05) and ductus deferens (P < 0.05), but not in the testes, remaining at high level (P < 0.05) compared to WNS values. Concomitantly, increased oestradiol concentration was found in YSS testes (P < 0.05) and epididymis (P < 0.05) but decreased in the ductus deferens (P < 0.05). 5. From the published literature, this study is the first to demonstrate the ability for androgen aromatisation in the turkey reproductive tissues and to show the cellular targets for locally produced oestrogens. The data suggested that the androgen/oestrogen ratio is a mechanistic basis for amplification of differences between turkeys with white and yellow semen and that these results can have a relevance in applied sciences to widen the knowledge on domestic bird reproduction.


Assuntos
Aromatase/genética , Sêmen/química , Perus/fisiologia , Animais , Animais Domésticos/fisiologia , Aromatase/análise , Aromatase/metabolismo , Western Blotting , Epididimo/enzimologia , Estradiol/análise , Hormônios Esteroides Gonadais/análise , Hormônios Esteroides Gonadais/metabolismo , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Estrogênio/genética , Reprodução , Sêmen/fisiologia , Testículo/enzimologia , Testosterona/análise , Perus/anatomia & histologia , Regulação para Cima
9.
J Biochem Mol Toxicol ; 31(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28322028

RESUMO

The epididymis relies on transporters for the secretion of nucleosides and influence the disposition of nucleoside analogs (NSA). Since these compounds can cross the blood-testis barrier (BTB), it is important to understand if the epididymis reabsorbs NSA drugs. The purpose of this study is to determine the localization of nucleoside transporters expressed within rat epididymis to demonstrate the potential of epididymal reabsorption. Using immunohistochemistry, we determined that equilibrative nucleoside transporter 1 (ENT1) is localized to the basolateral membrane of epithelial cells, ENT2 is expressed in the nucleus of the epithelium and CNT2 is expressed by basal cells. The expression pattern for these transporters suggests that nucleosides are able to access the epithelial cells of the epididymal duct via the blood, but not from the lumen. We did not find any evidence for a transepithelial reabsorption pathway indicating the NSA drugs that cross the BTB remain within the epididymis.


Assuntos
Barreira Hematotesticular/enzimologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Epididimo/citologia , Epididimo/enzimologia , Transportador Equilibrativo 1 de Nucleosídeo , Imuno-Histoquímica , Masculino , Nucleosídeos/farmacocinética , Nucleosídeos/farmacologia , Ratos , Ratos Sprague-Dawley
10.
BMC Vet Res ; 13(1): 205, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28662655

RESUMO

BACKGROUND: Post-spermiogenesis membrane surface modifications rely on molecules present in the reproductive tracts. Two isoforms (isoform 1 and 2) from Quiescin Q6-Sulfydryl Oxidase protein family have been identified in the male reproductive tract of rodent species. However, unlike isoform 1, scarce information is available for isoform 2, likely due to its lower expression level and lack of proper purification methods to obtain sufficient protein quantity for further assays. RESULTS: This study demonstrated the presence of short and long forms of Quiescin Q6-Sulfydryl Oxidase 2 in boar, likely representing the secretory (short form) and transmembrane (long form) forms of Quiescin Q6-Sulfydryl Oxidase 2. Immunohistochemistry studies revealed the presence of Quiescin Q6-Sulfydryl Oxidase 2 in a broad range of porcine tissues; the pronounced vesicle-contained Quiescin Q6-Sulfydryl Oxidase 2 at the apical region of epididymis and seminal vesicles epithelium suggested its involvement in sperm physiology and its participation in semen formation. The majority of porcine Quiescin Q6-Sulfydryl Oxidase 2 could be purified via either antibody affinity column or be salted out using 10%-40% ammonium sulfate. Higher amount of low molecular weight Quiescin Q6-Sulfydryl Oxidase 2 observed in the seminal vesicle likely represents the secretory form of Quiescin Q6-Sulfydryl Oxidase 2 and reflects an exuberant secretory activity in this organ. CONCLUSIONS: We demonstrated for the first time, the presence of Quiescin Q6-Sulfydryl Oxidase 2 in porcine species; moreover, two forms of Quiescin Q6-Sulfydryl Oxidase 2 were identified and exhibited distinct molecular weights and properties during protein purification processes. This study also provided feasible Quiescin Q6-Sulfydryl Oxidase 2 purification methods from slaughterhouse materials that could potentially allow obtaining sufficient amount of Quiescin Q6-Sulfydryl Oxidase 2 for future functional investigations.


Assuntos
Epididimo/enzimologia , Oxirredutases/isolamento & purificação , Glândulas Seminais/enzimologia , Suínos/metabolismo , Animais , Epididimo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos ICR , Oxirredutases/química , Glândulas Seminais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA