Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 86: 387-415, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28375745

RESUMO

What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.


Assuntos
Proteínas de Bactérias/química , Hidrolases/química , Cetosteroides/química , Pseudomonas/enzimologia , Esteroide Isomerases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Expressão Gênica , Hidrolases/genética , Hidrolases/metabolismo , Cetosteroides/metabolismo , Cinética , Modelos Químicos , Simulação de Dinâmica Molecular , Mutação , Pseudomonas/química , Pseudomonas/genética , Espectrofotometria Infravermelho/métodos , Eletricidade Estática , Esteroide Isomerases/genética , Esteroide Isomerases/metabolismo , Termodinâmica
2.
Biochem Biophys Res Commun ; 711: 149914, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38608434

RESUMO

The steroid hormone ecdysone is essential for the reproduction and survival of insects. The hormone is synthesized from dietary sterols such as cholesterol, yielding ecdysone in a series of consecutive enzymatic reactions. In the insect orders Lepidoptera and Diptera a glutathione transferase called Noppera-bo (Nobo) plays an essential, but biochemically uncharacterized, role in ecdysteroid biosynthesis. The Nobo enzyme is consequently a possible target in harmful dipterans, such as disease-carrying mosquitoes. Flavonoid compounds inhibit Nobo and have larvicidal effects in the yellow-fever transmitting mosquito Aedes aegypti, but the enzyme is functionally incompletely characterized. We here report that within a set of glutathione transferase substrates the double-bond isomerase activity with 5-androsten-3,17-dione stands out with an extraordinary specific activity of 4000 µmol min-1 mg-1. We suggest that the authentic function of Nobo is catalysis of a chemically analogous ketosteroid isomerization in ecdysone biosynthesis.


Assuntos
Aedes , Aedes/enzimologia , Aedes/metabolismo , Animais , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Ecdisona/metabolismo , Proteínas de Insetos/metabolismo , Especificidade por Substrato , Esteroide Isomerases/metabolismo , Esteroide Isomerases/genética , Mosquitos Vetores/metabolismo , Cetosteroides/metabolismo , Cetosteroides/química
3.
Nature ; 560(7718): 372-376, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046109

RESUMO

Regeneration of myelin is mediated by oligodendrocyte progenitor cells-an abundant stem cell population in the central nervous system (CNS) and the principal source of new myelinating oligodendrocytes. Loss of myelin-producing oligodendrocytes in the CNS underlies a number of neurological diseases, including multiple sclerosis and diverse genetic diseases1-3. High-throughput chemical screening approaches have been used to identify small molecules that stimulate the formation of oligodendrocytes from oligodendrocyte progenitor cells and functionally enhance remyelination in vivo4-10. Here we show that a wide range of these pro-myelinating small molecules function not through their canonical targets but by directly inhibiting CYP51, TM7SF2, or EBP, a narrow range of enzymes within the cholesterol biosynthesis pathway. Subsequent accumulation of the 8,9-unsaturated sterol substrates of these enzymes is a key mechanistic node that promotes oligodendrocyte formation, as 8,9-unsaturated sterols are effective when supplied to oligodendrocyte progenitor cells in purified form whereas analogous sterols that lack this structural feature have no effect. Collectively, our results define a unifying sterol-based mechanism of action for most known small-molecule enhancers of oligodendrocyte formation and highlight specific targets to propel the development of optimal remyelinating therapeutics.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Remielinização , Esteróis/química , Esteróis/metabolismo , Inibidores de 14-alfa Desmetilase/farmacologia , Animais , Colesterol/biossíntese , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Imidazóis/farmacologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Oligodendroglia/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Remielinização/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Esteroide Isomerases/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 117(52): 33204-33215, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376217

RESUMO

How enzymes achieve their enormous rate enhancements remains a central question in biology, and our understanding to date has impacted drug development, influenced enzyme design, and deepened our appreciation of evolutionary processes. While enzymes position catalytic and reactant groups in active sites, physics requires that atoms undergo constant motion. Numerous proposals have invoked positioning or motions as central for enzyme function, but a scarcity of experimental data has limited our understanding of positioning and motion, their relative importance, and their changes through the enzyme's reaction cycle. To examine positioning and motions and test catalytic proposals, we collected "room temperature" X-ray crystallography data for Pseudomonas putida ketosteroid isomerase (KSI), and we obtained conformational ensembles for this and a homologous KSI from multiple PDB crystal structures. Ensemble analyses indicated limited change through KSI's reaction cycle. Active site positioning was on the 1- to 1.5-Å scale, and was not exceptional compared to noncatalytic groups. The KSI ensembles provided evidence against catalytic proposals invoking oxyanion hole geometric discrimination between the ground state and transition state or highly precise general base positioning. Instead, increasing or decreasing positioning of KSI's general base reduced catalysis, suggesting optimized Ångstrom-scale conformational heterogeneity that allows KSI to efficiently catalyze multiple reaction steps. Ensemble analyses of surrounding groups for WT and mutant KSIs provided insights into the forces and interactions that allow and limit active-site motions. Most generally, this ensemble perspective extends traditional structure-function relationships, providing the basis for a new era of "ensemble-function" interrogation of enzymes.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Esteroide Isomerases/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Cinética , Simulação de Dinâmica Molecular , Pseudomonas putida/enzimologia , Esteroide Isomerases/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(4): 2187-2193, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932420

RESUMO

Asthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3ß-hydroxysteroid dehydrogenase-1 (3ß-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3ß-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention.


Assuntos
Asma/tratamento farmacológico , Asma/enzimologia , Glucocorticoides/administração & dosagem , Complexos Multienzimáticos/genética , Progesterona Redutase/genética , Esteroide Isomerases/genética , Adulto , Idoso , Alelos , Androgênios/metabolismo , Asma/genética , Asma/metabolismo , Estudos de Coortes , Resistência a Medicamentos , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Complexos Multienzimáticos/metabolismo , Progesterona Redutase/metabolismo , Esteroide Isomerases/metabolismo , Adulto Jovem
6.
J Hum Genet ; 67(5): 303-306, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34999728

RESUMO

X-linked dominant chondrodysplasia punctata (CDPX2) is a rare congenital disorder caused by pathogenic variants in EBP on Xp11.23. We encountered a girl and her mother with CDPX2-compatible phenotypes including punctiform calcification in the neonatal period of the girl, and asymmetric limb shortening and ichthyosis following the Blaschko lines in both subjects. Although Sanger direct sequencing failed to reveal a disease-causing variant in EBP, whole genome sequencing (WGS) followed by Manta analysis identified a ~ 4.5 kb insertion at EBP exon 2 of both subjects. The insertion was associated with the hallmarks of retrotransposition such as an antisense poly(A) tail, a target site duplication, and a consensus endonuclease cleavage site, and the inserted sequence harbored full-length SVA_F1 element with 5'- and 3'-transductions containing the Alu sequence. The results imply the relevance of retrotransposition to the human genetic diseases and the usefulness of WGS in the identification of retrotransposition.


Assuntos
Condrodisplasia Punctata , Esteroide Isomerases , Condrodisplasia Punctata/genética , Condrodisplasia Punctata/patologia , Feminino , Humanos , Mães , Fenótipo , Esteroide Isomerases/genética
7.
Ann Surg Oncol ; 29(11): 7194-7201, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35776258

RESUMO

BACKGROUND: Homozygous inheritance of a single-nucleotide polymorphism (1245A > C) in HSD3B1 results in an adrenal permissive phenotype of increased adrenal steroid precursor conversion to potent androgens. This is associated with poor outcomes in prostate cancer. We hypothesized that inheritance of the HSD3B1 adrenal permissive genotype would similarly negatively impact breast cancer outcomes. PATIENTS AND METHODS: Germline HSD3B1 was sequenced in 644 postmenopausal women diagnosed between 2004 and 2015 with stage I-III estrogen receptor-positive (ER+), HER2/neu-negative (HER2-) breast cancer enrolled in a population-based study in western Washington. Primary endpoint was distant metastatic recurrence according to genotype. Secondary endpoint was breast cancer-specific survival. Hazard ratios (HR) were calculated using cause-specific Cox regression accounting for competing risks. RESULTS: Adrenal restrictive genotype (homozygous wild type) was most prevalent (47%), followed by heterozygous (44%) and adrenal permissive (9%). There were no significant differences comparing demographic, tumor, or treatment characteristics apart from higher frequency of adrenal permissive genotype among non-Hispanic white participants (p = 0.04). After accounting for competing risks, the cumulative incidence of distant metastatic recurrence (15 events) was significantly higher among participants with adrenal permissive compared with the adrenal restrictive genotype (HR 4.9, 95% CI 1.32-18.4, p = 0.02). The adrenal permissive genotype was also predictive of breast cancer-specific mortality (HR 3.5, 95% CI 1.27-9.59, p = 0.02). CONCLUSIONS: Inheritance of the HSD3B1 adrenal permissive genotype is associated with increased incidence of distant metastasis and higher cause-specific mortality in postmenopausal ER+/HER2- breast cancer. Further research is necessary to understand the effect of excess adrenal androgen metabolism in promoting breast cancer growth and progression.


Assuntos
Neoplasias da Mama , Complexos Multienzimáticos , Pós-Menopausa , Progesterona Redutase , Esteroide Isomerases , Androgênios/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estrogênios/metabolismo , Feminino , Genótipo , Humanos , Complexos Multienzimáticos/genética , Polimorfismo de Nucleotídeo Único , Progesterona Redutase/genética , Receptores de Estrogênio/genética , Esteroide Isomerases/genética
8.
Reprod Biol Endocrinol ; 20(1): 43, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236366

RESUMO

The heavy metal cadmium is proposed to be one of the environmental endocrine disruptors of spermatogenesis. Cadmium-induced inhibition of spermatogenesis is associated with a hormone secretion disorder. Letrozole is an aromatase inhibitor that increases peripheral androgen levels and stimulates spermatogenesis. However, the potential protective effects of letrozole on cadmium-induced reproductive toxicity remain to be elucidated. In this study, male mice were administered CdCl2 (4 mg/kg BW) orally by gavage alone or in combination with letrozole (0.25 mg/kg BW) for 30 days. Cd exposure caused a significant decreases in body weight, sperm count, motility, vitality, and plasma testosterone levels. Histopathological changes revealed extensive vacuolization and decreased spermatozoa in the lumen. However, in the Cd + letrozole group, letrozole treatment compensated for deficits in sperm parameters (count, motility, and vitality) induced by Cd. Letrozole treatment significantly increased serum testosterone levels, which were reduced by Cd. Histopathological studies revealed a systematic array of all germ cells, a preserved basement membrane and relatively less vacuolization. For a mechanistic examination, RNA-seq was used to profile alterations in gene expression in response to letrozole. Compared with that in the Cd-treated group, RNA-Seq analysis showed that 214 genes were differentially expressed in the presence of letrozole. Gene ontology (GO) enrichment analysis and KEGG signaling pathway analysis showed that steroid biosynthetic processes were the processes most affected by letrozole treatment. Furthermore, we found that the expression of the testosterone synthesis-related genes LHCGR (luteinizing hormone/choriogonadotropin receptor) and Hsd3b6 (3 beta- and steroid delta-isomerase 6) was significantly downregulated in Cd-treated testes, but these genes maintained similar expression levels in letrozole-treated testes as those in the control group. However, the transcription levels of inflammatory cytokines, such as IL-1ß and IL-6, and oxidative stress-related genes (Nrf2, Nqo1, and Ho-1) showed no changes. The present study suggests that the potential protective effect of letrozole on Cd-induced reproductive toxicity might be mediated by the upregulation of LHCGR and Hsd3b6, which would beneficially increase testosterone synthesis to achieve optimum protection of sperm quality and spermatogenesis.


Assuntos
Cádmio , Letrozol , Espermatogênese , Testosterona , Animais , Masculino , Camundongos , Cádmio/toxicidade , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Letrozol/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos Endogâmicos ICR , Substâncias Protetoras/farmacologia , Receptores do LH/efeitos dos fármacos , Receptores do LH/genética , Receptores do LH/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Esteroide Isomerases/efeitos dos fármacos , Esteroide Isomerases/genética , Esteroide Isomerases/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/biossíntese
9.
Immunity ; 38(6): 1236-49, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23809164

RESUMO

Tumor progression is accompanied by an altered myelopoiesis causing the accumulation of immunosuppressive cells. Here, we showed that miR-142-3p downregulation promoted macrophage differentiation and determined the acquisition of their immunosuppressive function in tumor. Tumor-released cytokines signaling through gp130, the common subunit of the interleukin-6 cytokine receptor family, induced the LAP∗ isoform of C/EBPß transcription factor, promoting macrophage generation. miR-142-3p downregulated gp130 by canonical binding to its messenger RNA (mRNA) 3' UTR and repressed C/EBPß LAP∗ by noncanonical binding to its 5' mRNA coding sequence. Enforced miR expression impaired macrophage differentiation both in vitro and in vivo. Mice constitutively expressing miR-142-3p in the bone marrow showed a marked increase in survival following immunotherapy with tumor-specific T lymphocytes. By modulating a specific miR in bone marrow precursors, we thus demonstrated the feasibility of altering tumor-induced macrophage differentiation as a potent tool to improve the efficacy of cancer immunotherapy.


Assuntos
Imunoterapia/métodos , Macrófagos/imunologia , MicroRNAs/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , RNA Mensageiro/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Receptor gp130 de Citocina/metabolismo , Imunoterapia/tendências , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Mielopoese/genética , Neoplasias Experimentais/terapia , RNA Mensageiro/genética , Transdução de Sinais , Esteroide Isomerases/genética , Esteroide Isomerases/metabolismo , Linfócitos T/imunologia , Linfócitos T/transplante , Transgenes/genética , Evasão Tumoral
10.
J Appl Toxicol ; 42(3): 529-539, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34550611

RESUMO

The effects of low-dose radiation (LDR, ≤0.1 Gy) on living organisms have been the hot areas of radiation biology but do not reach a definitive conclusion yet. So far, few studies have adequately accounted for the male reproductive system responses to LDR, particularly the regulation of testosterone content. Hence, this study was designed to evaluate the effects of LDR on Leydig cells and testicular tissue, especially the ability to synthesize testosterone. We found that less than 0.2-Gy 60 Co gamma rays did not cause significant changes in the hemogram index and the body weight; also, pathological examination did not find obvious structural alterations in testis, epididymis, and other radiation-sensitive organs. Consistently, the results from in vitro showed that only more than 0.5-Gy gamma rays could induce remarkable DNA damage, cycle arrest, and apoptosis. Notably, LDR disturbed the contents of testosterone in mice serums and culture supernatants of TM3 cells and dose dependently increased the expression of 3ß-HSD. After cotreatment with trilostane (Tril), the inhibitor of 3ß-HSD, increased testosterone could be partially reversed. Besides, DNA damage repair-related enzymes, including DNMT1, DNMT3B, and Sirt1, were increased in irradiated TM3 cells, accompanying by evident demethylation in the gene body of 3ß-HSD. In conclusion, our results strongly suggest that LDR could induce obvious perturbation in the synthesis of testosterone without causing organic damage, during which DNA demethylation modification of 3ß-HSD might play a crucial role and would be a potential target to prevent LDR-induced male reproductive damage.


Assuntos
Desmetilação , Raios gama/efeitos adversos , Células-Tronco Mesenquimais/efeitos da radiação , Complexos Multienzimáticos/metabolismo , Progesterona Redutase/metabolismo , Esteroide Isomerases/metabolismo , Testículo/efeitos da radiação , Testosterona/metabolismo , Animais , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Biochem Biophys Res Commun ; 560: 159-164, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33992958

RESUMO

The Kemp elimination reaction, involving the ring-opening of benzoxazole and its derivatives under the action of natural enzymes or chemical catalysts, has been of interest to researchers since its discovery. Because this reaction does not exist in all currently known metabolic pathways, the computational design of Kemp eliminases has provided valuable insights into principles of enzymatic catalysis. However, it was discovered that the naturally occurring promiscuous enzymes ydbC, xapA and ketosteroid isomerase also can catalyze Kemp elimination. Here, we report the crystal structure of ketosteroid isomerase (KSI) from Mycobacterium smegmatis MC2 155. MsKSI crystallizes in the P212121 space group with two molecules in an asymmetric unit, and ultracentrifugation data confirms that it forms a stable dimer in solution, consistent with the 1.9 Å-resolution structure. Our assays confirm that MsKSI accelerates the Kemp elimination of 5-nitrobenzoxazole (5NBI) with an optimal pH of 5.5. A 2.35 Å resolution crystal structure of the MsKSI-5NBI complex reveals that the substrate 5NBI is bound in the active pocket of the enzyme composed of hydrophobic residues. In addition, the Glu127 residue is proposed to play an important role as a general base in proton transfer and breaking weak O-N bonds to open the five-membered ring. This work provides a starting point for exploring the artificial modification of MsKSI using the natural enzyme as the backbone.


Assuntos
Proteínas de Bactérias/química , Mycobacterium smegmatis/enzimologia , Esteroide Isomerases/química , Proteínas de Bactérias/metabolismo , Biocatálise , Cristalografia por Raios X , Modelos Moleculares , Subunidades Proteicas/química , Esteroide Isomerases/metabolismo
12.
Development ; 145(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29695610

RESUMO

The epidermis is hypothesized to play a signalling role during plant development. One class of mutants showing defects in signal transduction and radial patterning are those in sterol biosynthesis. The expectation is that living cells require sterols, but it is not clear that all cell types express sterol biosynthesis genes. The HYDRA1 (HYD1) gene of Arabidopsis encodes sterol Δ8-Δ7 isomerase, and although hyd1 seedlings are defective in radial patterning across several tissues, we show that the HYD1 gene is expressed most strongly in the root epidermis. Transgenic activation of HYD1 transcription in the epidermis of hyd1 null mutants reveals a major role in root patterning and growth. HYD1 expression in the vascular tissues and root meristem, though not endodermis or pericycle, also leads to some phenotypic rescue. Phenotypic rescue is associated with rescued patterning of the PIN1 and PIN2 auxin efflux carriers. The importance of the epidermis in controlling root growth and development is proposed to be, in part, due to its role as a site for sterol biosynthesis, and auxin is a candidate for the non-cell-autonomous signal.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Esteroide Isomerases/metabolismo , Esteróis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Meristema/embriologia , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Plântula/embriologia , Plântula/genética , Transdução de Sinais/genética , Esteroide Isomerases/genética , Ativação Transcricional/genética
13.
Pharmacogenomics J ; 21(4): 440-445, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33649516

RESUMO

Missense polymorphism in HSD3B1, encoding 3ß-hydroxysteroid dehydrogenase-1, was associated with outcome after abiraterone treatment. Other androgen-metabolizing enzymes may be involved in therapeutic effect in abiraterone. In this study, we investigated the significance of polymorphisms in genes involved in androgen and abiraterone metabolisms in prostate cancer patients treated with abiraterone. A total of 99 Japanese male castration-resistant prostate cancer patients treated with abiraterone between 2014 and 2018 were included. Genomic DNA was obtained from whole blood samples, and genotyping on SRD5A2 (rs523349), CYP17A1 (rs743572), CYP17A1 (rs2486758), and AKR1C3 (rs12529) was performed by PCR-based technique. Among the 99 patients, 32 (32.3%), 49 (49.5%), and 18 patients (18.2%) carried GG, GC, and CC alleles in SRD5A2, respectively. CC allele was associated with lower risk of treatment failure (hazard ratio, 0.43; 95% confidence interval, 0.20-0.87; P = 0.017) on multivariate analyses, compared with GG/GC alleles. In the combination model using HSD3B1 and SRD5A2 polymorphisms, compared with the combination of AA in HSD3B1 and GG/GC in SRD5A2, other combinations were associated with lower risk of treatment failure (hazard ratio, 0.34; 95% confidence interval, 0.17-0.62; P = 0.0003) on multivariate analyses. This study showed that SRD5A2 genetic variation was associated with the risk of treatment failure in abiraterone. Combinational use of genetic variation in HSD3B1 with SRD5A2 genetic variation augmented the ability of prognostic stratification.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Androstenos/uso terapêutico , Proteínas de Membrana/genética , Complexos Multienzimáticos/genética , Polimorfismo Genético/genética , Progesterona Redutase/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Esteroide Isomerases/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Associação Genética/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Falha de Tratamento
14.
Invest New Drugs ; 39(6): 1493-1506, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34031786

RESUMO

Background Human 3ß-hydroxysteroid dehydrogenase type 1 (HSD3B1) is an enzyme associated with steroidogenesis, however its' role in hepatocellular carcinoma (HCC) biology is unknown. Trilostane is an inhibitor of HSD3B1 and has been tested as a treatment for patients with breast cancer but has not been studied in patients with HCC. Methods and Results The expression of HSD3B1 in HCC tumors in 57 patients were examined. A total of 44 out of 57 tumors (77.2%) showed increased HSD3B1 expression. The increased HSD3B1 in tumors was significantly associated with advanced HCC. In vitro, the knockdown of HSD3B1 expression in Mahlavu HCC cells by a short hairpin RNA (shRNA) led to significant decreases in colony formation and cell migration. The suppression of clonogenicity in the HSD3B1-knockdown HCC cells was reversed by testosterone and 17ß-estradiol. Trilostane-mediated inhibition of HSD3B1 in different HCC cells also caused significant inhibition of clonogenicity and cell migration. In subcutaneous HCC Mahlavu xenografts, trilostane (30 or 60 mg/kg, intraperitoneal injection) significantly inhibited tumor growth in a dose-dependent manner. Furthermore, the combination of trilostane and sorafenib significantly enhanced the inhibition of clonogenicity and xenograft growth, surpassing the effects of each drug used alone, with no documented additional toxicity to animals. HSD3B1 blockade was found to suppress the phosphorylation of extracellular signal-regulated kinase (ERK). The decreased ERK phosphorylation was reversed by testosterone or 17b-estradiol. Conclusions Trilostane significantly inhibited the growth of HCC by inhibiting HSD3B1 function and augmenting the efficacy of sorafenib.


Assuntos
Carcinoma Hepatocelular/patologia , Di-Hidrotestosterona/análogos & derivados , Neoplasias Hepáticas/patologia , Complexos Multienzimáticos/antagonistas & inibidores , Progesterona Redutase/antagonistas & inibidores , Sorafenibe/farmacologia , Esteroide Isomerases/antagonistas & inibidores , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Di-Hidrotestosterona/administração & dosagem , Di-Hidrotestosterona/farmacologia , Quimioterapia Combinada , Estradiol/farmacologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , RNA Interferente Pequeno/efeitos dos fármacos , Sorafenibe/administração & dosagem , Testosterona/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Exp Dermatol ; 30(3): 384-389, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205489

RESUMO

Inherited or acquired blockade of distal steps in the cholesterol synthetic pathway results in ichthyosis, due to reduced cholesterol production and/or the accumulation of toxic metabolic precursors, while inhibition of epidermal cholesterol synthesis compromises epidermal permeability barrier homeostasis. We showed here that 3ß-hydroxysteroid-δ8, δ7-isomerase-deficient mice (TD), an analog for CHILD syndrome in humans, exhibited not only lower basal transepidermal water loss rates, but also accelerated permeability barrier recovery despite the lower expression levels of mRNA for epidermal differentiation marker-related proteins and lipid synthetic enzymes. Moreover, TD mice displayed low skin surface pH, paralleled by increased expression levels of mRNA for sodium/hydrogen exchanger 1 (NHE1) and increased antimicrobial peptide expression, compared with wild-type (WT) mice, which may compensate for the decreased differentiation and lipid synthesis. Additionally, in comparison with WT controls, TD mice showed a significant reduction in ear thickness following challenges with either phorbol ester or oxazolone. However, TD mice exhibited growth retardation. Together, these results demonstrate that 3ß-hydroxysteroid-δ8, δ7-isomerase deficiency does not compromise epidermal permeability barrier in mice, suggesting that alterations in epidermal function depend on which step of the cholesterol synthetic pathway is interrupted. But whether these findings in mice could be mirrored in humans remains to be determined.


Assuntos
Dermatite Alérgica de Contato/fisiopatologia , Epiderme/metabolismo , Fenômenos Fisiológicos da Pele/genética , Esteroide Isomerases/genética , Animais , Peptídeos Antimicrobianos/metabolismo , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/genética , Epiderme/ultraestrutura , Feminino , Expressão Gênica , Homeostase/genética , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Eletrônica , Mutação , Oxazolona , Permeabilidade , RNA Mensageiro/metabolismo , Trocador 1 de Sódio-Hidrogênio/genética , Esteroide Isomerases/deficiência , Acetato de Tetradecanoilforbol , Perda Insensível de Água/genética
16.
J Immunol ; 202(1): 37-47, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530593

RESUMO

Tissue remodeling of subepithelial mesenchymal cells is a major pathologic condition of chronic obstructive pulmonary disease and asthma. Fibroblasts contribute to fibrotic events and inflammation in both airway diseases. Recent mechanistic studies established a link between mitochondrial dysfunction or aberrant biogenesis leading to tissue remodeling of the airway wall in asthma. Protein arginine methyltransferase-1 (PRMT1) participated in airway wall remodeling in pulmonary inflammation. This study investigated the mechanism by which PRMT1 regulates mitochondrial mass in primary human airway wall fibroblasts. Fibroblasts from control or asthma patients were stimulated with TGF-ß for up to 48 h, and the signaling pathways controlling PRMT1 expression and mitochondrial mass were analyzed. PRMT1 activity was suppressed by the pan-PRMT inhibitor AMI-1. The SMAD2/3 pathway was blocked by SB203580 and C/EBPß by small interference RNA treatment. The data obtained from unstimulated cells showed a significantly higher basal expression of PRMT1 and mitochondrial markers in asthmatic compared with control fibroblasts. In all cells, TGF-ß significantly increased the expression of PRMT1 through SMAD2/3 and C/EBPß. Subsequently, PRMT1 upregulated the expression of the mitochondria regulators PGC-1α and heat shock protein 60. Both the inhibition of the SAMD2/3 pathway or PRMT1 attenuated TGF-ß-induced mitochondrial mass and C/EBPß and α-SMA expression. These findings suggest that the signaling sequence controlling mitochondria in primary human lung fibroblasts is as follows: TGF-ß→SMAD2/3→C/EBPß→PRMT1→PGC-1α. Therefore, PRMT1 and C/EBPß present a novel therapeutic and diagnostic target for airway wall remodeling in chronic lung diseases.


Assuntos
Asma/imunologia , Fibroblastos/fisiologia , Mitocôndrias/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Esteroide Isomerases/metabolismo , Remodelação das Vias Aéreas , Células Cultivadas , Chaperonina 60/metabolismo , Humanos , Imidazóis/farmacologia , Mitocôndrias/metabolismo , Naftalenossulfonatos/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Piridinas/farmacologia , RNA Interferente Pequeno/genética , Proteínas Repressoras/antagonistas & inibidores , Transdução de Sinais , Proteína Smad2/antagonistas & inibidores , Proteína Smad3/antagonistas & inibidores , Esteroide Isomerases/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Ureia/análogos & derivados , Ureia/farmacologia
17.
Proc Natl Acad Sci U S A ; 115(34): E8096-E8103, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082386

RESUMO

A large part of chemodiversity of plant triterpenes is due to the modification of their side chains. Reduction or isomerization of double bonds in the side chains is often an important step for the diversification of triterpenes, although the enzymes involved are not fully understood. Withanolides are a large group of structurally diverse C28 steroidal lactones derived from 24-methylenecholesterol. These compounds are found in the Indian medicinal plant Withania somnifera, also known as ashwagandha, and other members of the Solanaceae. The pathway for withanolide biosynthesis is unknown, preventing sustainable production via white biotechnology and downstream pharmaceutical usages. In the present study, based on genome and transcriptome data we have identified a key enzyme in the biosynthesis of withanolides: a DWF1 paralog encoding a sterol Δ24-isomerase (24ISO). 24ISO originated from DWF1 after two subsequent duplication events in Solanoideae plants. Withanolides and 24ISO appear only in the medicinal plants in the Solanoideae, not in crop plants such as potato and tomato, indicating negative selection during domestication. 24ISO is a unique isomerase enzyme evolved from a reductase and as such has maintained the FAD-binding oxidoreductase structure and requirement for NADPH. Using phylogenetic, metabolomic, and gene expression analysis in combination with heterologous expression and virus-induced gene silencing, we showed that 24ISO catalyzes the conversion of 24-methylenecholesterol to 24-methyldesmosterol. We propose that this catalytic step is the committing step in withanolide biosynthesis, opening up elucidation of the whole pathway and future larger-scale sustainable production of withanolides and related compounds with pharmacological properties.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Filogenia , Proteínas de Plantas , Esteroide Isomerases , Withania , Vitanolídeos/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Esteroide Isomerases/biossíntese , Esteroide Isomerases/genética , Withania/enzimologia , Withania/genética
18.
J Am Chem Soc ; 142(22): 9993-9998, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32378409

RESUMO

Electrostatic interactions play a pivotal role in enzymatic catalysis and are increasingly modeled explicitly in computational enzyme design; nevertheless, they are challenging to measure experimentally. Using vibrational Stark effect (VSE) spectroscopy, we have measured electric fields inside the active site of the enzyme ketosteroid isomerase (KSI). These studies have shown that these fields can be unusually large, but it has been unclear to what extent they specifically stabilize the transition state (TS) relative to a ground state (GS). In the following, we use crystallography and computational modeling to show that KSI's intrinsic electric field is nearly perfectly oriented to stabilize the geometry of its reaction's TS. Moreover, we find that this electric field adjusts the orientation of its substrate in the ground state so that the substrate needs to only undergo minimal structural changes upon activation to its TS. This work provides evidence that the active site electric field in KSI is preorganized to facilitate catalysis and provides a template for how electrostatic preorganization can be measured in enzymatic systems.


Assuntos
Cetosteroides/metabolismo , Esteroide Isomerases/metabolismo , Biocatálise , Eletricidade , Conformação Molecular , Simulação de Dinâmica Molecular , Termodinâmica
19.
J Am Chem Soc ; 142(13): 6128-6138, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163279

RESUMO

TASIN (Truncated APC-Selective Inhibitors) compounds are selectively toxic to colorectal cancer cells with APC mutations, although their mechanism of action remains unknown. Here, we found that TASINs inhibit three enzymes in the postsqualene cholesterol biosynthetic pathway including EBP, DHCR7, and DHCR24. Even though all three of these enzymes are required for cholesterol biosynthesis, only inhibition of the most upstream enzyme, EBP, led to cancer cell death via depletion of downstream sterols, an observation that was confirmed by genetic silencing of EBP. Pharmacologic inhibition or genetic silencing of either DHCR7 or DHCR24 had no impact on cell viability. By using photoaffinity probes to generate a relationship between chemical structure and probe competition, we identified compounds that selectively inhibit either EBP or DHCR7. These studies identify EBP, but not downstream enzymes in the cholesterol biosynthetic pathway, as a target in APC mutant colorectal cancer and also have implications for the clinical development of highly selective EBP inhibitors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Esteroide Isomerases/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/genética , Antineoplásicos/química , Vias Biossintéticas/efeitos dos fármacos , Colesterol/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/química , Células HCT116 , Humanos , Mutação , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Esteroide Isomerases/metabolismo
20.
Ann Oncol ; 31(9): 1178-1185, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32387417

RESUMO

BACKGROUND: In men with castration-sensitive prostate cancer (CSPC), the HSD3B1 c.1245A>C variant has been reported to be associated with shorter responses to first-line androgen-deprivation therapy (ADT). Here, we evaluated the association between the inherited HSD3B1 c.1245A>C variant and outcomes from metastatic castration-resistant prostate cancer (mCRPC) after first-line treatment with abiraterone (Abi) or enzalutamide (Enza). PATIENTS AND METHODS: Patients with mCRPC (n = 266) were enrolled from two centers at the time of starting first-line Abi/Enza. Outcomes after Abi/Enza included best prostate-specific antigen (PSA) response, treatment duration, and overall survival (OS). Outcomes after first-line ADT were determined retrospectively, and included treatment duration and OS. As was prespecified, we compared patients with the homozygous variant HSD3B1 genotype (CC genotype) versus the combined group with the heterozygous (AC) and homozygous wild-type (AA) genotypes. RESULTS: Among the 266 patients, 22 (8.3%) were homozygous for the HSD3B1 variant (CC). The CC genotype had no association with PSA response rate; the median Abi/Enza treatment duration was 7.1 months for the CC group and 10.3 months for the AA/AC group (log rank P = 0.34). Patients with the CC genotype had significantly worse OS, with median survival at 23.6 months for the CC group and 30.7 months for the AA/AC group (log rank P = 0.02). In multivariable analysis adjusting for age, Gleason score, PSA, prior chemotherapy, and M1 disease, the association between the CC genotype and OS remained significant (hazard ratio 1.78, 95% confidence interval 1.03-3.07, P = 0.04). Poor outcome after first-line ADT in the CC group was also observed when evaluating retrospective ADT duration data for the same combined cohort. CONCLUSIONS: In this large two-center study evaluating the HSD3B1 c.1245 genotype and outcomes after first-line Abi/Enza, homozygous variant (CC) HSD3B1 genotype was associated with worse outcomes. Novel therapeutic strategies are needed to enable treatment selection based on this genetic marker.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Esteroide Isomerases , Acetato de Abiraterona , Antagonistas de Androgênios , Androstenos , Benzamidas , Genótipo , Células Germinativas , Humanos , Masculino , Complexos Multienzimáticos/genética , Nitrilas , Feniltioidantoína/análogos & derivados , Progesterona Redutase/genética , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Estudos Retrospectivos , Esteroide Isomerases/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA