Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.005
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(5): 1083-1097.e22, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754819

RESUMO

The nervous system, the immune system, and microbial pathogens interact closely at barrier tissues. Here, we find that a bacterial pathogen, Streptococcus pyogenes, hijacks pain and neuronal regulation of the immune response to promote bacterial survival. Necrotizing fasciitis is a life-threatening soft tissue infection in which "pain is out of proportion" to early physical manifestations. We find that S. pyogenes, the leading cause of necrotizing fasciitis, secretes streptolysin S (SLS) to directly activate nociceptor neurons and produce pain during infection. Nociceptors, in turn, release the neuropeptide calcitonin gene-related peptide (CGRP) into infected tissues, which inhibits the recruitment of neutrophils and opsonophagocytic killing of S. pyogenes. Botulinum neurotoxin A and CGRP antagonism block neuron-mediated suppression of host defense, thereby preventing and treating S. pyogenes necrotizing infection. We conclude that targeting the peripheral nervous system and blocking neuro-immune communication is a promising strategy to treat highly invasive bacterial infections. VIDEO ABSTRACT.


Assuntos
Neurônios/metabolismo , Neutrófilos/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/patogenicidade , Animais , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Toxinas Botulínicas Tipo A/administração & dosagem , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Caspase 1/deficiência , Caspase 1/genética , Diterpenos/farmacologia , Fasciite Necrosante/etiologia , Fasciite Necrosante/patologia , Fasciite Necrosante/veterinária , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neutrófilos/imunologia , Dor/etiologia , Transdução de Sinais , Pele/metabolismo , Pele/patologia , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/veterinária , Streptococcus pyogenes/metabolismo , Estreptolisinas/imunologia , Estreptolisinas/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
2.
Nat Immunol ; 21(7): 746-755, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32514064

RESUMO

Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy.


Assuntos
Infecções Bacterianas/imunologia , Toxinas Bacterianas/imunologia , Hidroxicolesteróis/metabolismo , Interferons/isolamento & purificação , Fagócitos/imunologia , Estreptolisinas/imunologia , Animais , Bactérias/imunologia , Bactérias/metabolismo , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Feminino , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Microscopia Intravital , Masculino , Camundongos , Camundongos Transgênicos , Fagócitos/citologia , Fagócitos/metabolismo , Cultura Primária de Células , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Estreptolisinas/administração & dosagem , Estreptolisinas/metabolismo
3.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38411297

RESUMO

Following invasion of the host cell, pore-forming toxins secreted by pathogens compromise vacuole integrity and expose the microbe to diverse intracellular defence mechanisms. However, the quantitative correlation between toxin expression levels and consequent pore dynamics, fostering the intracellular life of pathogens, remains largely unexplored. In this study, using Streptococcus pneumoniae and its secreted pore-forming toxin pneumolysin (Ply) as a model system, we explored various facets of host-pathogen interactions in the host cytosol. Using time-lapse fluorescence imaging, we monitored pore formation dynamics and lifespans of different pneumococcal subpopulations inside host cells. Based on experimental histograms of various event timescales such as pore formation time, vacuolar death or cytosolic escape time and total degradation time, we developed a mathematical model based on first-passage processes that could correlate the event timescales to intravacuolar toxin accumulation. This allowed us to estimate Ply production rate, burst size and threshold Ply quantities that trigger these outcomes. Collectively, we present a general method that illustrates a correlation between toxin expression levels and pore dynamics, dictating intracellular lifespans of pathogens.


Assuntos
Longevidade , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Citosol/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Interações Hospedeiro-Patógeno
4.
PLoS Pathog ; 20(3): e1012072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452154

RESUMO

Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Camundongos , Animais , Streptococcus pyogenes/metabolismo , Estreptolisinas/genética , Estreptolisinas/metabolismo , Camundongos Transgênicos , Infecções Estreptocócicas/metabolismo , Proteínas de Bactérias/metabolismo , Nasofaringe
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042775

RESUMO

The impact of radiotherapy on the interaction between immune cells and cancer cells is important not least because radiotherapy can be used alongside immunotherapy as a cancer treatment. Unexpectedly, we found that X-ray irradiation of cancer cells induced significant resistance to natural killer (NK) cell killing. This was true across a wide variety of cancer-cell types as well as for antibody-dependent cellular cytotoxicity. Resistance appeared 72 h postirradiation and persisted for 2 wk. Resistance could also occur independently of radiotherapy through pharmacologically induced cell-cycle arrest. Crucially, multiple steps in NK-cell engagement, synapse assembly, and activation were unaffected by target cell irradiation. Instead, radiotherapy caused profound resistance to perforin-induced calcium flux and lysis. Resistance also occurred to a structurally similar bacterial toxin, streptolysin O. Radiotherapy did not affect the binding of pore-forming proteins at the cell surface or membrane repair. Rather, irradiation instigated a defect in functional pore formation, consistent with phosphatidylserine-mediated perforin inhibition. In vivo, radiotherapy also led to a significant reduction in NK cell-mediated clearance of cancer cells. Radiotherapy-induced resistance to perforin also constrained chimeric antigen receptor T-cell cytotoxicity. Together, these data establish a treatment-induced resistance to lymphocyte cytotoxicity that is important to consider in the design of radiotherapy-immunotherapy protocols.


Assuntos
Citotoxicidade Imunológica , Neoplasias/metabolismo , Radioterapia , Citotoxicidade Celular Dependente de Anticorpos , Proteínas de Bactérias , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Imunoterapia , Células Matadoras Naturais/imunologia , Perforina/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Estreptolisinas
6.
Infect Immun ; 92(7): e0015224, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38888310

RESUMO

The major gram-positive pathogen group A Streptococcus (GAS) is a model organism for studying microbial epidemics as it causes waves of infections. Since 1980, several GAS epidemics have been ascribed to the emergence of clones producing increased amounts of key virulence factors such as streptolysin O (SLO). Herein, we sought to identify mechanisms underlying our recently identified temporal clonal emergence among emm4 GAS, given that emergent strains did not produce augmented levels of virulence factors relative to historic isolates. By creating and analyzing isoallelic strains, we determined that a conserved mutation in a previously undescribed gene encoding a putative carbonic anhydrase was responsible for the defective in vitro growth observed in the emergent strains. We also identified that the emergent strains survived better inside macrophages and killed macrophages at lower rates than the historic strains. Via the creation of isogenic mutant strains, we linked the emergent strain "survival" phenotype to the downregulation of the SLO encoding gene and upregulation of the msrAB operon which encodes proteins involved in defense against extracellular oxidative stress. Our findings are in accord with recent surveillance studies which found a high ratio of mucosal (i.e., pharyngeal) relative to invasive infections among emm4 GAS. Since ever-increasing virulence is unlikely to be evolutionarily advantageous for a microbial pathogen, our data further understanding of the well-described oscillating patterns of virulent GAS infections by demonstrating mechanisms by which emergent strains adapt a "survival" strategy to outcompete previously circulating isolates.


Assuntos
Proteínas de Bactérias , Macrófagos , Infecções Estreptocócicas , Streptococcus pyogenes , Estreptolisinas , Fatores de Virulência , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/mortalidade , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estreptolisinas/genética , Estreptolisinas/metabolismo , Fatores de Virulência/genética , Mutação , Interações Hospedeiro-Patógeno/imunologia , Virulência/genética , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/imunologia , Viabilidade Microbiana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Camundongos , Regulação Bacteriana da Expressão Gênica , Proteínas de Transporte
7.
Infect Immun ; 92(6): e0014124, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38722166

RESUMO

The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.


Assuntos
Proteínas de Bactérias , Lisossomos , Macrófagos , Streptococcus pyogenes , Estreptolisinas , Streptococcus pyogenes/imunologia , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Lisossomos/metabolismo , Lisossomos/microbiologia , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fagossomos/microbiologia , Fagossomos/metabolismo , Células THP-1 , Fagocitose , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/metabolismo , Catepsina B/metabolismo , Concentração de Íons de Hidrogênio
8.
Anal Chem ; 96(22): 9060-9068, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38701337

RESUMO

An important element of antibody-guided vaccine design is the use of neutralizing or opsonic monoclonal antibodies to define protective epitopes in their native three-dimensional conformation. Here, we demonstrate a multimodal mass spectrometry-based strategy for in-depth characterization of antigen-antibody complexes to enable the identification of protective epitopes using the cytolytic exotoxin Streptolysin O (SLO) from Streptococcus pyogenes as a showcase. We first discovered a monoclonal antibody with an undisclosed sequence capable of neutralizing SLO-mediated cytolysis. The amino acid sequence of both the antibody light and the heavy chain was determined using mass-spectrometry-based de novo sequencing, followed by chemical cross-linking mass spectrometry to generate distance constraints between the antibody fragment antigen-binding region and SLO. Subsequent integrative computational modeling revealed a discontinuous epitope located in domain 3 of SLO that was experimentally validated by hydrogen-deuterium exchange mass spectrometry and reverse engineering of the targeted epitope. The results show that the antibody inhibits SLO-mediated cytolysis by binding to a discontinuous epitope in domain 3, likely preventing oligomerization and subsequent secondary structure transitions critical for pore-formation. The epitope is highly conserved across >98% of the characterized S. pyogenes isolates, making it an attractive target for antibody-based therapy and vaccine design against severe streptococcal infections.


Assuntos
Proteínas de Bactérias , Epitopos , Espectrometria de Massas , Streptococcus pyogenes , Estreptolisinas , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/química , Estreptolisinas/química , Estreptolisinas/imunologia , Estreptolisinas/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/química , Epitopos/imunologia , Epitopos/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Sequência de Aminoácidos , Modelos Moleculares
9.
J Immunol ; 209(8): 1532-1544, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36165197

RESUMO

Streptococcus pneumoniae is major cause of otitis media (OM) and life-threatening pneumonia. Overproduction of mucin, the major component of mucus, plays a critical role in the pathogenesis of both OM and pneumonia. However, the molecular mechanisms underlying the tight regulation of mucin upregulation in the mucosal epithelium by S. pneumoniae infection remain largely unknown. In this study, we show that S. pneumoniae pneumolysin (PLY) activates AMP-activated protein kinase α1 (AMPKα1), the master regulator of energy homeostasis, which is required for S. pneumoniae-induced mucin MUC5AC upregulation in vitro and in vivo. Moreover, we found that PLY activates AMPKα1 via cholesterol-dependent membrane binding of PLY and subsequent activation of the Ca2+- Ca2+/calmodulin-dependent kinase kinase ß (CaMKKß) and Cdc42-mixed-lineage protein kinase 3 (MLK3) signaling axis in a TLR2/4-independent manner. AMPKα1 positively regulates PLY-induced MUC5AC expression via negative cross-talk with TLR2/4-dependent activation of MAPK JNK, the negative regulator of MUC5AC expression. Moreover, pharmacological inhibition of AMPKα1 suppressed MUC5AC induction in the S. pneumoniae-induced OM mouse model, thereby demonstrating its therapeutic potential in suppressing mucus overproduction in OM. Taken together, our data unveil a novel mechanism by which negative cross-talk between TLR2/4-independent activation of AMPKα1 and TLR2/4-dependent activation of JNK tightly regulates the S. pneumoniae PLY-induced host mucosal innate immune response.


Assuntos
Otite Média , Streptococcus pneumoniae , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Bactérias , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Colesterol/metabolismo , Imunidade Inata , Camundongos , Otite Média/tratamento farmacológico , Estreptolisinas/metabolismo , Receptor 2 Toll-Like/metabolismo
10.
Bull Exp Biol Med ; 177(1): 137-139, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38960960

RESUMO

We studied toxicity of recombinant Streptococcus pneumoniae pneumolysin protein in experiments on mice and its cytopathogenic effect on cultures of Vero green monkey kidney cells and human lung carcinoma A549 cells in vitro. In vivo and in vitro experiments proved the absence of compromised toxicity and direct cytopathogenic action of the recombinant protein.


Assuntos
Proteínas de Bactérias , Proteínas Recombinantes , Streptococcus pneumoniae , Estreptolisinas , Estreptolisinas/toxicidade , Estreptolisinas/genética , Animais , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/genética , Chlorocebus aethiops , Camundongos , Células Vero , Streptococcus pneumoniae/efeitos dos fármacos , Humanos , Proteínas Recombinantes/toxicidade , Proteínas Recombinantes/genética , Células A549
11.
J Membr Biol ; 256(1): 91-103, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35980453

RESUMO

Pore-forming proteins (PFPs) are produced by various organisms, including pathogenic bacteria, and form pores within the target cell membrane. Streptolysin O (SLO) is a PFP produced by Streptococcus pyogenes and forms high-order oligomers on the membrane surface. In this prepore state, multiple α-helices in domain 3 of each subunit exist as unfolded structures and transiently interact with each other. They subsequently transition into transmembrane ß-hairpins (TMHs) and form pores with diameters of 20-30 nm. However, in this pore formation process, the trigger of the transition in a subunit and collaboration between subunits remains elusive. Here, I observed the dynamic pore formation process using high-speed atomic force microscopy. During the oligomer transition process, each subunit was sequentially inserted into the membrane, propagating along the oligomer in a domino-like fashion (chain reaction). This process also occurred on hybrid oligomers containing wildtype and mutant subunits, which cannot insert into the membrane because of an introduced disulfide bond. Furthermore, propagation still occurred when an excessive force was added to hybrid oligomers in the prepore state. Based on the observed chain reactions, I estimate the free energies and forces that trigger the transition in a subunit. Furthermore, I hypothesize that the collaboration between subunits is related to the structure of their TMH regions and interactions between TMH-TMH and TMH-lipid molecules.


Assuntos
Proteínas de Bactérias , Estreptolisinas , Estreptolisinas/análise , Estreptolisinas/química , Estreptolisinas/metabolismo , Membrana Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
12.
PLoS Pathog ; 17(3): e1009432, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760879

RESUMO

Neuronal damage is a major consequence of bacterial meningitis, but little is known about mechanisms of bacterial interaction with neurons leading to neuronal cell death. Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and many survivors develop neurological sequelae after the acute infection has resolved, possibly due to neuronal damage. Here, we studied mechanisms for pneumococcal interactions with neurons. Using human primary neurons, pull-down experiments and mass spectrometry, we show that pneumococci interact with the cytoskeleton protein ß-actin through the pilus-1 adhesin RrgA and the cytotoxin pneumolysin (Ply), thereby promoting adhesion and invasion of neurons, and neuronal death. Using our bacteremia-derived meningitis mouse model, we observe that RrgA- and Ply-expressing pneumococci co-localize with neuronal ß-actin. Using purified proteins, we show that Ply, through its cholesterol-binding domain 4, interacts with the neuronal plasma membrane, thereby increasing the exposure on the outer surface of ß-actin filaments, leading to more ß-actin binding sites available for RrgA binding, and thus enhanced pneumococcal interactions with neurons. Pneumococcal infection promotes neuronal death possibly due to increased intracellular Ca2+ levels depending on presence of Ply, as well as on actin cytoskeleton disassembly. STED super-resolution microscopy showed disruption of ß-actin filaments in neurons infected with pneumococci expressing RrgA and Ply. Finally, neuronal death caused by pneumococcal infection could be inhibited using antibodies against ß-actin. The generated data potentially helps explaining mechanisms for why pneumococci frequently cause neurological sequelae.


Assuntos
Actinas/metabolismo , Proteínas de Fímbrias/metabolismo , Meningite Pneumocócica/patologia , Neurônios/patologia , Estreptolisinas/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Morte Celular/fisiologia , Humanos , Meningite Pneumocócica/metabolismo , Camundongos , Neurônios/metabolismo
13.
Microb Pathog ; 185: 106382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839759

RESUMO

The increasing incidence of Streptococcus pneumoniae (S. pneumoniae) infection severely threatened the global public heath, causing a significant fatality in immunocompromised hosts. Notably, pneumolysin (PLY) as a pore-forming cytolysin plays a crucial role in the pathogenesis of pneumococcal pneumonia and lung injury. In this study, a natural flavonoid isorhamnetin was identified as a PLY inhibition to suppress PLY-induced hemolysis by engaging the predicted residues and attenuate cytolysin PLY-mediated A549 cells injury. Underlying mechanisms revealed that PLY inhibitor isorhamnetin further contributed to decrease the formation of bacterial biofilms without affecting the expression of PLY. In vivo S. pneumoniae infection confirmed that the pathological injury of lung tissue evoked by S. pneumoniae was ameliorated by isorhamnetin treatment. Collectively, these results presented that isorhamnetin could inhibit the biological activity of PLY, thus reducing the pathogenicity of S. pneumoniae. In summary, our study laid a foundation for the feasible anti-virulence strategy targeting PLY, and provided a promising PLY inhibitor for the treatment of S. pneumoniae infection.


Assuntos
Infecções Pneumocócicas , Humanos , Infecções Pneumocócicas/tratamento farmacológico , Streptococcus pneumoniae/metabolismo , Estreptolisinas , Proteínas de Bactérias/metabolismo , Citotoxinas/metabolismo
14.
Microbiol Immunol ; 67(2): 58-68, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478453

RESUMO

Anginosus group streptococci (AGS) are opportunistic pathogens of the human oral cavity; however, their pathogenicity has not been discussed in detail. Oral streptococci live in the gingival sulcus, from where they can easily translocate into the bloodstream due to periodontal diseases and dental treatment and cause hazardous effects on the host through their virulence factors. Streptolysin S (SLS), a pathogenic factor produced by ß-hemolytic species/strains belonging to AGS, plays an important role in damaging host cells. Therefore, we investigated the SLS-dependent cytotoxicity of ß-hemolytic Streptococcus anginosus subsp. anginosus (SAA), focusing on different growth conditions such as in the bloodstream. Consequently, SLS-dependent hemolytic activity/cytotoxicity in the culture supernatant of ß-hemolytic SAA was stabilized by blood components, particularly human serum albumin (HSA). The present study suggests that the secreted SLS, not only from ß-hemolytic SAA, but also from other SLS-producing streptococci, is stabilized by HSA. As HSA is the most abundant protein in human plasma, the results of this study provide new insights into the risk of SLS-producing streptococci which can translocate into the bloodstream.


Assuntos
Albumina Sérica Humana , Estreptolisinas , Humanos , Albumina Sérica Humana/metabolismo , Streptococcus pyogenes/metabolismo , Virulência , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(52): 33561-33569, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376222

RESUMO

Streptococcus pneumoniae is a leading cause of pneumonia and invasive disease, particularly, in the elderly. S. pneumoniae lung infection of aged mice is associated with high bacterial burdens and detrimental inflammatory responses. Macrophages can clear microorganisms and modulate inflammation through two distinct lysosomal trafficking pathways that involve 1A/1B-light chain 3 (LC3)-marked organelles, canonical autophagy, and LC3-associated phagocytosis (LAP). The S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers an autophagic response in nonphagocytic cells, but the role of LAP in macrophage defense against S. pneumoniae or in age-related susceptibility to infection is unexplored. We found that infection of murine bone-marrow-derived macrophages (BMDMs) by PLY-producing S. pneumoniae triggered Atg5- and Atg7-dependent recruitment of LC3 to S. pneumoniae-containing vesicles. The association of LC3 with S. pneumoniae-containing phagosomes required components specific for LAP, such as Rubicon and the NADPH oxidase, but not factors, such as Ulk1, FIP200, or Atg14, required specifically for canonical autophagy. In addition, S. pneumoniae was sequestered within single-membrane compartments indicative of LAP. Importantly, compared to BMDMs from young (2-mo-old) mice, BMDMs from aged (20- to 22-mo-old) mice infected with S. pneumoniae were not only deficient in LAP and bacterial killing, but also produced higher levels of proinflammatory cytokines. Inhibition of LAP enhanced S. pneumoniae survival and cytokine responses in BMDMs from young but not aged mice. Thus, LAP is an important innate immune defense employed by BMDMs to control S. pneumoniae infection and concomitant inflammation, one that diminishes with age and may contribute to age-related susceptibility to this important pathogen.


Assuntos
Envelhecimento/imunologia , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose , Streptococcus pneumoniae/imunologia , Animais , Autofagia , Proteínas de Bactérias/metabolismo , Lipídeos/química , Macrófagos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Streptococcus pneumoniae/ultraestrutura , Estreptolisinas/metabolismo
16.
Bull Exp Biol Med ; 176(2): 191-193, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38191877

RESUMO

Pneumolysin (Ply) is a target for the development of serotype-independent pneumococcal vaccines, an important condition for the efficacy of which is their ability to activate innate immunity with the subsequent formation of adaptive immunity. In this study, the ability of recombinant full-length Ply (rPly) of pneumococci to induce TLR expression and maturation of dendritic cells generated from mouse bone marrow was evaluated. It was shown that rPly in vitro increased the number of dendritic cells expressing Toll-like receptor 4 (TLR4) on the membrane. rPly caused maturation of dendritic cells generated from mouse bone marrow, which manifested in a decrease in the number of progenitor cells (CD34), an increase in the number of cells expressing the adhesion molecule CD38, costimulatory molecules CD80 and CD86, molecules of terminal differentiation of dendritic cells CD83, as well as molecules of antigenic presentation of the major histocompatibility complex class II.


Assuntos
Streptococcus pneumoniae , Estreptolisinas , Receptor 4 Toll-Like , Camundongos , Animais , Streptococcus pneumoniae/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/metabolismo , Células Dendríticas
17.
Bull Exp Biol Med ; 174(6): 749-753, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37160796

RESUMO

A recombinant form of pneumolysin from Streptococcus pneumoniae was obtained. By using Vector NTI Advance 11.0 bioinformatic analysis software, specific primers were designed in order to amplify the genome fragment of strain No. 3358 S. pneumoniae serotype 19F containing the nucleotide sequence encoding the full-length pneumolysin protein. A PCR product with a molecular weight corresponding to the nucleotide sequence of the S. pneumoniae genome fragment encoding the full-length pneumolysin was obtained. An expression system for recombinant pneumolysin in E. coli was constructed. Sequencing confirmed the identity of the inserted nucleotide sequence encoding the full-length recombinant pneumolysin synthesized in E. coli M15 strain. Purification of the recombinant protein was performed by affinity chromatography using Ni-Sepharose in 8 M urea buffer solution. Confirmation of the recombinant protein was performed by immunoblotting with monoclonal antibodies to pneumolysin.


Assuntos
Escherichia coli , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Estreptolisinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
J Bacteriol ; 204(1): e0036621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34694903

RESUMO

The emergence and continued dominance of a Streptococcus pyogenes (group A Streptococcus, GAS) M1T1 clonal group is temporally correlated with acquisition of genomic sequences that confer high level expression of cotoxins streptolysin O (SLO) and NAD+-glycohydrolase (NADase). Experimental infection models have provided evidence that both toxins are important contributors to GAS virulence. SLO is a cholesterol-dependent pore-forming toxin capable of lysing virtually all types of mammalian cells. NADase, which is composed of an N-terminal translocation domain and C-terminal glycohydrolase domain, acts as an intracellular toxin that depletes host cell energy stores. NADase is dependent on SLO for internalization into epithelial cells, but its mechanism of interaction with the cell surface and details of its translocation mechanism remain unclear. In this study we found that NADase can bind oropharyngeal epithelial cells independently of SLO. This interaction is mediated by both domains of the toxin. We determined by NMR the structure of the translocation domain to be a ß-sandwich with a disordered N-terminal region. The folded region of the domain has structural homology to carbohydrate binding modules. We show that excess NADase inhibits SLO-mediated hemolysis and binding to epithelial cells in vitro, suggesting NADase and SLO have shared surface receptors. This effect is abrogated by disruption of a putative carbohydrate binding site on the NADase translocation domain. Our data are consistent with a model whereby interactions of the NADase glycohydrolase domain and translocation domain with SLO and the cell surface increase avidity of NADase binding and facilitate toxin-toxin and toxin-cell surface interactions. IMPORTANCE NADase and streptolysin O (SLO) are secreted toxins important for pathogenesis of group A Streptococcus, the agent of strep throat and severe invasive infections. The two toxins interact in solution and mutually enhance cytotoxic activity. We now find that NADase is capable of binding to the surface of human cells independently of SLO. Structural analysis of the previously uncharacterized translocation domain of NADase suggests that it contains a carbohydrate binding module. The NADase translocation domain and SLO appear to recognize similar glycan structures on the cell surface, which may be one mechanism through which NADase enhances SLO pore-forming activity during infection. Our findings provide new insight into the NADase toxin and its functional interactions with SLO during streptococcal infection.


Assuntos
Queratinócitos/fisiologia , NAD+ Nucleosidase/metabolismo , Orofaringe/citologia , Streptococcus pyogenes/enzimologia , Substituição de Aminoácidos , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares , NAD+ Nucleosidase/química , NAD+ Nucleosidase/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Transporte Proteico , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Estreptolisinas/metabolismo
19.
Immunology ; 167(3): 413-427, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835695

RESUMO

Published data for the Streptococcus pneumoniae virulence factor Pneumolysin (Ply) show contradictory effects on the host inflammatory response to infection. Ply has been shown to activate the inflammasome, but also can bind to MRC-1 resulting in suppression of dendritic cell inflammatory responses. We have used an in vitro infection model of human monocyte-derived macrophages (MDM), and a mouse model of pneumonia to clarify whether pro- or anti-inflammatory effects dominate the effects of Ply on the initial macrophage inflammatory response to S. pneumoniae, and the consequences during early lung infection. We found that infection with S. pneumoniae expressing Ply suppressed tumour necrosis factor (TNF) and interleukin-6 production by MDMs compared to cells infected with ply-deficient S. pneumoniae. This effect was independent of bacterial effects on cell death. Transcriptional analysis demonstrated S. pneumoniae expressing Ply caused a qualitatively similar but quantitatively lower MDM transcriptional response to S. pneumoniae compared to ply-deficient S. pneumoniae, with reduced expression of TNF and type I IFN inducible genes. Reduction of the MDM inflammatory response was prevented by inhibition of SOCS1. In the early lung infection mouse model, the TNF response to ply-deficient S. pneumoniae was enhanced and bacterial clearance increased compared to infection with wild-type S. pneumoniae. Overall, these data show Ply inhibits the initial macrophage inflammatory response to S. pneumoniae, probably mediated through SOCS1, and this was associated with improved immune evasion during early lung infection.


Assuntos
Inflamassomos , Streptococcus pneumoniae , Animais , Anti-Inflamatórios , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Interleucina-6 , Macrófagos/metabolismo , Camundongos , Estreptolisinas/genética , Estreptolisinas/metabolismo , Estreptolisinas/farmacologia , Fatores de Necrose Tumoral , Fatores de Virulência
20.
Mol Microbiol ; 115(6): 1207-1228, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33325565

RESUMO

Catabolite control protein A (CcpA) is a master regulator of carbon source utilization and contributes to the virulence of numerous medically important Gram-positive bacteria. Most functional assessments of CcpA, including interaction with its key co-factor HPr, have been performed in nonpathogenic bacteria. In this study we aimed to identify the in vivo DNA binding profile of CcpA and assess the extent to which HPr is required for CcpA-mediated regulation and DNA binding in the major human pathogen group A Streptococcus (GAS). Using a combination RNAseq/ChIP-seq approach, we found that CcpA affects transcript levels of 514 of 1667 GAS genes (31%) whereas direct DNA binding was identified for 105 GAS genes. Three of the directly regulated genes encode the key GAS virulence factors Streptolysin S, PrtS (IL-8 degrading proteinase), and SpeB (cysteine protease). Mutating CcpA Val301 to Ala (strain 2221-CcpA-V301A) abolished interaction between CcpA and HPr and impacted the transcript levels of 205 genes (40%) in the total CcpA regulon. By ChIP-seq analysis, CcpAV301A bound to DNA from 74% of genes bound by wild-type CcpA, but generally with lower affinity. These data delineate the direct CcpA regulon and clarify the HPr-dependent and independent activities of CcpA in a key pathogenic bacterium.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/metabolismo , Cromatina/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Exotoxinas/genética , Genoma Bacteriano/genética , Ligação Proteica/fisiologia , RNA-Seq , Proteínas Repressoras/metabolismo , Serina Endopeptidases/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Estreptolisinas/genética , Virulência/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA