Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Dev Biol ; 415(2): 261-277, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27060628

RESUMO

The neurocranium generates most of the craniofacial skeleton and consists of prechordal and postchordal regions. Although development of the prechordal is well studied, little is known of the postchordal region. Here we characterize a signaling hierarchy necessary for postchordal neurocranial development involving Fibroblast growth factor (Fgf) signaling for early specification of mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 (has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in turn, is required for postchordal neurocranial development. While Hedgehog (Hh)-deficient embryos also lack a postchordal neurocranium, this appears primarily due to a later defect in chondrocyte differentiation. Inhibitor studies demonstrate that postchordal neurocranial development requires early Fgf and later Hh signaling. Collectively, our results provide a mechanistic understanding of early postchordal neurocranial development and demonstrate a hierarchy of signaling between Fgf and Hh in the development of this structure.


Assuntos
Fator 3 de Crescimento de Fibroblastos/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Glucuronosiltransferase/fisiologia , Proteínas Hedgehog/fisiologia , Transdução de Sinais , Crânio/embriologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Fator 3 de Crescimento de Fibroblastos/deficiência , Fator 3 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Glucuronosiltransferase/genética , Proteínas Hedgehog/genética , Hialuronan Sintases , Mesoderma/embriologia , Mesoderma/metabolismo , Crânio/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
2.
Proc Natl Acad Sci U S A ; 106(52): 22364-8, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018768

RESUMO

A central challenge in evolutionary biology is understanding how genetic mutations underlie morphological changes. Because highly calcified enamel enables preservation of detailed dental features, studying tooth morphology enables this question to be addressed in both extinct and extant species. Previous studies have found that mutant mice can have severe abnormalities in tooth morphology, and several authors have explored the evolutionary implications of tooth number modifications in mutants. However, although they can potentially shed much light on evolutionary mechanisms, anomalies in tooth shape remain poorly studied. Here, we report that alterations in dosage of the Fgf3 gene cause morphological changes in both genetically engineered mutant mice and in human patients. By comparing the dental morphologies in mice and humans carrying Fgf3 mutations with primitive rodent and primate fossils, we determined that decreases in dosage of Fgf3 lead to phenotypes that resemble the progressive reappearance of ancestral morphologies. We propose that modifications in the FGF signaling pathway have played an important role in evolution of mammalian dentition by giving rise to new cusps and interconnecting cusps by new crests. We anticipate that our multidisciplinary study will advance the detailed correlation of subtle dental modifications with genetic mutations in a variety of mammalian lineages.


Assuntos
Evolução Molecular , Fator 3 de Crescimento de Fibroblastos/genética , Dosagem de Genes , Odontogênese/genética , Animais , Fator 3 de Crescimento de Fibroblastos/deficiência , Fósseis , Mutação da Fase de Leitura , Humanos , Imageamento Tridimensional , Camundongos , Camundongos Knockout , Muridae/genética , Mutação , Fenótipo , Primatas/genética , Especificidade da Espécie , Dente/anatomia & histologia , Anormalidades Dentárias/genética
3.
Mech Dev ; 123(1): 17-23, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16326081

RESUMO

Fibroblast growth factors (FGFs) have been shown to control formation and differentiation of multiple organ systems in the developing vertebrate embryo. The analysis of differential gene expression during embryogenesis is, therefore, a potent tool to identify novel target genes regulated by FGF signalling. Here, we have applied microarray analysis to identify differentially regulated genes in FGF mutant mouse embryos. Surprisingly, transcripts corresponding to vomeronasal receptors (VRs), which so far have been only detected in the vomeronasal organ (VNO), were found to be downregulated in FGF mutant embryos. VR expression was detected in the developing olfactory pit and the anlage of the VNO. Interestingly, several FGFs can be detected in the developing olfactory pit during mouse embryogenesis [Bachler, M., Neubuser, A. 2001. Expression of members of the Fgf family and their receptors during midfacial development. Mech. Dev. 100, 313-316]. FGF signalling may thus control expression of VRs in the olfactory pit and formation of the VNO. Moreover, VR expression was detected in unexpected locations within the developing embryo including retina, dorsal root ganglia and neural tube. The relevance of VR expression in these structures and for formation of the VNO is discussed.


Assuntos
Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 3 de Crescimento de Fibroblastos/metabolismo , Receptores Odorantes/genética , Órgão Vomeronasal/embriologia , Órgão Vomeronasal/metabolismo , Animais , Sequência de Bases , DNA Complementar/genética , Regulação para Baixo , Fator 10 de Crescimento de Fibroblastos/deficiência , Fator 10 de Crescimento de Fibroblastos/genética , Fator 3 de Crescimento de Fibroblastos/deficiência , Fator 3 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
4.
Dev Biol ; 308(2): 379-91, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17601531

RESUMO

FGF signaling is required during multiple stages of inner ear development in many different vertebrates, where it is involved in induction of the otic placode, in formation and morphogenesis of the otic vesicle as well as for cellular differentiation within the sensory epithelia. In this study we have looked to define the redundant and conserved roles of FGF3, FGF8 and FGF10 during the development of the murine and avian inner ear. In the mouse, hindbrain-derived FGF10 ectopically induces FGF8 and rescues otic vesicle formation in Fgf3 and Fgf10 homozygous double mutants. Conditional inactivation of Fgf8 after induction of the placode does not interfere with otic vesicle formation and morphogenesis but affects cellular differentiation in the inner ear. In contrast, inactivation of Fgf8 during induction of the placode in a homozygous Fgf3 null background leads to a reduced size otic vesicle or the complete absence of otic tissue. This latter phenotype is more severe than the one observed in mutants carrying null mutations for both Fgf3 and Fgf10 that develop microvesicles. However, FGF3 and FGF10 are redundantly required for morphogenesis of the otic vesicle and the formation of semicircular ducts. In the chicken embryo, misexpression of Fgf3 in the hindbrain induces ectopic otic vesicles in vivo. On the other hand, Fgf3 expression in the hindbrain or pharyngeal endoderm is required for formation of the otic vesicle from the otic placode. Together these results provide important insights into how the spatial and temporal expression of various FGFs controls different steps of inner ear formation during vertebrate development.


Assuntos
Orelha Interna/embriologia , Orelha Interna/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 3 de Crescimento de Fibroblastos/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Animais , Sequência de Bases , Embrião de Galinha , DNA/genética , Fator 10 de Crescimento de Fibroblastos/deficiência , Fator 10 de Crescimento de Fibroblastos/genética , Fator 3 de Crescimento de Fibroblastos/deficiência , Fator 3 de Crescimento de Fibroblastos/genética , Fator 8 de Crescimento de Fibroblasto/antagonistas & inibidores , Fator 8 de Crescimento de Fibroblasto/deficiência , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA