RESUMO
Organoids capable of forming tissue-like structures have transformed our ability to model human development and disease. With the notable exception of the human heart, lineage-specific self-organizing organoids have been reported for all major organs. Here, we established self-organizing cardioids from human pluripotent stem cells that intrinsically specify, pattern, and morph into chamber-like structures containing a cavity. Cardioid complexity can be controlled by signaling that instructs the separation of cardiomyocyte and endothelial layers and by directing epicardial spreading, inward migration, and differentiation. We find that cavity morphogenesis is governed by a mesodermal WNT-BMP signaling axis and requires its target HAND1, a transcription factor linked to developmental heart chamber defects. Upon cryoinjury, cardioids initiated a cell-type-dependent accumulation of extracellular matrix, an early hallmark of both regeneration and heart disease. Thus, human cardioids represent a powerful platform to mechanistically dissect self-organization, congenital heart defects and serve as a foundation for future translational research.
Assuntos
Coração/embriologia , Organogênese , Organoides/embriologia , Ativinas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Cálcio/metabolismo , Linhagem Celular , Linhagem da Célula , Galinhas , Células Endoteliais/citologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/citologia , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Masculino , Mesoderma/embriologia , Modelos Biológicos , Miocárdio/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/metabolismoRESUMO
While regulatory T (Treg) cells are traditionally viewed as professional suppressors of antigen presenting cells and effector T cells in both autoimmunity and cancer, recent findings of distinct Treg cell functions in tissue maintenance suggest that their regulatory purview extends to a wider range of cells and is broader than previously assumed. To elucidate tumoral Treg cell 'connectivity' to diverse tumor-supporting accessory cell types, we explored immediate early changes in their single-cell transcriptomes upon punctual Treg cell depletion in experimental lung cancer and injury-induced inflammation. Before any notable T cell activation and inflammation, fibroblasts, endothelial and myeloid cells exhibited pronounced changes in their gene expression in both cancer and injury settings. Factor analysis revealed shared Treg cell-dependent gene programs, foremost, prominent upregulation of VEGF and CCR2 signaling-related genes upon Treg cell deprivation in either setting, as well as in Treg cell-poor versus Treg cell-rich human lung adenocarcinomas. Accordingly, punctual Treg cell depletion combined with short-term VEGF blockade showed markedly improved control of PD-1 blockade-resistant lung adenocarcinoma progression in mice compared to the corresponding monotherapies, highlighting a promising factor-based querying approach to elucidating new rational combination treatments of solid organ cancers.
Assuntos
Neoplasias , Linfócitos T Reguladores , Animais , Camundongos , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microambiente Tumoral , Neoplasias/metabolismoRESUMO
Cerebrovascular injury (CVI) is a common pathology caused by infections, injury, stroke, neurodegeneration and autoimmune disease. Rapid resolution of a CVI requires a coordinated innate immune response. In the present study, we sought mechanistic insights into how central nervous system-infiltrating monocytes program resident microglia to mediate angiogenesis and cerebrovascular repair after an intracerebral hemorrhage. In the penumbrae of human stroke brain lesions, we identified a subpopulation of microglia that express vascular endothelial growth factor A. These cells, termed 'repair-associated microglia' (RAMs), were also observed in a rodent model of CVI and coexpressed interleukin (IL)-6Ra. Cerebrovascular repair did not occur in IL-6 knockouts or in mice lacking microglial IL-6Ra expression and single-cell transcriptomic analyses revealed faulty RAM programming in the absence of IL-6 signaling. Infiltrating CCR2+ monocytes were the primary source of IL-6 after a CVI and were required to endow microglia with proliferative and proangiogenic properties. Faulty RAM programming in the absence of IL-6 or inflammatory monocytes resulted in poor cerebrovascular repair, neuronal destruction and sustained neurological deficits that were all restored via exogenous IL-6 administration. These data provide a molecular and cellular basis for how monocytes instruct microglia to repair damaged brain vasculature and promote functional recovery after injury.
Assuntos
Monócitos , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Microglia , Interleucina-6/genética , Interleucina-6/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acidente Vascular Cerebral/patologia , Encéfalo/metabolismo , Camundongos Endogâmicos C57BLRESUMO
The formation of new blood vessels, called angiogenesis, is an essential pathophysiological process in which several families of regulators have been implicated. Among these, vascular endothelial growth factor A (VEGFA; also known as VEGF) and its two tyrosine kinase receptors, VEGFR1 and VEGFR2, represent a key signalling pathway mediating physiological angiogenesis and are also major therapeutic targets. VEGFA is a member of the gene family that includes VEGFB, VEGFC, VEGFD and placental growth factor (PLGF). Three decades after its initial isolation and cloning, VEGFA is arguably the most extensively investigated signalling system in angiogenesis. Although many mediators of angiogenesis have been identified, including members of the FGF family, angiopoietins, TGFß and sphingosine 1-phosphate, all current FDA-approved anti-angiogenic drugs target the VEGF pathway. Anti-VEGF agents are widely used in oncology and, in combination with chemotherapy or immunotherapy, are now the standard of care in multiple malignancies. Anti-VEGF drugs have also revolutionized the treatment of neovascular eye disorders such as age-related macular degeneration and ischaemic retinal disorders. In this Review, we emphasize the molecular, structural and cellular basis of VEGFA action as well as recent findings illustrating unexpected interactions with other pathways and provocative reports on the role of VEGFA in regenerative medicine. We also discuss clinical and translational aspects of VEGFA. Given the crucial role that VEGFA plays in regulating angiogenesis in health and disease, this molecule is largely the focus of this Review.
Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Feminino , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Placentário , Inibidores da Angiogênese/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , BiologiaRESUMO
The discovery of vascular endothelial-derived growth factor (VEGF) has revolutionized our understanding of vasculogenesis and angiogenesis during development and physiological homeostasis. Over a short span of two decades, our understanding of the molecular mechanisms by which VEGF coordinates neurovascular homeostasis has become more sophisticated. The central role of VEGF in the pathogenesis of diverse cancers and blinding eye diseases has also become evident. Elucidation of the molecular regulation of VEGF and the transformative development of multiple therapeutic pathways targeting VEGF directly or indirectly is a powerful case study of how fundamental research can guide innovation and translation. It is also an elegant example of how agnostic discovery and can transform our understanding of human disease. This review will highlight critical nodal points in VEGF biology, including recent developments in immunotherapy for cancer and multitarget approaches in neovascular eye disease.
Assuntos
Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Humanos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/fisiologia , Transdução de Sinais/fisiologia , Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Angiogenesis, the formation of new blood vessels by endothelial cells (ECs), is an adaptive response to oxygen/nutrient deprivation orchestrated by vascular endothelial growth factor (VEGF) upon ischemia or exercise. Hypoxia is the best-understood trigger of VEGF expression via the transcription factor HIF1α. Nutrient deprivation is inseparable from hypoxia during ischemia, yet its role in angiogenesis is poorly characterized. Here, we identified sulfur amino acid restriction as a proangiogenic trigger, promoting increased VEGF expression, migration and sprouting in ECs in vitro, and increased capillary density in mouse skeletal muscle in vivo via the GCN2/ATF4 amino acid starvation response pathway independent of hypoxia or HIF1α. We also identified a requirement for cystathionine-γ-lyase in VEGF-dependent angiogenesis via increased hydrogen sulfide (H2S) production. H2S mediated its proangiogenic effects in part by inhibiting mitochondrial electron transport and oxidative phosphorylation, resulting in increased glucose uptake and glycolytic ATP production.
Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos Sulfúricos/deficiência , Sulfeto de Hidrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Aminoácidos Sulfúricos/metabolismo , Animais , Cistationina gama-Liase/metabolismo , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Condicionamento Físico Animal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
A decline in capillary density and blood flow with age is a major cause of mortality and morbidity. Understanding why this occurs is key to future gains in human health. NAD precursors reverse aspects of aging, in part, by activating sirtuin deacylases (SIRT1-SIRT7) that mediate the benefits of exercise and dietary restriction (DR). We show that SIRT1 in endothelial cells is a key mediator of pro-angiogenic signals secreted from myocytes. Treatment of mice with the NAD+ booster nicotinamide mononucleotide (NMN) improves blood flow and increases endurance in elderly mice by promoting SIRT1-dependent increases in capillary density, an effect augmented by exercise or increasing the levels of hydrogen sulfide (H2S), a DR mimetic and regulator of endothelial NAD+ levels. These findings have implications for improving blood flow to organs and tissues, increasing human performance, and reestablishing a virtuous cycle of mobility in the elderly.
Assuntos
Envelhecimento , Sulfeto de Hidrogênio/metabolismo , NAD/metabolismo , Animais , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Microvasos/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Neovascularização Fisiológica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.
Assuntos
Migração Transendotelial e Transepitelial , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Camundongos , Adesão Celular , Movimento Celular , Endotélio Vascular , Mecanotransdução Celular , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity.
Assuntos
Encéfalo/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Obesidade/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Cognição , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Camundongos , Células Mieloides/metabolismoRESUMO
The VEGF-A isoforms play a crucial role in vascular development, and the VEGF signaling pathway is a clinically validated therapeutic target for several pathological conditions. Alternative mRNA splicing leads to the generation of multiple VEGF-A isoforms, including VEGF165. A recent study reported the presence of another isoform, VEGF-Ax, arising from programmed readthrough translation. Compared to VEGF165, VEGF-Ax has a 22-amino-acid extension in the COOH terminus and has been reported to function as a negative regulator of VEGF signaling in endothelial cells, with potent anti-angiogenic effects. Here, we show that, contrary to the earlier report, VEGF-Ax stimulates endothelial cell mitogenesis, angiogenesis, as well as vascular permeability. Accordingly, VEGF-Ax induces phosphorylation of key tyrosine residues in VEGFR-2. Notably, VEGF-Ax was less potent than VEGF165, consistent with its impaired binding to the VEGF co-receptor neuropilin-1.
Assuntos
Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular , Processamento Alternativo , Sequência de Aminoácidos , Indutores da Angiogênese/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Permeabilidade Capilar/genética , Permeabilidade Capilar/fisiologia , Quimiotaxia/efeitos dos fármacos , Clonagem Molecular , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Cobaias , Células HEK293 , Humanos , Camundongos , Mitógenos/farmacologia , Mitose/efeitos dos fármacos , Mitose/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Neuropilina-1/metabolismo , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
During development, the central nervous system (CNS) vasculature grows to precisely meet the metabolic demands of neurons and glia. In addition, the vast majority of the CNS vasculature acquires a unique set of molecular and cellular properties-collectively referred to as the blood-brain barrier-that minimize passive diffusion of molecules between the blood and the CNS parenchyma. Both of these processes are controlled by signals emanating from neurons and glia. In this review, we describe the nature and mechanisms-of-action of these signals, with an emphasis on vascular endothelial growth factor (VEGF) and beta-catenin (canonical Wnt) signaling, the two best-understood systems that regulate CNS vascular development. We highlight foundational discoveries, interactions between different signaling systems, the integration of genetic and cell biological studies, advances that are of clinical relevance, and questions for future research.
Assuntos
Fator A de Crescimento do Endotélio Vascular , Via de Sinalização Wnt , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central , Fator A de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt/fisiologiaRESUMO
The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation.
Assuntos
Epêndima/citologia , Células-Tronco Neurais/metabolismo , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Diferenciação Celular , Movimento Celular , Epêndima/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glicoproteínas/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Peptídeos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.
Assuntos
Tronco Encefálico , Células Ependimogliais , Comportamento Alimentar , Temperatura Alta , Hipotálamo , Vias Neurais , Neurônios , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Dopamina/metabolismo , Ingestão de Alimentos/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Comportamento Alimentar/fisiologia , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Sensação Térmica/fisiologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The distribution and patterning of blood vessels is controlled by vascular endothelial growth factor (VEGF), which is precisely regulated throughout its life cycle. Okabe et al. show that VEGF is titrated away from the endothelium by adjacent neurons via endocytosis, regulating density and trajectory of blood vessels.
Assuntos
Neovascularização Fisiológica , Neurônios/metabolismo , Retina/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo , AnimaisRESUMO
Vascular and nervous systems, two major networks in mammalian bodies, show a high degree of anatomical parallelism and functional crosstalk. During development, neurons guide and attract blood vessels, and consequently this parallelism is established. Here, we identified a noncanonical neurovascular interaction in eye development and disease. VEGFR2, a critical endothelial receptor for VEGF, was more abundantly expressed in retinal neurons than in endothelial cells, including endothelial tip cells. Genetic deletion of VEGFR2 in neurons caused misdirected angiogenesis toward neurons, resulting in abnormally increased vascular density around neurons. Further genetic experiments revealed that this misdirected angiogenesis was attributable to an excessive amount of VEGF protein around neurons caused by insufficient engulfment of VEGF by VEGFR2-deficient neurons. Moreover, absence of neuronal VEGFR2 caused misdirected regenerative angiogenesis in ischemic retinopathy. Thus, this study revealed neurovascular crosstalk and unprecedented cellular regulation of VEGF: retinal neurons titrate VEGF to limit neuronal vascularization. PAPERFLICK:
Assuntos
Neovascularização Fisiológica , Neurônios/metabolismo , Retina/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Endocitose , Técnicas de Introdução de Genes , Camundongos , Camundongos Knockout , Neurogênese , Retina/metabolismo , Retina/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Extracellular vesicles (EVs) are important mediators of communication between cells. Here, we reveal a new mode of intercellular communication by melanosomes, large EVs secreted by melanocytes for melanin transport. Unlike small EVs, which are disintegrated within the receiver cell, melanosomes stay intact within them, gain a unique protein signature, and can then be further transferred to another cell as "second-hand" EVs. We show that melanoma-secreted melanosomes passaged through epidermal keratinocytes or dermal fibroblasts can be further engulfed by resident macrophages. This process leads to macrophage polarization into pro-tumor or pro-immune cell infiltration phenotypes. Melanosomes that are transferred through fibroblasts can carry AKT1, which induces VEGF secretion from macrophages in an mTOR-dependent manner, promoting angiogenesis and metastasis in vivo. In melanoma patients, macrophages that are co-localized with AKT1 are correlated with disease aggressiveness, and immunotherapy non-responders are enriched in macrophages containing melanosome markers. Our findings suggest that interactions mediated by second-hand extracellular vesicles contribute to the formation of the metastatic niche, and that blocking the melanosome cues of macrophage diversification could be helpful in halting melanoma progression.
Assuntos
Vesículas Extracelulares , Melanoma , Melanossomas , Proteínas Proto-Oncogênicas c-akt , Macrófagos Associados a Tumor , Melanossomas/metabolismo , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Comunicação Celular , Fibroblastos/metabolismo , Fibroblastos/patologia , Melanócitos/metabolismo , Melanócitos/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Macrófagos/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genéticaRESUMO
Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.
Assuntos
Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células Endoteliais , Prolina Dioxigenases do Fator Induzível por Hipóxia , Receptores Notch , Neovascularização Retiniana , Transdução de Sinais , Regulação para Cima , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Receptores Notch/metabolismo , Receptores Notch/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Células Endoteliais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Vasos Retinianos/metabolismo , AngiogêneseRESUMO
The dorsal aorta (DA) is the first major blood vessel to develop in the embryonic cardiovascular system. Its formation is governed by a coordinated process involving the migration, specification, and arrangement of angioblasts into arterial and venous lineages, a process conserved across species. Although vascular endothelial growth factor a (VEGF-A) is known to drive DA specification and formation, the kinases involved in this process remain ambiguous. Thus, we investigated the role of protein kinase B (Akt) in zebrafish by generating a quadruple mutant (aktΔ/Δ), in which expression and activity of all Akt genes - akt1, -2, -3a and -3b - are strongly decreased. Live imaging of developing aktΔ/Δ DA uncovers early arteriovenous malformations. Single-cell RNA-sequencing analysis of aktΔ/Δ endothelial cells corroborates the impairment of arterial, yet not venous, cell specification. Notably, endothelial specific expression of ligand-independent activation of Notch or constitutively active Akt1 were sufficient to re-establish normal arterial specification in aktΔ/Δ. The Akt loss-of-function mutant unveils that Akt kinase can act upstream of Notch in arterial endothelial cells, and is involved in proper embryonic artery specification. This sheds light on cardiovascular development, revealing a mechanism behind congenital malformations.
Assuntos
Artérias , Proteínas Proto-Oncogênicas c-akt , Receptores Notch , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Artérias/embriologia , Artérias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais/metabolismo , Transdução de Sinais , Mutação/genética , Embrião não Mamífero/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.
Assuntos
Memória Imunológica/imunologia , Células Matadoras Naturais/imunologia , Transcriptoma/imunologia , Útero/imunologia , Animais , Linhagem Celular Tumoral , Decídua/imunologia , Decídua/metabolismo , Feminino , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Gravidez , Útero/citologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The origins and developmental mechanisms of coronary arteries are incompletely understood. We show here by fate mapping, clonal analysis, and immunohistochemistry that endocardial cells generate the endothelium of coronary arteries. Dye tracking, live imaging, and tissue transplantation also revealed that ventricular endocardial cells are not terminally differentiated; instead, they are angiogenic and form coronary endothelial networks. Myocardial Vegf-a or endocardial Vegfr-2 deletion inhibited coronary angiogenesis and arterial formation by ventricular endocardial cells. In contrast, lineage and knockout studies showed that endocardial cells make a small contribution to the coronary veins, the formation of which is independent of myocardial-to-endocardial Vegf signaling. Thus, contrary to the current view of a common source for the coronary vessels, our findings indicate that the coronary arteries and veins have distinct origins and are formed by different mechanisms. This information may help develop better cell therapies for coronary artery disease.