Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 34(3-4): 166-178, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919188

RESUMO

Oocytes are indispensable for mammalian life. Thus, it is important to understand how mature oocytes are generated. As a critical stage of oocytes development, meiosis has been extensively studied, yet how chromatin remodeling contributes to this process is largely unknown. Here, we demonstrate that the ATP-dependent chromatin remodeling factor Snf2h (also known as Smarca5) plays a critical role in regulating meiotic cell cycle progression. Females with oocyte-specific depletion of Snf2h are infertile and oocytes lacking Snf2h fail to undergo meiotic resumption. Mechanistically, depletion of Snf2h results in dysregulation of meiosis-related genes, which causes failure of maturation-promoting factor (MPF) activation. ATAC-seq analysis in oocytes revealed that Snf2h regulates transcription of key meiotic genes, such as Prkar2b, by increasing its promoter chromatin accessibility. Thus, our studies not only demonstrate the importance of Snf2h in oocyte meiotic resumption, but also reveal the mechanism underlying how a chromatin remodeling factor can regulate oocyte meiosis.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Fator Promotor de Maturação/genética , Meiose/genética , Oogênese/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Mesotelina , Camundongos , Oócitos/citologia , Transcriptoma
2.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G49-G65, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816763

RESUMO

A single transcription factor, MIST1 (BHLHA15), maximizes secretory function in diverse secretory cells (like pancreatic acinar cells) by transcriptionally upregulating genes that elaborate secretory architecture. Here, we show that the scantly studied MIST1 target, ELAPOR1 (endosome/lysosome-associated apoptosis and autophagy regulator 1), is an evolutionarily conserved, novel mannose-6-phosphate receptor (M6PR) domain-containing protein. ELAPOR1 expression was specific to zymogenic cells (ZCs, the MIST1-expressing population in the stomach). ELAPOR1 expression was lost as tissue injury caused ZCs to undergo paligenosis (i.e., to become metaplastic and reenter the cell cycle). In cultured cells, ELAPOR1 trafficked with cis-Golgi resident proteins and with the trans-Golgi and late endosome protein: cation-independent M6PR. Secretory vesicle trafficking was disrupted by expression of ELAPOR1 truncation mutants. Mass spectrometric analysis of co-immunoprecipitated proteins showed ELAPOR1 and CI-M6PR shared many binding partners. However, CI-M6PR and ELAPOR1 must function differently, as CI-M6PR co-immunoprecipitated more lysosomal proteins and was not decreased during paligenosis in vivo. We generated Elapor1-/- mice to determine ELAPOR1 function in vivo. Consistent with in vitro findings, secretory granule maturation was defective in Elapor1-/- ZCs. Our results identify a role for ELAPOR1 in secretory granule maturation and help clarify how a single transcription factor maintains mature exocrine cell architecture in homeostasis and helps dismantle it during paligenosis.NEW & NOTEWORTHY Here, we find the MIST1 (BHLHA15) transcriptional target ELAPOR1 is an evolutionarily conserved, trans-Golgi/late endosome M6PR domain-containing protein that is specific to gastric zymogenic cells and required for normal secretory granule maturation in human cell lines and in mouse stomach.


Assuntos
Células Epiteliais/metabolismo , Fator Promotor de Maturação/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Celulas Principais Gástricas/metabolismo , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Fator Promotor de Maturação/genética , Camundongos , Pâncreas Exócrino/metabolismo , Fatores de Transcrição/metabolismo
3.
Plant Physiol ; 184(4): 2022-2039, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32913045

RESUMO

Ribosome biogenesis is crucial for cellular metabolism and has important implications for disease and aging. Human (Homo sapiens) glioma tumor-suppressor candidate region gene2 (GLTSCR2) and yeast (Saccharomyces cerevisiae) Nucleolar protein53 (Nop53) are orthologous proteins with demonstrated roles as ribosome biogenesis factors; knockdown of GLTSCR2 impairs maturation of 18S and 5.8S ribosomal RNAs (rRNAs), and Nop53 is required for maturation of 5.8S and 25S rRNAs. Here, we characterized SMALL ORGAN4 (SMO4), the most likely ortholog of human GLTSCR2 and yeast Nop53 in Arabidopsis (Arabidopsis thaliana). Loss of function of SMO4 results in a mild morphological phenotype; however, we found that smo4 mutants exhibit strong cytological and molecular phenotypes: nucleolar hypertrophy and disorganization, overaccumulation of 5.8S and 18S rRNA precursors, and an imbalanced 40S:60S ribosome subunit ratio. Like yeast Nop53 and human GLTSCR2, Arabidopsis SMO4 participates in 5.8S rRNA maturation. In yeast, Nop53 cooperates with mRNA transport4 (Mtr4) for 5.8S rRNA maturation. In Arabidopsis, we found that SMO4 plays similar roles in the 5.8S rRNA maturation pathway than those described for MTR4. However, SMO4 seems not to participate in the degradation of by-products derived from the 5'-external transcribed spacer (ETS) of 45S pre-rRNA, as MTR4 does.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/genética , Fator Promotor de Maturação/genética , RNA Ribossômico 5,8S/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Fenótipo
4.
Int J Mol Sci ; 19(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235877

RESUMO

The rate of chromosome segregation errors that emerge during meiosis I in the mammalian female germ line are known to increase with maternal age; however, little is known about the underlying molecular mechanism. The objective of this study was to analyze meiotic progression of mouse oocytes in relation to maternal age. Using the mouse as a model system, we analyzed the timing of nuclear envelope breakdown and the morphology of the nuclear lamina of oocytes obtained from young (2 months old) and aged females (12 months old). Oocytes obtained from older females display a significantly faster progression through meiosis I compared to the ones obtained from younger females. Furthermore, in oocytes from aged females, lamin A/C structures exhibit rapid phosphorylation and dissociation. Additionally, we also found an increased abundance of MPF components and increased translation of factors controlling translational activity in the oocytes of aged females. In conclusion, the elevated MPF activity observed in aged female oocytes affects precocious meiotic processes that can multifactorially contribute to chromosomal errors in meiosis I.


Assuntos
Envelhecimento/metabolismo , Fator Promotor de Maturação/metabolismo , Meiose , Oócitos/metabolismo , Envelhecimento/genética , Animais , Feminino , Fator Promotor de Maturação/genética , Mesotelina , Camundongos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Oócitos/citologia , Fosforilação , Processamento de Proteína Pós-Traducional
5.
J Reprod Dev ; 63(4): 383-388, 2017 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-28458300

RESUMO

LSM family member 14 (LSM14) belongs to the RNA-associated protein (RAP) family that is widely expressed in different species, and whose functions include associating and storing mRNAs. In the present study, we found that LSM14b was essential for oocyte meiotic maturation. Lack of LSM14b caused oocyte meiotic arrest at metaphase, and misalignment of chromosomes, as well as abnormal spindle assembly checkpoint (SAC) and maturation promoting factor (MPF) activation. Cyclin B1 and Cdc20 mRNAs, whose contents changed with LSM14b expression, were likely direct targets of LSM14b. We conclude that LSM14b, by functioning as a container of mRNAs, controls protein expression, and thus regulates the oocyte meiotic maturation process.


Assuntos
Meiose/fisiologia , Oócitos/metabolismo , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Animais , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Ciclina B1/genética , Ciclina B1/metabolismo , Fator Promotor de Maturação/genética , Fator Promotor de Maturação/metabolismo , Mesotelina , Camundongos , Proteínas/genética , RNA Mensageiro/genética , Fuso Acromático/metabolismo
6.
J Cell Sci ; 126(Pt 17): 3916-26, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23781026

RESUMO

Entry into mitosis or meiosis relies on the coordinated action of kinases and phosphatases that ultimately leads to the activation of Cyclin-B-Cdk1, also known as MPF for M-phase promoting factor. Vertebrate oocytes are blocked in prophase of the first meiotic division, an arrest that is tightly controlled by high PKA activity. Re-entry into meiosis depends on activation of Cdk1, which obeys a two-step mechanism: a catalytic amount of Cdk1 is generated in a PKA and protein-synthesis-dependent manner; then a regulatory network known as the MPF auto-amplification loop is initiated. This second step is independent of PKA and protein synthesis. However, none of the molecular components of the auto-amplification loop identified so far act independently of PKA. Therefore, the protein rendering this process independent of PKA in oocytes remains unknown. Using a physiologically intact cell system, the Xenopus oocyte, we show that the phosphorylation of ARPP19 at S67 by the Greatwall kinase promotes its binding to the PP2A-B55δ phosphatase, thus inhibiting its activity. This process is controlled by Cdk1 and has an essential role within the Cdk1 auto-amplification loop for entry into the first meiotic division. Moreover, once phosphorylated by Greatwall, ARPP19 escapes the negative regulation exerted by PKA. It also promotes activation of MPF independently of protein synthesis, provided that a small amount of Mos is present. Taken together, these findings reveal that PP2A-B55δ, Greatwall and ARPP19 are not only required for entry into meiotic divisions, but are also pivotal effectors within the Cdk1 auto-regulatory loop responsible for its independence with respect to the PKA-negative control.


Assuntos
Fator Promotor de Maturação/metabolismo , Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Regulação para Baixo , Feminino , Fator Promotor de Maturação/genética , Meiose/fisiologia , Fosforilação , Xenopus laevis/metabolismo
7.
Genet Mol Res ; 14(3): 10786-98, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26400307

RESUMO

Cyclin B is a regulatory subunit of maturation-promoting factor (MPF), which has a key role in the induction of meiotic maturation of oocytes. MPF has been studied in a wide variety of animal species; however, its expression in crustaceans is poorly characterized. In this study, the complete cDNA sequence of Cyclin B was cloned from the red claw crayfish, Cherax quadricarinatus, and its spatiotemporal expression profiles were analyzed. Cyclin B cDNA (1779 bp) encoded a 401 amino acid protein with a calculated molecular weight of 45.1 kDa. Quantitative real-time PCR demonstrated that Cyclin B mRNA was expressed mainly in the ovarian tissue and that the expression decreased as the ovaries developed. Immunofluorescence analysis revealed that the Cyclin B protein relocated from the cytoplasm to the nucleus during oogenesis. These findings suggest that Cyclin B plays an important role in gametogenesis and gonad development in C. quadricarinatus.


Assuntos
Astacoidea/genética , Ciclina B/genética , Regulação da Expressão Gênica no Desenvolvimento , Fator Promotor de Maturação/genética , Oócitos/metabolismo , Oogênese/genética , Sequência de Aminoácidos , Animais , Astacoidea/citologia , Astacoidea/crescimento & desenvolvimento , Sequência de Bases , Núcleo Celular/metabolismo , Clonagem Molecular , Ciclina B/metabolismo , Citoplasma/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Fator Promotor de Maturação/metabolismo , Meiose , Dados de Sequência Molecular , Peso Molecular , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Fases de Leitura Aberta , Ovário/citologia , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Transporte Proteico , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
8.
Biol Reprod ; 88(5): 110, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23515676

RESUMO

It is well accepted that oocyte meiotic resumption is mainly regulated by the maturation-promoting factor (MPF), which is composed of cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDC2). Maturation-promoting factor activity is regulated by the expression level of CCNB1, phosphorylation of CDC2, and their germinal vesicle (GV) localization. In addition to CCNB1, cyclin O (CCNO) is highly expressed in oocytes, but its biological functions are still not clear. By employing short interfering RNA microinjection of GV-stage oocytes, we found that Ccno knockdown inhibited CDC2 (Tyr15) dephosphorylation and arrested oocytes at the GV stage. To rescue meiotic resumption, cell division cycle 25 B kinase (Cdc25b) and Ccnb1 were overexpressed in the Ccno knockdown oocytes. Unexpectedly, we found that Ccno knockdown did not affect CDC25B entry into the GV, and overexpression of CDC25B was not able to rescue resumption of oocyte meiosis. However, GV breakdown (GVBD) was significantly increased after overexpression of Ccnb1 in Ccno knockdown oocytes, indicating that GVBD block caused by cyclin O knockdown can be rescued by cyclin B1 overexpression. We thus conclude that cyclin O, as an upstream regulator of MPF, plays an important role in oocyte meiotic resumption in mouse oocytes.


Assuntos
Ciclinas/metabolismo , Meiose/genética , Oócitos/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclo Celular/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclinas/genética , Feminino , Fator Promotor de Maturação/genética , Fator Promotor de Maturação/metabolismo , Mesotelina , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Microinjeções , Oócitos/citologia , Fosforilação , RNA Interferente Pequeno
9.
J Biol Chem ; 286(12): 10356-66, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21212267

RESUMO

It is well documented that protein kinase A (PKA) acts as a negative regulator of M phase promoting factor (MPF) by phosphorylating cell division cycle 25 homolog B (Cdc25B) in mammals. However, the molecular mechanism remains unclear. In this study, we identified PKA phosphorylation sites in vitro by LC-MS/MS analysis, including Ser(149), Ser(229), and Ser(321) of Cdc25B, and explored the role of Ser(149) in G(2)/M transition of fertilized mouse eggs. The results showed that the overexpressed Cdc25B-S149A mutant initiated efficient MPF activation by direct dephosphorylation of Cdc2-Tyr(15), resulting in triggering mitosis prior to Cdc25B-WT. Conversely, overexpression of the phosphomimic Cdc25B-S149D mutant showed no significant difference in comparison with the control groups. Furthermore, we found that Cdc25B-Ser(149) was phosphorylated at G(1) and S phases, whereas dephosphorylated at G(2) and M phases, and the phosphorylation of Cdc25B-Ser(149) was modulated by PKA in vivo. In addition, we examined endogenous and exogenous Cdc25B, which were expressed mostly in the cytoplasm at the G(1) and S phases and translocated to the nucleus at the G(2) phase. Collectively, our findings provide evidence that Ser(149) may be another potential PKA phosphorylation target of Cdc25B in G(2)/M transition of fertilized mouse eggs and Cdc25B as a direct downstream substrate of PKA in mammals, which plays important roles in the regulation of early development of mouse embryos.


Assuntos
Divisão Celular/fisiologia , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fase G2/fisiologia , Zigoto/enzimologia , Fosfatases cdc25/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Substituição de Aminoácidos , Animais , Núcleo Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Feminino , Masculino , Fator Promotor de Maturação/genética , Fator Promotor de Maturação/metabolismo , Mesotelina , Camundongos , Mutação de Sentido Incorreto , Fosforilação/genética , Serina/genética , Serina/metabolismo , Zigoto/citologia , Fosfatases cdc25/genética
10.
Genetics ; 222(2)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35951744

RESUMO

During meiotic prophase I, accurate segregation of homologous chromosomes requires the establishment of chromosomes with a meiosis-specific architecture. The sister chromatid cohesin complex and the enzyme Topoisomerase II (TOP-2) are important components of meiotic chromosome architecture, but the relationship of these proteins in the context of meiotic chromosome segregation is poorly defined. Here, we analyzed the role of TOP-2 in the timely release of the sister chromatid cohesin subunit REC-8 during spermatogenesis and oogenesis of Caenorhabditis elegans. We show that there is a different requirement for TOP-2 in meiosis of spermatogenesis and oogenesis. The loss-of-function mutation top-2(it7) results in premature REC-8 removal in spermatogenesis, but not oogenesis. This correlates with a failure to maintain the HORMA-domain proteins HTP-1 and HTP-2 (HTP-1/2) on chromosome axes at diakinesis and mislocalization of the downstream components that control REC-8 release including Aurora B kinase. In oogenesis, top-2(it7) causes a delay in the localization of Aurora B to oocyte chromosomes but can be rescued through premature activation of the maturation promoting factor via knockdown of the inhibitor kinase WEE-1.3. The delay in Aurora B localization is associated with an increase in the length of diakinesis bivalents and wee-1.3 RNAi mediated rescue of Aurora B localization in top-2(it7) is associated with a decrease in diakinesis bivalent length. Our results imply that the sex-specific effects of TOP-2 on REC-8 release are due to differences in the temporal regulation of meiosis and chromosome structure in late prophase I in spermatogenesis and oogenesis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Aurora Quinase B/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Cromossomos , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Feminino , Masculino , Fator Promotor de Maturação/genética , Fator Promotor de Maturação/metabolismo , Meiose , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases/genética , Espermatogênese/genética , Coesinas
11.
Reprod Domest Anim ; 45(5): e184-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19922589

RESUMO

Research related to intermediate filaments in mammalian oocytes remains poorly advanced. We investigated keratin reorganization in oocytes during meiotic maturation using immunofluorescence, and examined effects of inhibitors for cdc2 and mitogen-activated protein kinase kinase (MAPKK) on keratin assembly. In germinal vesicle (GV) oocytes (n = 26), large and oval-shaped aggregates of non-fibrillar keratin were found in the cortical ooplasm (designated as a 'cortical' pattern). The delicate network of keratin filaments was concentrated in the GV periphery. The large keratin aggregates began to divide into small fragments at the pro-MI/MI stage (n = 22, designated as a 'fragmented' pattern). Some keratin fragments were occasionally broken down into several granules at the peripheral region. In the MII oocytes (n = 24), the filament network was extended over the ooplasm and numerous keratin granules were scattered across the oocyte (designated as a 'granular' pattern). After 12 h of incubation with roscovitine, 66.7% of the oocytes (20/30) were at the GV stage and showed a cortical pattern of keratin. After incubation with U0126, most oocytes (83.9%, 26/31) were at the MII stage; most of them (76.9%, 20/26) showed a fragmented pattern of keratin. The increasing complexity of keratin filament network from the GV to MII stages suggests a possible role in maintaining cell integrity under physical stress after ovulation. In fact, maturation/M-phase promoting factor is necessary for such keratin reorganization, as is meiotic nuclear progression. In addition, MAPKK is involved in keratin reorganization from a fragmented pattern to a granular pattern.


Assuntos
Queratinas/metabolismo , Fator Promotor de Maturação/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oócitos/fisiologia , Animais , Butadienos/farmacologia , Cricetinae , Inibidores Enzimáticos/farmacologia , Feminino , Fator Promotor de Maturação/genética , Meiose/fisiologia , Mesocricetus , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Nitrilas/farmacologia , Purinas/farmacologia , Roscovitina
12.
Reprod Domest Anim ; 45(6): 1074-81, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19602178

RESUMO

This study aimed to assess the effects of cyclin-dependent kinase (CDK) inhibition on factors involved in the control of meiosis in bovine oocytes: maturation promoting factor (MPF) (p34(cdc2) and cyclin B1) and mitogen activated protein kinase (MAPK). Oocytes were maintained at germinal vesicle (GV) stage in vitro with 10 µM of the CDK inhibitor butyrolactone I (BLI) for 24 h (inhibited). After this period, some of the oocytes were transferred to in vitro maturation (IVM) culture for 24 h (inhibited and matured). Control oocytes were assessed immediately after follicle aspiration (immature) or after in vitro maturation for 24 h (matured). Real-time PCR analyses showed that transcripts for p34(cdc2) and MAPK were detected in immature and inhibited oocytes and decreased after maturation, irrespective of CDK inhibition with BLI. Cyclin B1 was detected at similar levels in all oocyte groups. The p34(cdc2) and MAPK proteins were detected by Western blotting at similar levels in all oocyte groups, and cyclin B1 protein was detected only after maturation. Immunofluorescence detection showed that p34(cdc2) was localized in the cytoplasm and GV of immature oocytes, and then throughout the cytoplasm after maturation. Cyclin B1 and MAPK were detected in the cytoplasm in all oocyte groups. Maturation promoting factor and MAPK activities were similar throughout most of maturation for oocytes treated with or without BLI. In conclusion, CDK inhibition did not affect the expression (mRNA and protein levels) and localization of MPF and MAPK, and had nearly no effect on kinase activities during maturation.


Assuntos
4-Butirolactona/análogos & derivados , Bovinos/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Promotor de Maturação/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oócitos/efeitos dos fármacos , 4-Butirolactona/farmacologia , Animais , Ciclina B1/genética , Ciclina B1/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Fator Promotor de Maturação/genética , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Genetika ; 46(3): 332-9, 2010 Mar.
Artigo em Russo | MEDLINE | ID: mdl-20391777

RESUMO

Tubulin-folding cofactor D is necessary for the assembly of tubulin heterodimers and, possibly, plays additional roles in the cell. The effects of cofactor D, microtubules, and/or tubulin dimers on the mitosis initiation were studied in Schizosaccharomyces pombe. It was found for the first time that S. pombe cells with the alp1-1315 and cdc25-22 mutations remained highly viable at 36 degrees C for 8 h, in contrast to cells with the alp1-1315 mutation alone. The progression of cdc25-22 alp1-1315 cells through mitosis after a cell division arrest at 36 degrees C was described. When transferred to 25 degrees C, cdc25-22 alp1-1315 cells displayed a lag of approximately 30 min in Plo1-GFP appearance in the spindle pole body (SPB), 1 h in chromosome condensation, and 75 min in spindle formation. Thus, the initiation of mitosis in cdc25-22 alp1-1315 cells was delayed as compared with cdc25-22 cells. Since treatment of cdc25-22 cells with a microtubule-destabilizing drug during an arrest is known to cause a premitotic arrest with low activity of the mitosis-promoting factor (MPF), it was assumed that an impaired integrity of microtubules and/or lack of tubulin dimers in the nucleus were responsible for the delayed mitosis initiation in cdc25-22 alp1-1315 cells and in cdc25-22 cells treated with a microtubule-destabilizing drug. The progression through mitosis after a cdc25-22 arrest was extremely slow in cdc25-22 alp1-1315 cells, which was attributed to the de novo formation of tubulin dimers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , ras-GRF1/metabolismo , Proteínas de Ciclo Celular/genética , Fator Promotor de Maturação/genética , Fator Promotor de Maturação/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Fatores de Tempo , ras-GRF1/genética
14.
Mol Reprod Dev ; 76(3): 289-300, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18671273

RESUMO

Resumption of meiosis from diplotene arrest during the first meiotic prophase in vertebrate oocytes is universally controlled by MPF, a heterodimer of Cdk1 and cyclin B. Activation of MPF depends on the withdrawal of Cdk1 inhibition by Wee1/Myt1 kinase on the one hand and the activation of Cdk1 by Cdc25 phosphatase on the other. It is relevant to know whether both these pathways are necessary to rescue diplotene arrest or if either one of them is sufficient. In MIH (17alpha, 20beta dihydroxy-4-pregnen-3-one) incubated perch (Anabas testudineus) oocytes we have examined these possibilities. Perch oocyte extract following MIH incubation showed a significant increase in Myt1 phosphorylation from 12 to 16 hr indicating its progressive deactivation. MIH induced Mos expression markedly increased at 16 hr effecting 95% GVBD. Cycloheximide inhibited MIH induced Mos expression and its phosphorylation, which in turn reduced Myt1 phosphorylation and GVBD. Myt1 phosphorylation was blocked in Mos immunodepleted oocytes. All these suggest the involvement of Mos in Myt1 phosphorylation. Oocytes incubated in MIH for 16 hr activated Cdc25, but such activation could not rescue the inhibition of GVBD due to Myt1 in Mos immunodepleted oocytes. Blocking Cdc25 with an antisense oligo significantly inhibited GVBD even though Myt1 remained deactivated during this period. Taken together, our findings indicate that MIH requires both pathways for perch oocyte maturation: the expression and activation of Mos, which is linked to Myt1 deactivation on the one hand, and the activation of Cdc25 on the other, as blocking either pathway compromised G2-M transition in perch oocytes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fase G2/fisiologia , Proteínas Oncogênicas v-mos/metabolismo , Oócitos/crescimento & desenvolvimento , Percas/fisiologia , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Cicloeximida/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hidroxiprogesteronas/metabolismo , Fator Promotor de Maturação/genética , Fator Promotor de Maturação/metabolismo , Proteínas Oncogênicas v-mos/genética , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fosfatases cdc25/metabolismo
15.
Curr Biol ; 15(18): 1670-6, 2005 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16169490

RESUMO

In most species, the meiotic cell cycle is arrested at the transition between prophase and metaphase through unclear somatic signals. Activation of the Cdc2-kinase component of maturation promoting factor (MPF) triggers germinal vesicle breakdown after the luteinizing hormone (LH) surge and reentry into the meiotic cell cycle. Although high levels of cAMP and activation of protein kinase A (PKA) play a critical role in maintaining an inactive Cdc2, the steps downstream of PKA in the oocyte remain unknown. Using a small-pool expression-screening strategy, we have isolated several putative PKA substrates from a mouse oocyte cDNA library. One of these clones encodes a Wee1-like kinase that prevents progesterone-induced oocyte maturation when expressed in Xenopus oocytes. Unlike the widely expressed Wee1 and Myt1, mWee1B mRNA and its protein are expressed only in oocytes, and mRNA downregulation by RNAi injection in vitro or transgenic overexpression of RNAi in vivo causes a leaky meiotic arrest. Ser15 residue of mWee1B is the major PKA phosphorylation site in vitro, and the inhibitory effects of the kinase are enhanced when this residue is phosphorylated. Thus, mWee1B is a key MPF inhibitory kinase in mouse oocytes, functions downstream of PKA, and is required for maintaining meiotic arrest.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fator Promotor de Maturação/metabolismo , Meiose/genética , Oócitos/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Biblioteca Gênica , Fator Promotor de Maturação/genética , Mesotelina , Camundongos , Dados de Sequência Molecular , Fosforilação , Proteínas Tirosina Quinases/genética , Interferência de RNA , Alinhamento de Sequência , Análise de Sequência de DNA
16.
J Cell Biol ; 217(11): 3901-3911, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30097513

RESUMO

Mammalian oocytes are arrested at the prophase of the first meiotic division for months and even years, depending on species. Meiotic resumption of fully grown oocytes requires activation of M-phase-promoting factor (MPF), which is composed of Cyclin B1 and cyclin-dependent kinase 1 (CDK1). It has long been believed that Cyclin B1 synthesis/accumulation and its interaction with CDK1 is a prerequisite for MPF activation in oocytes. In this study, we revealed that oocyte meiotic resumption occurred in the absence of Cyclin B1. Ccnb1-null oocytes resumed meiosis and extruded the first polar body. Without Cyclin B1, CDK1 could be activated by up-regulated Cyclin B2. Ccnb1 and Ccnb2 double knockout permanently arrested the oocytes at the prophase of the first meiotic division. Oocyte-specific Ccnb1-null female mice were infertile due to failed MPF activity elevation and thus premature interphase-like stage entry in the second meiotic division. These results have revealed a hidden compensatory mechanism between Cyclin B1 and Cyclin B2 in regulating MPF and oocyte meiotic resumption.


Assuntos
Ciclina B1/metabolismo , Ciclina B2/metabolismo , Fator Promotor de Maturação/metabolismo , Meiose , Oócitos/metabolismo , Animais , Linhagem Celular , Ciclina B1/genética , Ciclina B2/genética , Feminino , Fator Promotor de Maturação/genética , Mesotelina , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Oócitos/citologia
17.
Food Chem Toxicol ; 112: 332-341, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29287790

RESUMO

Research has revealed that cadmium can disrupt ovarian function; however, few reports have focused on MI oocytes meiotic progression, especially the activity of maturation promoting factor (MPF) and its related genes (Cdk1, Ccnb1, and Cdc25b) expression. In this study, GV oocytes cultured in vitro for 0, 6, and 9 hours with five groups (control and doses of 0.05, 0.5, 2.5, and 5 µM Cd). At the same dose of cadmium but different exposure time: compared with 0h, Periodic changes in MPF activity were changed and continuously increased over time. The mRNA and protein expression of each MPF-related gene in different cadmium dose groups were changed compared with that of 0h. At the same exposure time but different dose of cadmium: compared with control group, MPF activity, mRNA and protein expressions of each MPF-related gene in all the cadmium exposure groups were increased at 9h after exposure. Cadmium maintains the high MPF activity in mouse MI oocytes during its meiotic process and disturbs the periodic change of MPF activity; meanwhile, cadmium exposure promotes the syntheses of MPF-related gene, which may be one of the molecular mechanisms for the maintenance of high MPF activity, and ultimately prevents the meiotic progression in oocytes.


Assuntos
Cádmio/toxicidade , Fator Promotor de Maturação/metabolismo , Oócitos/enzimologia , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator Promotor de Maturação/genética , Meiose/efeitos dos fármacos , Mesotelina , Camundongos Endogâmicos ICR , Oócitos/citologia , Oócitos/efeitos dos fármacos , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
18.
Cell Reprogram ; 19(2): 95-106, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28266868

RESUMO

For reprogramming a somatic nucleus during mammalian cloning, metaphase of the second meiotic division (MII) oocytes has been widely used as recipient cytoplasm. High activity of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) is believed to accelerate the remodeling and/or reprogramming of a somatic nucleus introduced into the ooplasm by somatic cell nuclear transfer. We demonstrated previously that the first step in nuclear reprogramming is not directly regulated by MPF and MAPK because activated oocytes in which MPF activity is diminished and MAPK activity is maintained can develop to the blastocyst stage after receiving an M phase somatic nucleus in bovine cloning. In this study, our aim was to test whether MAPK activity is necessary for the first step in nuclear reprogramming and/or chromatin remodeling (phosphorylation of histone H3 at Ser3, trimethylation of histone H3 at Lys 9, and acetylation of histone H3 at Lys14) in bovine somatic cloning. We found that it was not necessary, and neither was MPF activity.


Assuntos
Blastocisto/metabolismo , Núcleo Celular/enzimologia , Reprogramação Celular/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Técnicas de Transferência Nuclear/veterinária , Oócitos/enzimologia , Animais , Blastocisto/citologia , Bovinos , Citoplasma/enzimologia , Feminino , Fator Promotor de Maturação/genética , Fator Promotor de Maturação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Oócitos/citologia
19.
Gene Expr Patterns ; 3(2): 165-8, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12711544

RESUMO

In full-grown Xenopus oocytes, cell-cycle regulators and an inactive form of maturation/M phase promoting factor (pre-MPF) are stored ready to bring about a specific cell cycle for oocyte maturation. We examined the expression pattern of these cell-cycle regulators as well as pre-MPF formation during oogenesis. Cdc2 and Cyclin B2 were already present in stage I oocytes and pre-MPF formation was also detected in stage I oocytes. Some negative regulators of MPF, Myt1 and Chk1, were synthesized early in oogenesis. In contrast, positive regulators of MPF, MEK, MAPK and Cdc25C, were mainly synthesized late in oogenesis. Northern blotting analysis suggested that the synthesis of these cell-cycle regulators was controlled by translation.


Assuntos
Ciclo Celular/genética , Oogênese/genética , Ovário/metabolismo , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Ciclina B/biossíntese , Ciclina B/genética , Feminino , Perfilação da Expressão Gênica , Fator Promotor de Maturação/biossíntese , Fator Promotor de Maturação/genética , Oogênese/fisiologia , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética , Xenopus
20.
Nat Commun ; 3: 1059, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22968705

RESUMO

Maturation/M-phase-promoting factor is the universal inducer of M-phase in eukaryotic cells. It is currently accepted that M-phase-promoting factor is identical to the kinase cyclin B-Cdk1. Here we show that cyclin B-Cdk1 and M-phase-promoting factor are not in fact synonymous. Instead, M-phase-promoting factor contains at least two essential components: cyclin B-Cdk1 and another kinase, Greatwall kinase. In the absence of Greatwall kinase, the M-phase-promoting factor is undetectable in oocyte cytoplasm even though cyclin B-Cdk1 is fully active, whereas M-phase-promoting factor activity is restored when Greatwall kinase is added back. Although the excess amount of cyclin B-Cdk1 alone, but not Greatwall kinase alone, can induce nuclear envelope breakdown, spindle assembly is abortive. Addition of Greatwall kinase greatly reduces the amount of cyclin B-Cdk1 required for nuclear envelope breakdown, resulting in formation of the spindle with aligned chromosomes. M-phase-promoting factor is thus a system consisting of one kinase (cyclin B-Cdk1) that directs mitotic entry and a second kinase (Greatwall kinase) that suppresses the protein phosphatase 2A-B55 which opposes cyclin B-Cdk1.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Fator Promotor de Maturação/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Asterina/citologia , Asterina/metabolismo , Proteína Quinase CDC2/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Células Cultivadas , Ciclina B/genética , Feminino , Fator Promotor de Maturação/genética , Oócitos/citologia , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA