Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(12): 2807-2822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762879

RESUMO

Piperine has been shown to bind to myosin and shift the distribution of conformational states of myosin molecules from the super-relaxed state to the disordered relaxed state. However, little is known about the implications for muscle force production and potential underlying mechanisms. Muscle contractility experiments were performed using isolated muscles and single fibres from rats and mice. The dose-response effect of piperine on muscle force was assessed at several stimulation frequencies. The potentiation of muscle force was also tested in muscles fatigued by eccentric contractions. Potential mechanisms of force potentiation were assessed by measuring Ca2+ levels during stimulation in enzymatically dissociated muscle fibres, while myofibrillar Ca2+ sensitivity was assessed in chemically skinned muscle fibres. Piperine caused a dose-dependent increase in low-frequency force with no effect on high-frequency force in both slow- and fast-twitch muscle, with similar relative increases in twitch force, rate of force development and relaxation rate. The potentiating effect of piperine on low-frequency force was reversible, and piperine partially recovered low-frequency force in fatigued muscle. Piperine had no effect on myoplasmic free [Ca2+] levels in mouse muscle fibres, whereas piperine substantially augmented the force response to submaximal levels of [Ca2+] in rat MyHCII fibres and MyHCI fibres along with a minor increase in maximum Ca2+-activated force. Piperine enhances low-frequency force production in both fast- and slow-twitch muscle. The effects are reversible and can counteract muscle fatigue. The primary underlying mechanism appears to be an increase in Ca2+ sensitivity. KEY POINTS: Piperine is a plant alkaloid derived from black pepper. It is known to bind to skeletal muscle myosin and enhance resting ATP turnover but its effects on contractility are not well known. We showed for the first time a piperine-induced force potentiation that was pronounced during low-frequency electrical stimulation of isolated muscles. The effect of piperine was observed in both slow and fast muscle types, was reversible, and could counteract the force decrements observed after fatiguing muscle contractions. Piperine treatment caused an increase in myofibrillar Ca2+ sensitivity in chemically skinned muscle fibres, while we observed no effect on intracellular Ca2+ concentrations during electrical stimulation in enzymatically dissociated muscle fibres.


Assuntos
Alcaloides , Benzodioxóis , Cálcio , Contração Muscular , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Piperidinas , Alcamidas Poli-Insaturadas , Animais , Alcamidas Poli-Insaturadas/farmacologia , Benzodioxóis/farmacologia , Piperidinas/farmacologia , Alcaloides/farmacologia , Camundongos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/fisiologia , Ratos , Contração Muscular/efeitos dos fármacos , Masculino , Cálcio/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/fisiologia , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Relação Dose-Resposta a Droga
2.
Can J Physiol Pharmacol ; 102(5): 342-360, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38118126

RESUMO

Sarcopenia is a musculoskeletal disease that reduces muscle mass and strength in older individuals. The study investigates the effects of azilsartan (AZL) on skeletal muscle loss in natural sarcopenic rats. Male Sprague-Dawley rats aged 4-6 months and 18-21 months were selected as young-matched control and natural-aged (sarcopenic) rats, respectively. Rats were allocated into young and old control (YC and OC) and young and old AZL treatment (YT and OT) groups, which received vehicles and AZL (8 mg/kg, orally) for 6 weeks. Rats were then sacrificed after muscle function analysis. Serum and gastrocnemius (GN) muscles were isolated for further endpoints. AZL significantly improved muscle grip strength and antioxidant levels in sarcopenic rats. AZL also restored the levels of insulin, testosterone, and muscle biomarkers such as myostatin and creatinine kinase in sarcopenic rats. Furthermore, AZL treatment improved the cellular and ultrastructure of GN muscle and prevented the shift of type II (glycolytic) myofibers to type I (oxidative) myofibers. The results showed that AZL intervention restored protein synthesis in natural sarcopenic rats by increasing p-Akt-1 and decreasing muscle RING-finger protein-1 and tumor necrosis factor alpha immunoexpressions. In conclusion, the present findings showed that AZL could be an effective intervention in treating age-related muscle impairments.


Assuntos
Envelhecimento , Benzimidazóis , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Oxidiazóis , Ratos Sprague-Dawley , Sarcopenia , Animais , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , Sarcopenia/tratamento farmacológico , Sarcopenia/patologia , Masculino , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Envelhecimento/efeitos dos fármacos , Ratos , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Miostatina/metabolismo , Antioxidantes/farmacologia
3.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892380

RESUMO

Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.


Assuntos
Cálcio , Fibras Musculares de Contração Rápida , Simendana , Simendana/farmacologia , Animais , Camundongos , Cálcio/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Contração Muscular/efeitos dos fármacos , Sarcômeros/metabolismo , Sarcômeros/efeitos dos fármacos , Masculino , Miofibrilas/metabolismo , Miofibrilas/efeitos dos fármacos
4.
Biochem J ; 479(3): 425-444, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35048967

RESUMO

There has been a concern that sodium-glucose cotransporter 2 (SGLT2) inhibitors could reduce skeletal muscle mass and function. Here, we examine the effect of canagliflozin (CANA), an SGLT2 inhibitor, on slow and fast muscles from nondiabetic C57BL/6J mice. In this study, mice were fed with or without CANA under ad libitum feeding, and then evaluated for metabolic valuables as well as slow and fast muscle mass and function. We also examined the effect of CANA on gene expressions and metabolites in slow and fast muscles. During SGLT2 inhibition, fast muscle function is increased, as accompanied by increased food intake, whereas slow muscle function is unaffected, although slow and fast muscle mass is maintained. When the amount of food in CANA-treated mice is adjusted to that in vehicle-treated mice, fast muscle mass and function are reduced, but slow muscle was unaffected during SGLT2 inhibition. In metabolome analysis, glycolytic metabolites and ATP are increased in fast muscle, whereas glycolytic metabolites are reduced but ATP is maintained in slow muscle during SGLT2 inhibition. Amino acids and free fatty acids are increased in slow muscle, but unchanged in fast muscle during SGLT2 inhibition. The metabolic effects on slow and fast muscles are exaggerated when food intake is restricted. This study demonstrates the differential effects of an SGLT2 inhibitor on slow and fast muscles independent of impaired glucose metabolism, thereby providing new insights into how they should be used in patients with diabetes, who are at a high risk of sarcopenia.


Assuntos
Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/biossíntese , Adenilato Quinase/genética , Tecido Adiposo Branco/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Canagliflozina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Glicólise , Força da Mão , Fígado/efeitos dos fármacos , Masculino , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transportador 2 de Glucose-Sódio/fisiologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Serina-Treonina Quinases TOR/biossíntese , Serina-Treonina Quinases TOR/genética
5.
Am J Physiol Regul Integr Comp Physiol ; 322(1): R14-R27, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755549

RESUMO

Eccentric contractions (ECC) facilitate cytosolic calcium ion (Ca2+) release from the sarcoplasmic reticulum (SR) and Ca2+ influx from the extracellular space. Ca2+ is a vital signaling messenger that regulates multiple cellular processes via its spatial and temporal concentration ([Ca2+]i) dynamics. We hypothesized that 1) a specific pattern of spatial/temporal intramyocyte Ca2+ dynamics portends muscle damage following ECC and 2) these dynamics would be regulated by the ryanodine receptor (RyR). [Ca2+]i in the tibialis anterior muscles of anesthetized adult Wistar rats was measured by ratiometric (i.e., ratio, R, 340/380 nm excitation) in vivo bioimaging with Fura-2 pre-ECC and at 5 and 24 h post-ECC (5 × 40 contractions). Separate groups of rats received RyR inhibitor dantrolene (DAN; 10 mg/kg ip) immediately post-ECC (+DAN). Muscle damage was evaluated by histological analysis on hematoxylin-eosin stained muscle sections. Compared with control (CONT, no ECC), [Ca2+]i distribution was heterogeneous with increased percent total area of high [Ca2+]i sites (operationally defined as R ≥ 1.39, i.e., ≥1 SD of mean control) 5 h post-ECC (CONT, 14.0 ± 8.0; ECC5h: 52.0 ± 7.4%, P < 0.01). DAN substantially reduced the high [Ca2+]i area 5 h post-ECC (ECC5h + DAN: 6.4 ± 3.1%, P < 0.01) and myocyte damage (ECC24h, 63.2 ± 1.0%; ECC24h + DAN: 29.1 ± 2.2%, P < 0.01). Temporal and spatially amplified [Ca2+]i fluctuations occurred regardless of DAN (ECC vs. ECC + DAN, P > 0.05). These results suggest that the RyR-mediated local high [Ca2+]i itself is related to the magnitude of muscle damage, whereas the [Ca2+]i fluctuation is an RyR-independent phenomenon.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Autólise , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Calpaína/metabolismo , Dantroleno/farmacologia , Desmina/metabolismo , Cinética , Masculino , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/patologia , Ratos Wistar
6.
Am J Physiol Cell Physiol ; 320(5): C806-C821, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596151

RESUMO

The purpose of this study was to investigate the mechanism underlying sarcoplasmic reticulum (SR) Ca2+ leakage after in vivo contractions. Rat gastrocnemius muscles were electrically stimulated in vivo, and then mechanically skinned fibers and SR microsomes were prepared from the muscles excised 30 min after repeated high-intensity contractions. The mechanically skinned fibers maintained the interaction between dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs), whereas the SR microsomes did not. Interestingly, skinned fibers from the stimulated muscles showed increased SR Ca2+ leakage, whereas Ca2+ leakage decreased in SR microsomes from the stimulated muscles. To enhance the orthograde signal of DHPRs, SR Ca2+ leakage in the skinned fiber was measured 1) under a continuously depolarized condition and 2) in the presence of nifedipine. As a result, in either of the two conditions, SR Ca2+ leakage in the rested fibers reached a level similar to that in the stimulated fibers. Furthermore, the increased SR Ca2+ leakage from the stimulated fibers was alleviated by treatment with 1 mM tetracaine (Tet) but not by treatment with 3 mM free Mg2+ (3 Mg). Tet exerted a greater inhibitory effect on the DHPR signal to RyR than 3 Mg, although their inhibitory effects on RyR were almost similar. These results suggest that the increased Ca2+ leakage after muscle contractions is mainly caused by the orthograde signal of DHPRs to RyRs.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Estimulação Elétrica , Masculino , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fosforilação , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Fatores de Tempo
7.
Am J Physiol Endocrinol Metab ; 320(2): E346-E358, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225720

RESUMO

Age-related sarcopenia is associated with a variety of changes in skeletal muscle. These changes are interrelated with each other and associated with systemic metabolism, the details of which, however, are largely unknown. Eicosapentaenoic acid (EPA) is a promising nutrient against sarcopenia and has multifaceted effects on systemic metabolism. In this study, we hypothesized that the aging process in skeletal muscle can be intervened by the administration of EPA. Seventy-five-week-old male mice were assigned to groups fed an EPA-deprived diet (EPA-) or an EPA-enriched diet with 1 wt% EPA (EPA+) for 12 wk. Twenty-four-week-old male mice fed with normal chow were also analyzed. At baseline, the grip strength of the aging mice was lower than that of the young mice. After 12 wk, EPA+ showed similar muscle mass but increased grip strength compared with EPA-. EPA+ displayed higher insulin sensitivity than EPA-. Immunohistochemistry and gene expression analysis of myosin heavy chains (MyHCs) revealed fast-to-slow fiber type transition in aging muscle, which was partially inhibited by EPA. RNA sequencing (RNA-Seq) analysis suggested that EPA supplementation exerts pathway-specific effects in skeletal muscle including the signatures of slow-to-fast fiber type transition. In conclusion, we revealed that aging skeletal muscle in male mice shows lower grip strength and fiber type changes, both of which can be inhibited by EPA supplementation irrespective of muscle mass alteration.NEW & NOTEWORTHY This study demonstrated that the early phenotype of skeletal muscle in aging male mice is characterized by muscle weakness with fast-to-slow fiber type transition, which could be ameliorated by feeding with EPA-enriched diet. EPA induced metabolic changes such as an increase in systemic insulin sensitivity and altered muscle transcriptome in the aging mice. These changes may be related to the fiber type transition and influence muscle quality.


Assuntos
Envelhecimento , Ácido Eicosapentaenoico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Musculares/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Proteínas Musculares/genética
8.
FASEB J ; 34(11): 15480-15491, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969079

RESUMO

Thyroid hormones are important for homeostatic control of energy metabolism and body temperature. Although skeletal muscle is considered a key site for thyroid action, the contribution of thyroid hormone receptor signaling in muscle to whole-body energy metabolism and body temperature has not been resolved. Here, we show that T3-induced increase in energy expenditure requires thyroid hormone receptor alpha 1 (TRα1 ) in skeletal muscle, but that T3-mediated elevation in body temperature is achieved in the absence of muscle-TRα1 . In slow-twitch soleus muscle, loss-of-function of TRα1 (TRαHSACre ) alters the fiber-type composition toward a more oxidative phenotype. The change in fiber-type composition, however, does not influence the running capacity or motivation to run. RNA-sequencing of soleus muscle from WT mice and TRαHSACre mice revealed differentiated transcriptional regulation of genes associated with muscle thermogenesis, such as sarcolipin and UCP3, providing molecular clues pertaining to the mechanistic underpinnings of TRα1 -linked control of whole-body metabolic rate. Together, this work establishes a fundamental role for skeletal muscle in T3-stimulated increase in whole-body energy expenditure.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , Receptores alfa dos Hormônios Tireóideos/fisiologia , Hormônios Tireóideos/farmacologia , Animais , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/citologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal , Transcriptoma
9.
Am J Physiol Cell Physiol ; 317(6): C1143-C1152, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532715

RESUMO

Stretch activation (SA) is a delayed increase in force following a rapid muscle length increase. SA is best known for its role in asynchronous insect flight muscle, where it has replaced calcium's typical role of modulating muscle force levels during a contraction cycle. SA also occurs in mammalian skeletal muscle but has previously been thought to be too low in magnitude, relative to calcium-activated (CA) force, to be a significant contributor to force generation during locomotion. To test this supposition, we compared SA and CA force at different Pi concentrations (0-16 mM) in skinned mouse soleus (slow-twitch) and extensor digitorum longus (EDL; fast-twitch) muscle fibers. CA isometric force decreased similarly in both muscles with increasing Pi, as expected. SA force decreased with Pi in EDL (40%), leaving the SA to CA force ratio relatively constant across Pi concentrations (17-25%). In contrast, SA force increased in soleus (42%), causing a quadrupling of the SA to CA force ratio, from 11% at 0 mM Pi to 43% at 16 mM Pi, showing that SA is a significant force modulator in slow-twitch mammalian fibers. This modulation would be most prominent during prolonged muscle use, which increases Pi concentration and impairs calcium cycling. Based upon our previous Drosophila myosin isoform studies and this work, we propose that in slow-twitch fibers a rapid stretch in the presence of Pi reverses myosin's power stroke, enabling quick rebinding to actin and enhanced force production, while in fast-twitch fibers, stretch and Pi cause myosin to detach from actin.


Assuntos
Actinas/genética , Contração Isométrica/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Miosinas/genética , Fosfatos/farmacologia , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Expressão Gênica , Contração Isométrica/fisiologia , Mecanotransdução Celular , Camundongos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Miosinas/metabolismo , Técnicas de Cultura de Tecidos
10.
Am J Physiol Endocrinol Metab ; 316(5): E837-E851, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835507

RESUMO

Earlier research using muscle tissue demonstrated that postexercise elevation in insulin-stimulated glucose uptake (ISGU) occurs concomitant with greater insulin-stimulated Akt substrate of 160 kDa (AS160) phosphorylation (pAS160) on sites that regulate ISGU. Because skeletal muscle is a heterogeneous tissue, we previously isolated myofibers from rat epitrochlearis to assess fiber type-selective ISGU. Exercise induced greater ISGU in type I, IIA, IIB, and IIBX but not IIX fibers. This study tested if exercise effects on pAS160 correspond with previously published fiber type-selective exercise effects on ISGU. Rats were studied immediately postexercise (IPEX) or 3.5 h postexercise (3.5hPEX) with time-matched sedentary controls. Myofibers dissected from the IPEX experiment were analyzed for fiber type (myosin heavy chain isoform expression) and key phosphoproteins. Isolated muscles from the 3.5hPEX experiment were incubated with or without insulin. Myofibers (3.5hPEX) were analyzed for fiber type, key phosphoproteins, and GLUT4 protein abundance. We hypothesized that insulin-stimulated pAS160 at 3.5hPEX would exceed sedentary controls only in fiber types characterized by greater ISGU postexercise. Values for phosphorylation of AMP-activated kinase substrates (acetyl CoA carboxylaseSer79 and AS160Ser704) from IPEX muscles exceeded sedentary values in each fiber type, suggesting exercise recruitment of all fiber types. Values for pAS160Thr642 and pAS160Ser704 from insulin-stimulated muscles 3.5hPEX exceeded sedentary values for type I, IIA, IIB, and IIBX but not IIX fibers. GLUT4 abundance was unaltered 3.5hPEX in any fiber type. These results advanced understanding of exercise-induced insulin sensitization by providing compelling support for the hypothesis that enhanced insulin-stimulated phosphorylation of AS160 is linked to elevated ISGU postexercise at a fiber type-specific level independent of altered GLUT4 expression.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Glucose/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Condicionamento Físico Animal , Animais , Proteínas Ativadoras de GTPase/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fosforilação , Ratos
11.
Am J Physiol Endocrinol Metab ; 316(5): E695-E706, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753114

RESUMO

Insulin-stimulated glucose uptake (GU) by skeletal muscle is enhanced several hours after acute exercise in rats with normal or reduced insulin sensitivity. Skeletal muscle is composed of multiple fiber types, but exercise's effect on fiber type-specific insulin-stimulated GU in insulin-resistant muscle was previously unknown. Male rats were fed a high-fat diet (HFD; 2 wk) and were either sedentary (SED) or exercised (2-h exercise). Other, low-fat diet-fed (LFD) rats remained SED. Rats were studied immediately postexercise (IPEX) or 3 h postexercise (3hPEX). Epitrochlearis muscles from IPEX rats were incubated in 2-deoxy-[3H]glucose (2-[3H]DG) without insulin. Epitrochlearis muscles from 3hPEX rats were incubated with 2-[3H]DG ± 100 µU/ml insulin. After single fiber isolation, GU and fiber type were determined. Glycogen and lipid droplets (LDs) were assessed histochemically. GLUT4 abundance was determined by immunoblotting. In HFD-SED vs. LFD-SED rats, insulin-stimulated GU was decreased in type IIB, IIX, IIAX, and IIBX fibers. Insulin-independent GU IPEX was increased and glycogen content was decreased in all fiber types (types I, IIA, IIB, IIX, IIAX, and IIBX). Exercise by HFD-fed rats enhanced insulin-stimulated GU in all fiber types except type I. Single fiber analyses enabled discovery of striking fiber type-specific differences in HFD and exercise effects on insulin-stimulated GU. The fiber type-specific differences in insulin-stimulated GU postexercise in insulin-resistant muscle were not attributable to a lack of fiber recruitment, as indirectly evidenced by insulin-independent GU and glycogen IPEX, differences in multiple LD indexes, or altered GLUT4 abundance, implicating fiber type-selective differences in the cellular processes responsible for postexercise enhancement of insulin-mediated GLUT4 translocation.


Assuntos
Glucose/metabolismo , Resistência à Insulina , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Animais , Dieta Hiperlipídica , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/metabolismo , Insulina/farmacologia , Gotículas Lipídicas/metabolismo , Masculino , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Ratos , Ratos Wistar , Comportamento Sedentário
12.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R543-R551, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30794441

RESUMO

Skeletal muscles undergoing vigorous activity can enter a state of prolonged low-frequency force depression (PLFFD). This study was conducted to examine whether antioxidant treatment is capable of accelerating the recovery from PLFFD, with a focus on the function of the sarcoplasmic reticulum (SR) and myofibril. One hour before fatiguing stimulation (FS) was administered, rats received an intraperitoneal injection of Eukarion (EUK-134), which mimics the activities of superoxide dismutase and catalase. Intact muscles of the hindlimbs were electrically stimulated via the sciatic nerve until the force was reduced to ~50% of the initial force (FS). Thirty minutes after cessation of FS, the superficial regions of gastrocnemius muscles were dissected and used for biochemical and skinned-fiber analyses. Whole muscle analyses revealed that antioxidant alleviated the FS-induced decrease in the reduced glutathione content. Skinned-fiber analyses showed that the antioxidant did not affect the FS-induced decrease in the ratio of force at 1 Hz to that at 50 Hz. However, the antioxidant partially inhibited the FS-mediated decrease in the ratio of depolarization-induced force to the maximum Ca2+-activated force. Furthermore, the antioxidant completely suppressed the FS-induced increase in myofibrillar Ca2+ sensitivity. These results suggest that antioxidant treatment is ineffective in facilitating the restoration of PLFFD, probably due to its negative effect on myofibrillar Ca2+ sensitivity, which supersedes its positive effect on SR Ca2+ release.


Assuntos
Antioxidantes/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Contração Muscular , Fadiga Muscular , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Salicilatos/farmacologia , Retículo Sarcoplasmático/efeitos dos fármacos , Animais , Estimulação Elétrica , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Miofibrilas/metabolismo , Ratos Wistar , Retículo Sarcoplasmático/metabolismo , Superóxidos/metabolismo , Fatores de Tempo
13.
Muscle Nerve ; 59(4): 509-516, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30677146

RESUMO

INTRODUCTION: The aim of this study was to compare the effects of adenosine-5'-triphosphate (ATP) and adenosine on the contractility of rodent extensor digitorum longus (EDL) muscle at normal and low temperatures. METHODS: Contractions of rat and mouse isolated EDL were induced by either electrical stimulation (ES) or exogenous carbachol and recorded in the presence of ATP or adenosine (both at 100 µM). RESULTS: ATP at all temperatures caused a decrease of the contractions induced by carbachol in rat and mouse EDL and ES-induced contractions in rat EDL, while it potentiated the ES-induced contractions of mouse EDL. Adenosine reduced the contractility of rat and mouse EDL evoked by ES and did not affect the carbachol-induced contractions of rat and mouse EDL at any temperature. DISCUSSION: Under various temperature conditions, ATP inhibits pre- but potentiates postsynaptic processes in the mouse EDL; in the rat EDL ATP causes only inhibition of neuromuscular conduction. Muscle Nerve 59:509-516, 2019.


Assuntos
Trifosfato de Adenosina/farmacologia , Contração Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Animais , Carbacol/farmacologia , Temperatura Baixa , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Camundongos , Agonistas Muscarínicos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Fármacos Neuromusculares não Despolarizantes/farmacologia , Agonistas Purinérgicos/farmacologia , Ratos , Ratos Wistar , Tubocurarina/farmacologia
14.
Br J Nutr ; 121(1): 1-8, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30449288

RESUMO

Muscle fibre types can transform from slow-twitch (slow myosin heavy chain (MyHC)) to fast-twitch (fast MyHC) or vice versa. Leucine plays a vital effect in the development of skeletal muscle. However, the role of leucine in porcine myofibre type transformation and its mechanism are still unclear. In this study, effects of leucine and microRNA-27a (miR-27a) on the transformation of porcine myofibre type were investigated in vitro. We found that leucine increased slow MyHC protein level and decreased fast MyHC protein level, increased the levels of phospho-protein kinase B (Akt)/Akt and phospho-forkhead box 1 (FoxO1)/FoxO1 and decreased the FoxO1 protein level. However, blocking the Akt/FoxO1 signalling pathway by wortmannin attenuated the role of leucine in porcine myofibre type transformation. Over-expression of miR-27a decreased slow MyHC protein level and increased fast MyHC protein level, whereas inhibition of miR-27a had an opposite effect. We also found that expression of miR-27a was down-regulated following leucine treatment. Moreover, over-expression of miR-27a repressed transformation from fast MyHC to slow MyHC caused by leucine, suggesting that miR-27a is interdicted by leucine and then contributes to porcine muscle fibre type transformation. Our finding provided the first evidence that leucine promotes porcine myofibre type transformation from fast MyHC to slow MyHC via the Akt/FoxO1 signalling pathway and miR-27a.


Assuntos
Proteína Forkhead Box O1/metabolismo , Leucina/farmacologia , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sus scrofa , Animais , Regulação para Baixo/efeitos dos fármacos , Masculino , MicroRNAs/genética , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Inibidores de Proteínas Quinases , Transdução de Sinais/efeitos dos fármacos , Wortmanina/farmacologia
15.
Proc Natl Acad Sci U S A ; 113(46): 13009-13014, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799519

RESUMO

We identify a target for treating obesity and type 2 diabetes, the consumption of calories by an increase in the metabolic rate of resting skeletal muscle. The metabolic rate of skeletal muscle can be increased by shifting myosin heads from the super-relaxed state (SRX), with a low ATPase activity, to a disordered relaxed state (DRX), with a higher ATPase activity. The shift of myosin heads was detected by a change in fluorescent intensity of a probe attached to the myosin regulatory light chain in skinned skeletal fibers, allowing us to perform a high-throughput screen of 2,128 compounds. The screen identified one compound, which destabilized the super-relaxed state, piperine (the main alkaloid component of black pepper). Destabilization of the SRX by piperine was confirmed by single-nucleotide turnover measurements. The effect was only observed in fast twitch skeletal fibers and not in slow twitch fibers or cardiac tissues. Piperine increased ATPase activity of skinned relaxed fibers by 66 ± 15%. The Kd was ∼2 µM. Piperine had little effect on the mechanics of either fully active or resting muscle fibers. Previous work has shown that piperine can mitigate both obesity and type 2 diabetes in rodent models of these conditions. We propose that the increase in resting muscle metabolism contributes to these positive effects. The results described here show that up-regulation of resting muscle metabolism could treat obesity and type 2 diabetes and that piperine would provide a useful lead compound for the development of these therapies.


Assuntos
Alcaloides/farmacologia , Metabolismo Basal/efeitos dos fármacos , Benzodioxóis/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Obesidade/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Adenosina Trifosfatases/metabolismo , Alcaloides/uso terapêutico , Animais , Benzodioxóis/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Fibras Musculares de Contração Rápida/metabolismo , Obesidade/tratamento farmacológico , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , Coelhos , Miosinas de Músculo Esquelético/metabolismo , Regulação para Cima
16.
J Physiol ; 596(19): 4651-4663, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29992562

RESUMO

KEY POINTS: The Ca2+ -desensitizing D73N mutation in slow skeletal/cardiac troponin C caused dilatated cardiomyopathy in mice, but the consequences of this mutation in skeletal muscle were not known. The D73N mutation led to a rightward shift in the force versus pCa (-log [Ca]) relationship in slow-twitch mouse fibres. The D73N mutation led to a rightward shift in the force-stimulation frequency relationship and reduced fatigue resistance of mouse soleus muscle. The D73N mutation led to reduced cross-sectional area of slow-twitch fibres in mouse soleus muscle without affecting fibre type composition of the muscle. The D73N mutation resulted in significantly shorter times to peak force and to relaxation during isometric twitches and tetani in mouse soleus muscle. The D73N mutation led to major changes in physiological properties of mouse soleus muscle, converting slow muscle toward a fast muscle phenotype. ABSTRACT: The missense mutation, D73N, in mouse cardiac troponin C has a profound impact on cardiac function, mediated by a decreased myofilament Ca2+ sensitivity. Mammalian cardiac muscle and slow skeletal muscle normally share expression of the same troponin C isoform. Therefore, the objective of this study was to determine the consequences of the D73N mutation in skeletal muscle, as a potential mechanism that contributes to the morbidity associated with heart failure or other conditions in which Ca2+ sensitivity might be altered. Effects of the D73N mutation on physiological properties of mouse soleus muscle, in which slow-twitch fibres are prevalent, were examined. The mutation resulted in a rightward shift of the force-stimulation frequency relationship, and significantly faster kinetics of isometric twitches and tetani in isolated soleus muscle. Furthermore, soleus muscles from D73N mice underwent a significantly greater reduction in force during a fatigue test. The mutation significantly reduced slow fibre mean cross-sectional area without affecting soleus fibre type composition. The effects of the mutation on Ca2+ sensitivity of force development in soleus skinned slow and fast fibres were also examined. As expected, the D73N mutation did not affect the Ca2+ sensitivity of force development in fast fibres but resulted in substantially decreased Ca2+ sensitivity in slow fibres. The results demonstrate that a point mutation in a single constituent of myofilaments (slow/cardiac troponin C) led to major changes in physiological properties of skeletal muscle and converted slow muscle toward a fast muscle phenotype with reduced fatigue resistance and Ca2+ sensitivity of force generation.


Assuntos
Hormônios e Agentes Reguladores de Cálcio/farmacologia , Cálcio/farmacologia , Contração Muscular , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , Troponina C/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Mutação , Fenótipo , Troponina C/genética
17.
Am J Physiol Endocrinol Metab ; 315(4): E594-E604, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29558205

RESUMO

Skeletal muscle dysfunction accompanies the clinical disorders of chronic kidney disease (CKD) and hereditary hypophosphatemic rickets. In both disorders, fibroblast growth factor 23 (FGF23), a bone-derived hormone regulating phosphate and vitamin D metabolism, becomes chronically elevated. FGF23 has been shown to play a direct role in cardiac muscle dysfunction; however, it is unknown whether FGF23 signaling can also directly induce skeletal muscle dysfunction. We found expression of potential FGF23 receptors ( Fgfr1-4) and α-Klotho in muscles of two animal models (CD-1 and Cy/+ rat, a naturally occurring rat model of chronic kidney disease-mineral bone disorder) as well as C2C12 myoblasts and myotubes. C2C12 proliferation, myogenic gene expression, oxidative stress marker 8-OHdG, intracellular Ca2+ ([Ca2+]i), and ex vivo contractility of extensor digitorum longus (EDL) or soleus muscles were assessed after treatment with various amounts of FGF23. FGF23 (2-100 ng/ml) did not alter C2C12 proliferation, expression of myogenic genes, or oxidative stress after 24- to 72-h treatment. Acute or prolonged FGF23 treatment up to 6 days did not alter C2C12 [Ca2+]i handling, nor did acute treatment with FGF23 (9-100 ng/ml) affect EDL and soleus muscle contractility. In conclusion, although skeletal muscles express the receptors involved in FGF23-mediated signaling, in vitro FGF23 treatments failed to directly alter skeletal muscle development or function under the conditions tested. We hypothesize that other endogenous substances may be required to act in concert with FGF23 or apart from FGF23 to promote muscle dysfunction in hereditary hypophosphatemic rickets and CKD.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Animais , Cálcio/metabolismo , Linhagem Celular , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Fator de Crescimento de Fibroblastos 23 , Expressão Gênica , Camundongos , Desenvolvimento Muscular/genética , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mioblastos/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
18.
Biochem Biophys Res Commun ; 500(4): 930-936, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29705696

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs that are widely involved in a variety of biological processes. Different skeletal muscle fiber type composition exhibits characteristic differences in functional properties and energy metabolism of skeletal muscle. However, the molecular mechanism by which miRNAs control the different type of muscle fiber formation is still not fully understood. In the present study, we characterized the role of microRNA-139-5p (miR-139-5p) in the regulation of myosin heavy chain (MyHC) isoform expression and its underlying mechanisms. Here we found that the expression of miR-139-5p was significantly higher in mouse slow-twitch muscle than in fast-twitch muscle. Overexpression of miR-139-5p downregulated the expression of MyHC I and MyHC IIa, whereas inhibition of miR-139-5p upregulated them. We also found that the levels of calcineurin (CaN), NFATc1, MEF2C and MCIP1.4, which are the components of CaN/NFAT signaling pathway that has shown to positively regulate slow fiber-selective gene expression, were notably inhibited by miR-139-5p overexpression. Furthermore, treatment of phenylephrine (PE), a α1-adrenoceptor agonist, abolished the inhibitory effect of miR-139-5p on MyHC I and MyHC IIa expression. Together, our findings indicated that the role of miR-139-5p in regulating the MyHC isoforms, especially MyHC I and MyHC IIa, may be achieved through inhibiting CaN/NFAT signaling pathway.


Assuntos
Calcineurina/genética , MicroRNAs/genética , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Cadeias Pesadas de Miosina/genética , Fatores de Transcrição NFATC/genética , Animais , Antagomirs/genética , Antagomirs/metabolismo , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio , Linhagem Celular Transformada , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/citologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Fenilefrina/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais
19.
Am J Pathol ; 187(3): 498-504, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28041995

RESUMO

Our recent work showed that daily injections of osteoprotegerin (OPG)-immunoglobulin fragment complex (OPG-Fc) completely restore the function of fast-twitch extensor digitorum longus muscles in dystrophic mdx mice, a murine model of Duchenne muscular dystrophy. However, despite marked improvements, OPG-Fc was not as effective in preventing the loss of function of slow-twitch soleus and diaphragm muscles. Because ß2-agonists enhance the function of slow- and fast-twitch dystrophic muscles and because their use is limited by their adverse effects on bone and cardiac tissues, we hypothesized that OPG-Fc, a bone and skeletal muscle protector, acts synergistically with ß2-agonists and potentiates their positive effects on skeletal muscles. We observed that the content of ß2-adrenergic receptors, which are mainly expressed in skeletal muscle, is significantly reduced in dystrophic muscles but is rescued by the injection of OPG-Fc. Most important, OPG-Fc combined with a low dose of formoterol, a member of a new generation of ß2-agonists, histologically and functionally rescued slow-twitch dystrophic muscles. This combination of therapeutic agents, which have already been tested and approved for human use, may open up new therapeutic avenues for Duchenne muscular dystrophy and possibly other neuromuscular diseases.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Osteoprotegerina/uso terapêutico , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Fumarato de Formoterol/farmacologia , Fumarato de Formoterol/uso terapêutico , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular Animal/patologia , Osteoprotegerina/farmacologia , Receptores Fc/metabolismo
20.
Exp Physiol ; 103(4): 545-558, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315934

RESUMO

NEW FINDINGS: What is the central question of this study? Translocation of nNOSµ initiates catabolic signalling via FoxO3a and skeletal muscle atrophy during mechanical unloading. Recent evidence suggests that unloading-induced muscle atrophy and FoxO3a activation are redox sensitive. Will a mimetic of superoxide dismutase and catalase (i.e. Eukarion-134) also mitigate suppression of the Akt-mTOR pathway? What is the main finding and its importance? Eukarion-134 rescued Akt-mTOR signalling and sarcolemmal nNOSµ, which were linked to protection against the unloading phenotype, muscle fibre atrophy and partial fibre-type shift from slow to fast twitch. The loss of nNOSµ from the sarcolemma appears crucial to Akt phosphorylation and is redox sensitive, although the mechanisms remain unresolved. ABSTRACT: Mechanical unloading stimulates rapid changes in skeletal muscle morphology, characterized by atrophy of muscle fibre cross-sectional area and a partial fibre-type shift from slow to fast twitch. Recent studies revealed that oxidative stress contributes to activation of forkhead box O3a (FoxO3a), proteolytic signalling and unloading-induced muscle atrophy via translocation of the µ-splice variant of neuronal nitric oxide synthase (nNOSµ) and activation of FoxO3a. There is limited understanding of the role of reactive oxygen species in the Akt-mammalian target of rapamycin (mTOR) pathway signalling during unloading. We hypothesized that Eukarion-134 (EUK-134), a mimetic of the antioxidant enzymes superoxide dismutase and catalase, would protect Akt-mTOR signalling in the unloaded rat soleus. Male Fischer 344 rats were separated into the following three study groups: ambulatory control (n = 11); 7 days of hindlimb unloading + saline injections (HU, n = 11); or 7 days of HU + EUK-134; (HU + EUK-134, n = 9). EUK-134 mitigated unloading-induced dephosphorylation of Akt, as well as FoxO3a, in the soleus. Phosphorylation of mTOR in the EUK-treated HU rats was not different from that in control animals. However, EUK-134 did not significantly rescue p70S6K phosphorylation. EUK-134 attenuated translocation of nNOSµ from the membrane to the cytosol, reduced nitration of tyrosine residues and suppressed upregulation of caveolin-3 and dysferlin. EUK-134 ameliorated HU-induced remodelling, atrophy of muscle fibres and the 12% increase in type II myosin heavy chain-positive fibres. Attenuation of the unloaded muscle phenotype was associated with decreased reactive oxygen species, as assessed by ethidium-positive nuclei. We conclude that oxidative stress affects Akt-mTOR signalling in unloaded skeletal muscle. Direct linkage of abrogation of nNOSµ translocation with Akt-mTOR signalling during unloading is the subject of future investigation.


Assuntos
Antioxidantes/farmacologia , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Catalase/metabolismo , Proteína Forkhead Box O3/metabolismo , Masculino , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Musculares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA