Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.743
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(1): 185-198.e16, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28648659

RESUMO

Dietary, microbial, and inflammatory factors modulate the gut-brain axis and influence physiological processes ranging from metabolism to cognition. The gut epithelium is a principal site for detecting such agents, but precisely how it communicates with neural elements is poorly understood. Serotonergic enterochromaffin (EC) cells are proposed to fulfill this role by acting as chemosensors, but understanding how these rare and unique cell types transduce chemosensory information to the nervous system has been hampered by their paucity and inaccessibility to single-cell measurements. Here, we circumvent this limitation by exploiting cultured intestinal organoids together with single-cell measurements to elucidate intrinsic biophysical, pharmacological, and genetic properties of EC cells. We show that EC cells express specific chemosensory receptors, are electrically excitable, and modulate serotonin-sensitive primary afferent nerve fibers via synaptic connections, enabling them to detect and transduce environmental, metabolic, and homeostatic information from the gut directly to the nervous system.


Assuntos
Células Quimiorreceptoras/metabolismo , Células Enterocromafins/metabolismo , Trato Gastrointestinal/citologia , Vias Neurais , Sequência de Aminoácidos , Animais , Sequência de Bases , Canais de Cálcio/metabolismo , Catecolaminas/metabolismo , Perfilação da Expressão Gênica , Humanos , Síndrome do Intestino Irritável/patologia , Camundongos , Fibras Nervosas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Odorantes/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/metabolismo
2.
FASEB J ; 37(4): e22892, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951647

RESUMO

Epidermal nerve fiber regeneration and sensory function are severely impaired in skin wounds of diabetic patients. To date, however, research on post-traumatic nerve regeneration and sensory reconstruction remains scarce, and effective clinical therapeutics are lacking. In the current study, localized treatment with RL-QN15, considered as a drug candidate for intervention in skin wounds in our previous research, accelerated the healing of full-thickness dorsal skin wounds in diabetic mice and footpad skin wounds in diabetic rats. Interestingly, nerve density and axonal plasticity in the skin wounds of diabetic rats and mice, as well as plantar sensitivity in diabetic rats, were markedly enhanced by RL-QN15 treatment. Furthermore, RL-QN15 promoted the proliferation, migration, and axonal length of neuron-like PC12 cells, which was likely associated with activation of the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway. The therapeutic effects of RL-QN15 were partially reduced by blocking the PI3K/Akt signaling pathway with the inhibitor LY294002. Thus, RL-QN15 showed positive therapeutic effects on the distribution of epidermal nerve fibers and stimulated the recovery of sensory function after cutaneous injury. This study lays a solid foundation for the development of RL-QN15 peptide-based therapeutics against diabetic skin wounds.


Assuntos
Diabetes Mellitus Experimental , Proteínas Proto-Oncogênicas c-akt , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Pele , Fibras Nervosas/metabolismo , Sensação , Peptídeos/farmacologia , Regeneração Nervosa/fisiologia
3.
Mol Cell Neurosci ; 126: 103873, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295578

RESUMO

A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.


Assuntos
Dieta Hiperlipídica , Hipotálamo , Proglucagon , Transdução de Sinais , Animais , Ratos , Hipotálamo/fisiologia , Proglucagon/metabolismo , Ratos Sprague-Dawley , Masculino , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/genética , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , RNA Mensageiro/metabolismo , Neurônios/metabolismo , Sinapses , Fibras Nervosas/metabolismo , Eletrofisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resposta de Saciedade , Comportamento Alimentar
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088841

RESUMO

Cerebellar granule cells (GrCs) are usually regarded as a uniform cell type that collectively expands the coding space of the cerebellum by integrating diverse combinations of mossy fiber inputs. Accordingly, stable molecularly or physiologically defined GrC subtypes within a single cerebellar region have not been reported. The only known cellular property that distinguishes otherwise homogeneous GrCs is the correspondence between GrC birth timing and the depth of the molecular layer to which their axons project. To determine the role birth timing plays in GrC wiring and function, we developed genetic strategies to access early- and late-born GrCs. We initiated retrograde monosynaptic rabies virus tracing from control (birth timing unrestricted), early-born, and late-born GrCs, revealing the different patterns of mossy fiber input to GrCs in vermis lobule 6 and simplex, as well as to early- and late-born GrCs of vermis lobule 6: sensory and motor nuclei provide more input to early-born GrCs, while basal pontine and cerebellar nuclei provide more input to late-born GrCs. In vivo multidepth two-photon Ca2+ imaging of axons of early- and late-born GrCs revealed representations of diverse task variables and stimuli by both populations, with modest differences in the proportions encoding movement, reward anticipation, and reward consumption. Our results suggest neither organized parallel processing nor completely random organization of mossy fiber→GrC circuitry but instead a moderate influence of birth timing on GrC wiring and encoding. Our imaging data also provide evidence that GrCs can represent generalized responses to aversive stimuli, in addition to recently described reward representations.


Assuntos
Córtex Cerebelar/crescimento & desenvolvimento , Fibras Nervosas/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebelar/virologia , Camundongos , Camundongos Transgênicos , Fibras Nervosas/virologia , Vírus da Raiva/metabolismo
5.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891818

RESUMO

In eutocic labor, the autonomic nervous system is dominated by the parasympathetic system, which ensures optimal blood flow to the uterus and placenta. This study is focused on the detection of the quantitative presence of catecholamine (C) neurofibers in the internal uterine orifice (IUO) and in the lower uterine segment (LUS) of the pregnant uterus, which could play a role in labor and delivery. A total of 102 women were enrolled before their submission to a scheduled cesarean section (CS); patients showed a singleton fetus in a cephalic presentation outside labor. During CS, surgeons sampled two serial consecutive full-thickness sections 5 mm in depth (including the myometrial layer) on the LUS and two randomly selected samples of 5 mm depth from the IUO of the cervix. All histological samples were studied to quantify the distribution of A nerve fibers. The authors demonstrated a significant and notably higher concentration of A fibers in the IUO (46 ± 4.8) than in the LUS (21 ± 2.6), showing that the pregnant cervix has a greater concentration of A neurofibers than the at-term LUS. Pregnant women's mechanosensitive pacemakers can operate normally when the body is in a physiological state, which permits normal uterine contractions and eutocic delivery. The increased frequency of C neurofibers in the cervix may influence the smooth muscle cell bundles' activation, which could cause an aberrant mechano-sensitive pacemaker activation-deactivation cycle. Stressful circumstances (anxiety, tension, fetal head position) cause the sympathetic nervous system to become more active, working through these nerve fibers in the gravid cervix. They might interfere with the mechano-sensitive pacemakers, slowing down the uterine contractions and cervix ripening, which could result in dystocic labor.


Assuntos
Catecolaminas , Colo do Útero , Miométrio , Humanos , Feminino , Gravidez , Colo do Útero/metabolismo , Adulto , Catecolaminas/metabolismo , Miométrio/metabolismo , Contração Uterina , Fibras Nervosas/metabolismo , Cesárea
6.
Am J Physiol Endocrinol Metab ; 324(3): E251-E267, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696598

RESUMO

The autonomic nervous system regulates pancreatic function. Islet capillaries are essential for the extension of axonal projections into islets, and both of these structures are important for appropriate islet hormone secretion. Because beta cells provide important paracrine cues for islet glucagon secretion and neurovascular development, we postulated that beta cell loss in type 1 diabetes (T1D) would lead to a decline in intraislet capillaries and reduction of islet innervation, possibly contributing to abnormal glucagon secretion. To define morphological characteristics of capillaries and nerve fibers in islets and acinar tissue compartments, we analyzed neurovascular assembly across the largest cohort of T1D and normal individuals studied thus far. Because innervation has been studied extensively in rodent models of T1D, we also compared the neurovascular architecture between mouse and human pancreas and assembled transcriptomic profiles of molecules guiding islet angiogenesis and neuronal development. We found striking interspecies differences in islet neurovascular assembly but relatively modest differences at transcriptome level, suggesting that posttranscriptional regulation may be involved in this process. To determine whether islet neurovascular arrangement is altered after beta cell loss in T1D, we compared pancreatic tissues from non-diabetic, recent-onset T1D (<10-yr duration), and longstanding T1D (>10-yr duration) donors. Recent-onset T1D showed greater islet and acinar capillary density compared to non-diabetic and longstanding T1D donors. Both recent-onset and longstanding T1D had greater islet nerve fiber density compared to non-diabetic donors. We did not detect changes in sympathetic axons in either T1D cohort. Additionally, nerve fibers overlapped with extracellular matrix (ECM), supporting its role in the formation and function of axonal processes. These results indicate that pancreatic capillaries and nerve fibers persist in T1D despite beta cell loss, suggesting that alpha cell secretory changes may be decoupled from neurovascular components.NEW & NOTEWORTHY Defining the neurovascular architecture in the pancreas of individuals with type 1 diabetes (T1D) is crucial to understanding the mechanisms of dysregulated glucagon secretion. In the largest T1D cohort of biobanked tissues analyzed to date, we found that pancreatic capillaries and nerve fibers persist in human T1D despite beta cell loss, suggesting that alpha cell secretory changes may be decoupled from neurovascular components. Because innervation has been studied extensively in rodent T1D models, our studies also provide the first rigorous direct comparisons of neurovascular assembly in mouse and human, indicating dramatic interspecies differences.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucagon/metabolismo , Capilares/metabolismo , Células Secretoras de Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibras Nervosas/metabolismo
7.
Mol Med ; 29(1): 4, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36650454

RESUMO

BACKGROUND: Inflammation, the physiological response to infection and injury, is coordinated by the immune and nervous systems. Interleukin-1ß (IL-1ß) and other cytokines produced during inflammatory responses activate sensory neurons (nociceptors) to mediate the onset of pain, sickness behavior, and metabolic responses. Although nociceptors expressing Transient Receptor Potential Ankyrin-1 (TRPA1) can initiate inflammation, comparatively little is known about the role of TRPA1 nociceptors in the physiological responses to specific cytokines. METHODS: To monitor body temperature in conscious and unrestrained mice, telemetry probes were implanted into peritoneal cavity of mice. Using transgenic and tissue specific knockouts and chemogenetic techniques, we recorded temperature responses to the potent pro-inflammatory cytokine IL-1ß. Using calcium imaging, whole cell patch clamping and whole nerve recordings, we investigated the role of TRPA1 during IL-1ß-mediated neuronal activation. Mouse models of acute endotoxemia and sepsis were used to elucidate how specific activation, with optogenetics and chemogenetics, or ablation of TRPA1 neurons can affect the outcomes of inflammatory insults. All statistical tests were performed with GraphPad Prism 9 software and for all analyses, P ≤ 0.05 was considered statistically significant. RESULTS: Here, we describe a previously unrecognized mechanism by which IL-1ß activates afferent vagus nerve fibers to trigger hypothermia, a response which is abolished by selective silencing of neuronal TRPA1. Afferent vagus nerve TRPA1 signaling also inhibits endotoxin-stimulated cytokine storm and significantly reduces the lethality of bacterial sepsis. CONCLUSION: Thus, IL-1ß activates TRPA1 vagus nerve signaling in the afferent arm of a reflex anti-inflammatory response which inhibits cytokine release, induces hypothermia, and reduces the mortality of infection. This discovery establishes that TRPA1, an ion channel known previously as a pro-inflammatory detector of cold, pain, itch, and a wide variety of noxious molecules, also plays a specific anti-inflammatory role via activating reflex anti-inflammatory activity.


Assuntos
Hipotermia Induzida , Hipotermia , Interleucina-1beta , Canais de Potencial de Receptor Transitório , Animais , Camundongos , Anquirinas/metabolismo , Citocinas/metabolismo , Hipotermia/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Fibras Nervosas/metabolismo , Dor/metabolismo , Reflexo , Células Receptoras Sensoriais/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Nervo Vago/metabolismo
8.
Exp Eye Res ; 230: 109438, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933693

RESUMO

The purposes of the present study were to (1) identify the relationship between dry eye symptoms and morphological changes in corneal subbasal nerves/ocular surfaces, and (2) discover tear film biomarkers indicating morphological changes in the subbasal nerves. This was a prospective cross-sectional study conducted between October and November 2017. Adults with dry eye disease (DED, n = 43) and healthy eyes (n = 16) were evaluated based on their subjective symptoms and ophthalmological findings. Corneal subbasal nerves were observed using confocal laser scanning microscopy. Nerve lengths, densities, branch numbers, and nerve fiber tortuosity were analyzed using ACCMetrics and CCMetrics image analysis systems; tear proteins were quantified by mass spectroscopy. Compared with the control group, the DED group had significantly lower tear breakup times (TBUT) and pain tolerance capacity, and significantly higher corneal nerve branch density (CNBD) and corneal nerve total branch density (CTBD). CNBD and CTBD showed significant negative correlations with TBUT. Six biomarkers (cystatin-S, immunoglobulin kappa constant, neutrophil gelatinase-associated lipocalin, profilin-1, protein S100-A8, and protein S100-A9) showed significant positive correlations with CNBD and CTBD. The significantly higher CNBD and CTBD in the DED group suggests that DED is associated with morphological alterations in corneal nerves. The correlation of TBUT with CNBD and CTBD further supports this inference. Six candidate biomarkers that correlate with morphological changes were identified. Thus, morphological changes in corneal nerves are a hallmark of DED, and confocal microscopy may help in the diagnosis and treatment of dry eyes.


Assuntos
Córnea , Síndromes do Olho Seco , Adulto , Humanos , Estudos Transversais , Estudos Prospectivos , Córnea/metabolismo , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/metabolismo , Fibras Nervosas/metabolismo , Lágrimas/metabolismo , Microscopia Confocal/métodos
9.
J Peripher Nerv Syst ; 28(4): 620-628, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897416

RESUMO

BACKGROUND AND AIMS: POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS: Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS: Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION: Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.


Assuntos
Doenças Desmielinizantes , Doenças do Sistema Nervoso Periférico , Polineuropatias , RNA Polimerase III , Adolescente , Humanos , Axônios , Doenças Desmielinizantes/genética , Mutação , Fibras Nervosas/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Polineuropatias/genética , Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
10.
Cell Mol Life Sci ; 79(5): 267, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35488965

RESUMO

Recent studies have illustrated that psoriatic lesions are innervated by dense sensory nerve fibers. Psoriatic plaques appeared to improve after central or peripheral nerve injury. Therefore, the nervous system may play a vital role in psoriasis. We aimed to clarify the expression of nerve fibers in psoriasis and their relationship with immune cells and keratinocytes, and to explore the effect of skin nerve impairment. Our results illustrated that nerve fibers in psoriatic lesions increased and were closely innervated around immune cells and keratinocytes. RNA-seq analysis showed that peripheral sensory nerve-related genes were disrupted in psoriasis. In spinal cord hemi-section mice, sensory impairment improved psoriasiform dermatitis and inhibited the abnormal proliferation of keratinocytes. Botulinum toxin A alleviated psoriasiform dermatitis by inhibiting the secretion of calcitonin gene-related peptide. Collectively, cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Neurological intervention may be a new treatment strategy for psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Dermatite/metabolismo , Dermatite/patologia , Epiderme/metabolismo , Queratinócitos/metabolismo , Camundongos , Fibras Nervosas/metabolismo , Psoríase/patologia
11.
Proc Natl Acad Sci U S A ; 117(25): 14493-14502, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513685

RESUMO

A high rate of synaptic vesicle (SV) release is required at cerebellar mossy fiber terminals for rapid information processing. As the number of release sites is limited, fast SV reloading is necessary to achieve sustained release. However, rapid reloading has not been observed directly. Here, we visualize SV movements near presynaptic membrane using total internal reflection fluorescence (TIRF) microscopy. Upon stimulation, SVs appeared in the TIRF-field and became tethered to the presynaptic membrane with unexpectedly rapid time course, almost as fast as SVs disappeared due to release. However, such stimulus-induced tethering was abolished by inhibiting exocytosis, suggesting that the tethering is tightly coupled to preceding exocytosis. The newly tethered vesicles became fusion competent not immediately but only 300 ms to 400 ms after tethering. Together with model simulations, we propose that rapid tethering leads to an immediate filling of vacated spaces and release sites within <100 nm of the active zone by SVs, which serve as precursors of readily releasable vesicles, thereby shortening delays during sustained activity.


Assuntos
Cerebelo/fisiologia , Modelos Neurológicos , Fibras Nervosas/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Cerebelo/citologia , Exocitose/fisiologia , Feminino , Microscopia Intravital , Masculino , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismo , Ratos , Wisteria
12.
J Neurosci ; 41(15): 3307-3319, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33500277

RESUMO

Golgi cells, together with granule cells and mossy fibers, form a neuronal microcircuit regulating information transfer at the cerebellum input stage. Despite theoretical predictions, little was known about long-term synaptic plasticity at Golgi cell synapses. Here, we have used whole-cell patch-clamp recordings and calcium imaging to investigate long-term synaptic plasticity at excitatory synapses impinging on Golgi cells. In acute mouse cerebellar slices, mossy fiber theta-burst stimulation (TBS) could induce either long-term potentiation (LTP) or long-term depression (LTD) at mossy fiber-Golgi cell and granule cell-Golgi cell synapses. This synaptic plasticity showed a peculiar voltage dependence, with LTD or LTP being favored when TBS induction occurred at depolarized or hyperpolarized potentials, respectively. LTP required, in addition to NMDA channels, activation of T-type Ca2+ channels, while LTD required uniquely activation of L-type Ca2+ channels. Notably, the voltage dependence of plasticity at the mossy fiber-Golgi cell synapses was inverted with respect to pure NMDA receptor-dependent plasticity at the neighboring mossy fiber-granule cell synapse, implying that the mossy fiber presynaptic terminal can activate different induction mechanisms depending on the target cell. In aggregate, this result shows that Golgi cells show cell-specific forms of long-term plasticity at their excitatory synapses, that could play a crucial role in sculpting the response patterns of the cerebellar granular layer.SIGNIFICANCE STATEMENT This article shows for the first time a novel form of Ca2+ channel-dependent synaptic plasticity at the excitatory synapses impinging on cerebellar Golgi cells. This plasticity is bidirectional and inverted with respect to NMDA receptor-dependent paradigms, with long-term depression (LTD) and long-term potentiation (LTP) being favored at depolarized and hyperpolarized potentials, respectively. Furthermore, LTP and LTD induction requires differential involvement of T-type and L-type voltage-gated Ca2+ channels rather than the NMDA receptors alone. These results, along with recent computational predictions, support the idea that Golgi cell plasticity could play a crucial role in controlling information flow through the granular layer along with cerebellar learning and memory.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Células Cerebelares de Golgi/metabolismo , Potenciais Pós-Sinápticos Excitadores , Potenciação de Longa Duração , Animais , Células Cerebelares de Golgi/fisiologia , Feminino , Masculino , Camundongos , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
13.
Ann Neurol ; 89(1): 165-176, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098308

RESUMO

OBJECTIVE: This study was undertaken to analyze longitudinal changes of retinal thickness and their predictive value as biomarkers of disease progression in idiopathic Parkinson's disease (iPD). METHODS: Patients with Lewy body diseases were enrolled and prospectively evaluated at 3 years, including patients with iPD (n = 42), dementia with Lewy bodies (n = 4), E46K-SNCA mutation carriers (n = 4), and controls (n = 17). All participants underwent Spectralis retinal optical coherence tomography and Montreal Cognitive Assessment, and Unified Parkinson's Disease Rating Scale score was obtained in patients. Macular ganglion cell-inner plexiform layer complex (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) thickness reduction rates were estimated with linear mixed models. Risk ratios were calculated to evaluate the association between baseline GCIPL and pRNFL thicknesses and the risk of subsequent cognitive and motor worsening, using clinically meaningful cutoffs. RESULTS: GCIPL thickness in the parafoveal region (1- to 3-mm ring) presented the largest reduction rate. The annualized atrophy rate was 0.63µm in iPD patients and 0.23µm in controls (p < 0.0001). iPD patients with lower parafoveal GCIPL and pRNFL thickness at baseline presented an increased risk of cognitive decline at 3 years (relative risk [RR] = 3.49, 95% confidence interval [CI] = 1.10-11.1, p = 0.03 and RR = 3.28, 95% CI = 1.03-10.45, p = 0.045, respectively). We did not identify significant associations between retinal thickness and motor deterioration. INTERPRETATION: Our results provide evidence of the potential use of optical coherence tomography-measured parafoveal GCIPL thickness to monitor neurodegeneration and to predict the risk of cognitive worsening over time in iPD. ANN NEUROL 2021;89:165-176.


Assuntos
Disfunção Cognitiva/genética , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , Células Ganglionares da Retina/metabolismo , Adulto , Disfunção Cognitiva/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/metabolismo , Doença de Parkinson/complicações , Doença de Parkinson/congênito , Tomografia de Coerência Óptica/métodos , Campos Visuais/genética , Campos Visuais/fisiologia
14.
J Nutr ; 152(8): 1862-1871, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35511216

RESUMO

BACKGROUND: The role of hepatoportal glucose sensors is poorly understood in the context of insulin resistance. OBJECTIVES: We assessed the effects of glucose infusion in the portal vein on insulin tolerance in 2 rat models of insulin resistance, and the role of capsaicin sensitive nerves in this signal. METHODS: Male Wistar rats, 8 weeks old, weighing 250-275 g, were used. Insulin and glucose tolerance were assessed following a 4-hour infusion of either glucose or saline through catheterization in the portal vein in 3 paradigms. In experiment 1, for diet-induced insulin resistance, rats were fed either a control diet (energy content: proteins = 22.5%, carbohydrates = 64.1%, and lipids = 13.4%) or a high-fat diet (energy content: proteins = 15.3%, carbohydrates = 40.3%, and lipids =44.4%) for 4 months. In experiment 2, for centrally induced peripheral insulin resistance, catheters were inserted in the carotid artery to deliver either an emulsion of triglycerides [intralipid (IL)] or saline towards the brain for 24 hours. In experiment 3, for testing the role of capsaicin-sensitive nerves, experiment 2 was repeated following a periportal treatment with capsaicin or vehicle. RESULTS: In experiment 1, when compared to rats fed the control diet, rats fed the high-fat diet exhibited decreased insulin and glucose tolerance (P ≤ 0.05) that was restored with a glucose infusion in the portal vein (P ≤ 0.05). In experiment 2, infusion of a triglyceride emulsion towards the brain (IL rats) decreased insulin and glucose tolerance and increased hepatic endogenous production when compared to saline-infused rats (P ≤ 0.05). Glucose infusion in the portal vein in IL rats restored insulin and glucose tolerance, as well as hepatic glucose production, to controls levels (P ≤ 0.05). In experiment 3, portal infusion of glucose did not increase insulin tolerance in IL rats that received a periportal pretreatment with capsaicin. CONCLUSIONS: Stimulation of hepatoportal glucose sensors increases insulin tolerance in rat models of insulin resistance and requires the presence of capsaicin-sensitive nerves.


Assuntos
Resistência à Insulina , Insulina , Animais , Glicemia/metabolismo , Capsaicina/metabolismo , Capsaicina/farmacologia , Emulsões/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Insulina Regular Humana/farmacologia , Fígado/metabolismo , Masculino , Fibras Nervosas/metabolismo , Veia Porta/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
15.
Nature ; 534(7608): 494-9, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27281198

RESUMO

Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Venenos de Aranha/farmacologia , Estresse Mecânico , Animais , Modelos Animais de Doenças , Feminino , Gânglios Sensitivos/citologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Síndrome do Intestino Irritável/metabolismo , Masculino , Bainha de Mielina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/química , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/metabolismo , Oócitos/metabolismo , Dor/induzido quimicamente , Dor/metabolismo , Estrutura Terciária de Proteína , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Aranhas/química , Especificidade por Substrato/efeitos dos fármacos , Temperatura
16.
J Minim Invasive Gynecol ; 29(2): 265-273, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34411730

RESUMO

STUDY OBJECTIVE: To assess nerve fiber density and expression of hormone receptors in bowel endometriosis. DESIGN: Cross-sectional study. SETTING: Private hospital. PATIENTS: Women with endometriosis undergoing laparoscopic segmental bowel resection (n = 54). INTERVENTIONS: Tissue samples were obtained from patients with surgically treated rectosigmoid endometriosis. MEASUREMENTS AND MAIN RESULTS: The rectosigmoid specimen containing the endometriosis nodule was manually sectioned and divided into 3 areas: core of the nodule, margin of the nodule, and healthy bowel tissue. The intensity of expression of estrogen and progesterone receptors was evaluated by immunohistochemistry and measured according to the Allred score. Nerve fibers were stained by immunohistochemistry using Protein Gene Product 9.5, and the density of nerve fillets was counted and expressed in number/mm². All glandular and stromal cells stained for estrogen; however, glandular cells stained more strongly than stromal cells (61.1% vs 35.2%; p = .01). Most of glandular and stromal cells stained strongly for progesterone receptors (90.7% vs 98.1%; p = .2). The density of nerve fibers was very high in the margin of the nodule (172.22±45.66/mm²), moderate in healthy bowel tissue (111.48±48.57/mm²), and very low in the core of the nodule (7.31±4.9/mm²); p = .01. CONCLUSION: Both glandular and stromal cells within the rectosigmoid endometriosis nodule express estrogen and progesterone receptors. Higher intensity of expression of estrogen receptors occurs in glandular cells. The density of nerve fibers is extremely high at the nodule margin and very low in the center of the nodule.


Assuntos
Endometriose , Doenças Retais , Estudos Transversais , Endometriose/cirurgia , Feminino , Humanos , Fibras Nervosas/metabolismo , Doenças Retais/cirurgia , Reto/cirurgia
17.
Proc Natl Acad Sci U S A ; 116(30): 15068-15073, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285319

RESUMO

Immature multipotent embryonic peripheral glial cells, the Schwann cell precursors (SCPs), differentiate into melanocytes, parasympathetic neurons, chromaffin cells, and dental mesenchymal populations. Here, genetic lineage tracing revealed that, during murine embryonic development, some SCPs detach from nerve fibers to become mesenchymal cells, which differentiate further into chondrocytes and mature osteocytes. This occurred only during embryonic development, producing numerous craniofacial and trunk skeletal elements, without contributing to development of the appendicular skeleton. Formation of chondrocytes from SCPs also occurred in zebrafish, indicating evolutionary conservation. Our findings reveal multipotency of SCPs, providing a developmental link between the nervous system and skeleton.


Assuntos
Osso e Ossos/citologia , Linhagem da Célula/genética , Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Tecido Nervoso/citologia , Células de Schwann/citologia , Animais , Biomarcadores/metabolismo , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Diferenciação Celular , Condrócitos/metabolismo , Células Cromafins/citologia , Células Cromafins/metabolismo , Embrião de Mamíferos , Embrião não Mamífero , Desenvolvimento Embrionário , Expressão Gênica , Melanócitos/citologia , Melanócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Fibras Nervosas/metabolismo , Tecido Nervoso/embriologia , Tecido Nervoso/metabolismo , Crista Neural/citologia , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Células de Schwann/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142117

RESUMO

Hirschsprung's disease (HSCR) is a common developmental anomaly of the gastrointestinal tract in children. The most significant characteristics of aganglionic segments in HSCR are hyperplastic extrinsic nerve fibers and the absence of endogenous ganglion plexus. Double C2 domain alpha (DOC2A) is mainly located in the nucleus and is involved in Ca2+-dependent neurotransmitter release. The loss function of DOC2A influences postsynaptic protein synthesis, dendrite morphology, postsynaptic receptor density and synaptic plasticity. It is still unknown why hyperplastic extrinsic nerve fibers grow into aganglionic segments in HSCR. We detected the expression of DOC2A in HSCR aganglionic segment colons and established three DOC2A-knockdown models in the Neuro-2a cell line, neural spheres and zebrafish separately. First, we detected the protein and mRNA expression of DOC2A and found that DOC2A was negatively correlated with AChE+ grades. Second, in the Neuro-2a cell lines, we found that the amount of neurite outgrowth and mean area per cell were significantly increased, which suggested that the inhibition of DOC2A promotes nerve fiber formation and the neuron's polarity. In the neural spheres, we found that the DOC2A knockdown was manifested by a more obvious connection of nerve fibers in neural spheres. Then, we knocked down Doc2a in zebrafish and found that the down-regulation of Doc2a accelerates the formation of hyperplastic nerve fibers in aganglionic segments in zebrafish. Finally, we detected the expression of MUNC13-2 (UNC13B), which was obviously up-regulated in Grade3/4 (lower DOC2A expression) compared with Grade1/2 (higher DOC2A expression) in the circular muscle layer and longitudinal muscle layer. The expression of UNC13B was up-regulated with the knocking down of DOC2A, and there were protein interactions between DOC2A and UNC13B. The down-regulation of DOC2A may be an important factor leading to hyperplastic nerve fibers in aganglionic segments of HSCR. UNC13B seems to be a downstream molecule to DOC2A, which may participate in the spasm of aganglionic segments of HSCR patient colons.


Assuntos
Doença de Hirschsprung , Animais , Domínios C2 , Colo/metabolismo , Regulação para Baixo , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Fibras Nervosas/metabolismo , Neurotransmissores/metabolismo , RNA Mensageiro/genética , Peixe-Zebra/genética
19.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216130

RESUMO

Peripheral nerve injury involves divergent alterations within dorsal root ganglia (DRG) neurons sensitized by persistent inflammation. Thymic stromal lymphopoietin (TSLP) production is crucial in the development of chronic inflammatory responses. Herein, we investigate the changes of TSLP expression in rats' DRG neurons between injured and uninjured sides in the same rat. Linalyl acetate (LA) was served as a TSLP inhibitor and given intraperitoneally. Rats were assigned to be group of chronic constriction injury (CCI) of the sciatic nerve and the group of CCI of the sciatic nerve administrated with LA. Over 14 days, the rats were measured for paw withdrawal thresholds. DRGs were collected to assess morphological changes via immunofluorescence study. After receiving CCI, the rats rapidly developed mechanical hyperalgesia. TSLP expression at DRG, on the ipsilateral injured side, was consistent with changes in pain behaviors. TSLP appeared in nerve fibers with both small diameters and large diameters. Additionally, TSLP was expressed mostly in transient receptor potential vanilloid-1 (TRPV1)-positive nociceptive neurons. Administration with LA can attenuate the pain behaviors and expression of TSLP in DRG neurons, and in apoptotic neurons at the injured side, but not in the contra-lateral uninjured side. Overall, these results imply that altered expressions of TSLP in nociceptive DRG neurons contributed to mechanical hyperalgesia in a CCI rat model.


Assuntos
Citocinas/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Neurônios/metabolismo , Animais , Lesões por Esmagamento/metabolismo , Masculino , Fibras Nervosas/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Neuropatia Ciática/metabolismo , Linfopoietina do Estroma do Timo
20.
Neurobiol Dis ; 153: 105332, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722614

RESUMO

Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [123I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical work-up including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [123I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [123I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 ± 0.63 vs. 2.91 ± 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 ± 0.51 vs. 2.74 ± 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap.


Assuntos
Fibras Autônomas Pós-Ganglionares/patologia , Coração/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , Sistema Nervoso Periférico/patologia , Pele/patologia , alfa-Sinucleína/metabolismo , 3-Iodobenzilguanidina , Adulto , Idoso , Feminino , Coração/inervação , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/metabolismo , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Condução Nervosa , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Sistema Nervoso Periférico/diagnóstico por imagem , Sistema Nervoso Periférico/metabolismo , Fosforilação , Cintilografia , Compostos Radiofarmacêuticos , Pele/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA