Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 203(6): 3727-3736, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33877388

RESUMO

To identify enzymes that can be effectively used for hydrolysis of lignocellulosic biomass, an attractive carbon source in biorefineries, transcriptome analysis was carried out of wheat bran grown fungus, Cyathus bulleri. A comprehensive set of transcripts, encoding carbohydrate active enzymes, were identified. These belonged to 55, 32, 12, 11 and 7 different families of the enzyme classes of Glycoside Hydrolases (GHs), Glycosyl Transferases (GTs), Auxiliary Activities (AAs), Carbohydrate Esterases (CEs) and Polysaccharide Lyases (PLs) respectively. Higher levels of transcripts were obtained for proteins encoding cellulose and hemicellulose degrading activities (of the GH class) with the highest diversity found in the transcripts encoding the hemicellulases. Several transcripts encoding pectin degrading activity were also identified indicating close association of the pectin with the cellulose/hemicellulose in the cell wall of this fungus. Transcripts encoding ligninases were categorized into Cu radical oxidase, Glucose-Methanol-Choline oxidoreductase (with 37 different transcripts in the AA3 sub-family), Laccase and Manganese peroxidases. Temporal gene expression profile for laccase isoforms was studied to understand their role in lignin degradation. To our knowledge, this is the first analysis of the transcriptome of a member belonging to the family Nidulariaceae.


Assuntos
Celulases/genética , Cyathus/genética , Fibras na Dieta/microbiologia , Lignina/metabolismo , Transcriptoma , Glicosídeo Hidrolases/genética
2.
World J Microbiol Biotechnol ; 37(7): 114, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115218

RESUMO

Interspecific hybridization between Ganoderma lingzhi and G. applanatum was attempted through polyethylene glycol (PEG) induced fusion technique. The protoplast isolation procedure was simplified, and we obtained a significant number of protoplasts from both Ganoderma species. The number of protoplasts obtained was 5.27 ± 0.31 × 107/mL in G. lingzhi and 5.57 ± 0.49 × 106/mL in G. applanatum. Osmotic stabilizer NaCl (0.4 M) at pH 5.8 and enzymolysis time 3.5 h have supported high frequency of protoplast regeneration. G. lingzhi and G. applanatum regeneration frequency was 1.73 ± 0.04% and 0.23 ± 0.02%, respectively. 40% of PEG induced high number of protoplast fusion the regeneration frequency was 0.09% on a minimal medium. Two hundred fifty-two fusant colonies were isolated from the following four individual experiments. Among them, ten fusants showed the mycelial morphological difference compared to their parents and other fusant isolates. The fruiting body could be generated on oak sawdust and wheat bran substrate, and a few of them showed recombined morphology of the parental strains. The highest yield and biological efficacy (BE) were recorded in GF248, while least in GF244. The hybridity of the fusant was established based on mycelia, fruiting morphology, and PCR fingerprinting. ISSR and RAPD profile analysis of ten fusants and parents depicted that fusants contained polymorphic bands, which specified the rearrangement and deletion of DNA in the fusants. A Dendrogram was constructed based on the RAPD profile, and the clustering data exhibited two major clusters: cluster I included the G. lingzhi and Cluster II, including the G. applanatum and fusant lines. Total polysaccharide (α, ß and total glucan) content was compared with fusants and parental strains. The present study highlighted the efficient methods for protoplast isolation from Ganoderma species. PEG-induced fusants showed high polymorphic frequency index, while the phenotypic characters showed high similarity to G. applanatum. A significant difference was observed in the mushroom yield and its total polysaccharide between the fusants and parental strains.


Assuntos
Ganoderma/fisiologia , Glucanos/análise , Protoplastos/fisiologia , Meios de Cultura/química , Impressões Digitais de DNA , Fibras na Dieta/microbiologia , Ganoderma/química , Hibridização Genética , Polietilenoglicóis/química , Protoplastos/química , Quercus/microbiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico
3.
Br J Surg ; 107(6): 743-755, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31879948

RESUMO

BACKGROUND: Both obesity and the presence of collagenolytic bacterial strains (Enterococcus faecalis) can increase the risk of anastomotic leak. The aim of this study was to determine whether mice chronically fed a high-fat Western-type diet (WD) develop anastomotic leak in association with altered microbiota, and whether this can be mitigated by a short course of standard chow diet (SD; low fat/high fibre) before surgery. METHODS: Male C57BL/6 mice were assigned to either SD or an obesogenic WD for 6 weeks followed by preoperative antibiotics and colonic anastomosis. Microbiota were analysed longitudinally after operation and correlated with healing using an established anastomotic healing score. In reiterative experiments, mice fed a WD for 6 weeks were exposed to a SD for 2, 4 and 6 days before colonic surgery, and anastomotic healing and colonic microbiota analysed. RESULTS: Compared with SD-fed mice, WD-fed mice demonstrated an increased risk of anastomotic leak, with a bloom in the abundance of Enterococcus in lumen and expelled stool (65-90 per cent for WD versus 4-15 per cent for SD; P = 0·010 for lumen, P = 0·013 for stool). Microbiota of SD-fed mice, but not those fed WD, were restored to their preoperative composition after surgery. Anastomotic healing was significantly improved when WD-fed mice were exposed to a SD diet for 2 days before antibiotics and surgery (P < 0·001). CONCLUSION: The adverse effects of chronic feeding of a WD on the microbiota and anastomotic healing can be prevented by a short course of SD in mice. Surgical relevance Worldwide, enhanced recovery programmes have developed into standards of care that reduce major complications after surgery, such as surgical-site infections and anastomotic leak. A complementary effort termed prehabilitation includes preoperative approaches such as smoking cessation, exercise and dietary modification. This study investigated whether a short course of dietary prehabilitation in the form of a low-fat/high-fibre composition can reverse the adverse effect of a high-fat Western-type diet on anastomotic healing in mice. Intake of a Western-type diet had a major adverse effect on both the intestinal microbiome and anastomotic healing following colonic anastomosis in mice. This could be reversed when mice received a low-fat/high-fibre diet before operation. Taken together, these data suggest that dietary modifications before major surgery can improve surgical outcomes via their effects on the intestinal microbiome.


ANTECEDENTES: Tanto la obesidad como la presencia de cepas bacterianas colagenolíticas (Enterococcus faecalis) pueden aumentar el riesgo de fuga anastomótica. El objetivo de este estudio fue determinar si los ratones alimentados durante un tiempo prolongado con una dieta de tipo occidental con alto contenido en grasas (western type diet, WD) desarrollaban una fuga anastomótica en asociación con una microbiota alterada, así como determinar si una dieta estándar preoperatoria de corta duración baja en grasa/alta en fibra (standard diet, SD) podía mitigar la aparición de fuga. MÉTODOS: Ratones machos C57BL/6 obtenidos de Charles River fueron asignados aleatoriamente a una dieta chow estándar (SD) o a una dieta de tipo occidental obesogénica (WD) durante 6 semanas, seguida de la administración preoperatoria de antibióticos y la realización de una anastomosis en el colon. La microbiota se analizó longitudinalmente después de la operación y se correlacionó con la curación utilizando una puntuación de cicatrización anastomótica ya establecida. En experimentos repetidos, los ratones con una WD durante 6 semanas fueron expuestos a una SD durante 2, 4 y 6 días antes de la cirugía de colon, analizándose la cicatrización de la anastomosis y la microbiota del colon. RESULTADOS: Los ratones alimentados con WD en comparación con los alimentados con SD presentaron un mayor riesgo de fuga anastomótica con un rápido incremento en la abundancia de Enterococcus (65-90% para WD versus 4-15% para SD, P < 0,01). La microbiota de ratones alimentados con SD, pero no con WD, se restableció a su composición preoperatoria después de la operación. La cicatrización anastomótica mejoró significativamente cuando los ratones alimentados con WD fueron expuestos a una dieta SD durante 2 días antes del tratamiento antibiótico y de la cirugía (P < 0,01). CONCLUSIÓN: En ratones, los efectos adversos de una alimentación crónica con una WD sobre la microbiota y la cicatrización anastomótica se pueden prevenir mediante una SD de corta duración.


Assuntos
Fístula Anastomótica/prevenção & controle , Dieta com Restrição de Gorduras/métodos , Fibras na Dieta/uso terapêutico , Microbioma Gastrointestinal , Obesidade/complicações , Cuidados Pré-Operatórios/métodos , Cicatrização , Anastomose Cirúrgica , Fístula Anastomótica/microbiologia , Animais , Colo/microbiologia , Colo/cirurgia , Dieta Saudável/métodos , Fibras na Dieta/microbiologia , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Obesidade/dietoterapia , Obesidade/microbiologia , Fatores de Proteção , Fatores de Risco
4.
Dig Dis Sci ; 65(3): 723-740, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32060812

RESUMO

This review summarizes the key results of recently published studies on the effects of dietary change and nutritional intervention on the human microbiome from around the world, focusing on the USA, Canada, Europe, Asia, and Africa. It first explores mechanisms that might explain the ability of fiber-rich foods to suppress the incidence and mortality from westernized diseases, notably cancers of the colon, breast, liver, cardiovascular, infectious, and respiratory diseases, diabetes, and obesity (O'Keefe in Lancet Gastroenterol Hepatol 4(12):984-996, 2019; Am J Clin Nutr 110:265-266, 2019). It summarizes studies from Africa which suggest that disturbance of the colonic microbiome may exacerbate chronic malnutrition and growth failure in impoverished communities and highlights the importance of breast feeding. The American section discusses the role of the microbiome in the swelling population of patients with obesity and type 2 diabetes and examines the effects of race, ethnicity, geography, and climate on microbial diversity and metabolism. The studies from Europe and Asia extoll the benefits of whole foods and plant-based diets. The Asian studies examine the worrying changes from low-fat, high-carbohydrate diets to high-fat, low-carbohydrate ones and the increasing appearance of westernized diseases as in Africa and documents the ability of high-fiber traditional Chinese diets to reverse type 2 diabetes and control weight loss. In conclusion, most of the studies reviewed demonstrate clear changes in microbe abundances and in the production of fermentation products, such as short-chain fatty acids and phytochemicals following dietary change, but the significance of the microbiota changes to human health, with the possible exception of the stimulation of butyrogenic taxa by fiber-rich foods, is generally implied and not measured. Further studies are needed to determine how these changes in microbiota composition and metabolism can improve our health and be used to prevent and treat disease.


Assuntos
Dieta , Fibras na Dieta/microbiologia , Microbioma Gastrointestinal/fisiologia , Internacionalidade , Leite Humano/microbiologia , Dieta/tendências , Dieta Ocidental/efeitos adversos , Humanos , Leite Humano/fisiologia
5.
J Sci Food Agric ; 100(6): 2638-2647, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31994185

RESUMO

BACKGROUND: Rice bran is a nutrient-dense and resource-rich byproduct produced from the rice milling. The limitation of rice bran utilization is mainly caused by oxidative deterioration. Improvement of stability to prolong rice bran shelf-life has thus become an urgent requirement. RESULTS: The present study aimed to determine the characteristics of infrared radiation heat treatment of rice bran (IRRB) and raw rice bran stored under different temperatures. The effects of heating and storage time on physicochemical, microbial, storage stability and structural properties were investigated. Additionally, the prediction model for the shelf-life of rice bran was established based on free fatty acids and the peroxide value by fitting the curve of bran lipid oxidation. The results obtained demonstrated that infrared radiation heating at 300 °C for 210 s resulted in decreased lipase activity and peroxidase activity of 73.05% and 81.50%, respectively. The free fatty acids and peroxide value of IRRB stored at 4 and 25 °C for 8 weeks were only reached at 2.35% and 3.17% and 2.53 and 3.64 meq kg-1 , respectively. The shelf-life prediction model showed the the shelf-life of infrared radiation-treated samples increased to 71.6 and 25.8 weeks under storage at 4 and 25 °C, respectively. CONCLUSION: The stabilizing process could effectively suppress microbial growth and had no prominent effect on the physicochemical and microstructure properties of rice bran and, simultaneously, storage life was greatly extended. © 2020 Society of Chemical Industry.


Assuntos
Irradiação de Alimentos/métodos , Armazenamento de Alimentos , Raios Infravermelhos , Oryza , Fibras na Dieta/análise , Fibras na Dieta/microbiologia , Ácidos Graxos não Esterificados/análise , Conservação de Alimentos , Peroxidação de Lipídeos
6.
Biomed Environ Sci ; 32(1): 11-21, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30696535

RESUMO

OBJECTIVE: A strain of Aspergillus niger (A. niger), capable of releasing bound phenolic acids from wheat bran, was isolated. This strain was identified by gene sequence identification. The antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by this A. niger strain (FA-WB) were evaluated. METHODS: Molecular identification techniques based on PCR analysis of specific genomic sequences were conducted; antioxidant ability was examined using oxygen radical absorbance capacity (ORAC), cellular antioxidant activity (CAA) assays, and erythrocyte hemolysis assays. RAW264.7 cells were used as a model to detect anti-inflammatory activity. RESULTS: The filamentous fungal isolate was identified to be A. niger. ORAC and CAA assay showed that FA-WB had better antioxidant activity than that of the ferulic acid standard. The erythrocyte hemolysis assay results suggested that FA-WB could attenuate AAPH-induced oxidative stress through inhibition of reactive oxy gen species (ROS) generation. FA-WB could significantly restore the AAPH-induced increase in intracellular antioxidant enzyme activities to normal levels as well as inhibit the intracellular malondialdehyde formation. TNF-a, IL-6, and NO levels indicated that FA-WB can inhibit the inflammation induced by lipopolysaccharide (LPS). CONCLUSION: Ferulic acid released from wheat bran by a new strain of A. niger had good anti-inflammatory activity and better antioxidant ability than standard ferulic acid.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Aspergillus niger/metabolismo , Ácidos Cumáricos/farmacologia , Fibras na Dieta/microbiologia , Animais , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Aspergillus niger/genética , Aspergillus niger/isolamento & purificação , Ácidos Cumáricos/metabolismo , DNA Fúngico/análise , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Fermentação , Células Hep G2 , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Células RAW 264.7 , Ovinos , Fator de Necrose Tumoral alfa/metabolismo
7.
J Sci Food Agric ; 99(4): 1946-1953, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30270446

RESUMO

BACKGROUND: Deoxynivalenol (DON) is the most common Fusarium mycotoxin occurring in wheat and wheat-derived products, with several adverse and toxic effects in animals and humans. Although bran fractions produced by milling wheat have numerous health benefits, cereal bran is the part of the grain with the highest concentration of DON, thus representing a risk for consumers. Increased efforts have been made to develop analytical methods suitable for rapid DON screening. RESULTS: The applicability of Fourier transform near-infrared (FTNIR), or mid-infrared (FTMIR) spectroscopy, and their combination for rapid analysis of DON in wheat bran, was investigated for the classification of samples into compliant and non-compliant groups regarding the EU legal limit of 750 µg kg-1 . Partial least squares-discriminant analysis (PLS-DA) and principal component-linear discriminant analysis (PC-LDA) were employed as classification techniques using a cutoff value of 400 µg kg-1 DON to distinguish the two classes. Depending on the classification model, overall discrimination rates were from 87% to 91% for FTNIR and from 86% to 87% for the FTMIR spectral range. The FTNIR spectroscopy gave the highest overall classification rate of wheat bran samples, with no false compliant samples and 18% false noncompliant samples when the PC-LDA classification model was applied. The combination of the two spectral ranges did not provide a substantial improvement in classification results in comparison with FTNIR. CONCLUSIONS: Fourier transform near-infrared spectroscopy in combination with classification models was an efficient tool to screen many DON-contaminated wheat bran samples and assess their compliance with EU regulations. © 2018 Society of Chemical Industry.


Assuntos
Fibras na Dieta/análise , Espectrofotometria Infravermelho/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tricotecenos/análise , Triticum/química , Fibras na Dieta/microbiologia , Análise Discriminante , Contaminação de Alimentos/análise , Fusarium/metabolismo , Micotoxinas/análise , Micotoxinas/metabolismo , Tricotecenos/metabolismo , Triticum/microbiologia
8.
Appl Environ Microbiol ; 84(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143505

RESUMO

In the present study, we investigated whether reducing the particle size of wheat bran affects the colonizing microbial community using batch fermentations with cecal inocula from seven different chickens. We also investigated the effect of in-feed administration of regular wheat bran (WB; 1,690 µm) and wheat bran with reduced particle size (WB280; 280 µm) on the cecal microbial community composition of broilers. During batch fermentation, WB280 was colonized by a lactic acid-producing community (Bifidobacteriaceae and Lactobacillaceae) and by Lachnospiraceae that contain lactic acid-consuming butyric acid-producing species. The relative abundances of the Enterobacteriaceae decreased in the particle-associated communities for both WB and WB280 compared to that of the control. In addition, the community attached to wheat bran was enriched in xylan-degrading bacteria. When administered as a feed additive to broilers, WB280 significantly increased the richness of the cecal microbiota and the abundance of bacteria containing the butyryl-coenzyme A (CoA):acetate CoA-transferase gene, a key gene involved in bacterial butyrate production, while decreasing the abundances of Enterobacteriaceae family members in the ceca. Particle size reduction of wheat bran thus resulted in the colonization of the bran particles by a very specific lactic acid- and butyric acid-producing community and can be used to steer toward beneficial microbial shifts. This can potentially increase the resilience against pathogens and increase animal performance when the reduced-particle-size wheat bran is administered as a feed additive to broilers.IMPORTANCE Prebiotic dietary fibers are known to improve the gastrointestinal health of both humans and animals in many different ways. They can increase the bulking capacity, improve transit times, and, depending on the fiber, even stimulate the growth and activity of resident beneficial bacteria. Wheat bran is a readily available by-product of flour processing and is a highly concentrated source of (in)soluble dietary fiber. The intake of fiber-rich diets has been associated with increased Firmicutes and decreased Proteobacteria numbers. Here, we show that applying only 1% of a relatively simple substrate which was technically modified using relatively simple techniques reduces the concentration of Enterobacteriaceae This could imply that in future intervention studies, one should take the particle size of dietary fibers into account.


Assuntos
Ração Animal/microbiologia , Galinhas/microbiologia , Fibras na Dieta/análise , Enterobacteriaceae/crescimento & desenvolvimento , Microbioma Gastrointestinal , Lactobacillaceae/crescimento & desenvolvimento , Ração Animal/análise , Animais , Ácido Butírico/metabolismo , Ceco/microbiologia , Galinhas/metabolismo , Fibras na Dieta/metabolismo , Fibras na Dieta/microbiologia , Fermentação , Ácido Láctico/metabolismo , Lactobacillaceae/metabolismo , Tamanho da Partícula , Triticum/química , Triticum/metabolismo , Triticum/microbiologia
9.
Cell Mol Biol (Noisy-le-grand) ; 64(14): 53-60, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30511621

RESUMO

L-Asparaginase is an enzyme that hydrolyses the amino acid L-Asparagine into aspartic acid and ammonia. As a medication, L-Asparaginase is used in chemotherapy to treat acute lymphoblastic leukaemia by depleting circulating Asparagine and depriving tumor cells. Interest in Actinomycetes as potential producers of antibiotics and enzymes encouraged us to investigate an isolated strain (CA01) from soft wheat bran.The Actinomycete strain was characterized based on its morphological and biochemical characteristics and selected due to a proved promising ability to produce L-Asparaginase optimized in both solid and liquid media cultures.The conditions of enzyme production were standardized according to a one-factor-at-a-time (OFAT) experimental design.To obtain optimal medium combination, a Box-Behnken Response Surface Methodology (RSM) has been adopted by choosing the most influential factors. The optimal conditions for the enzyme production were (g/l): L-Asparagine 10.7; Glucose 2.7; starch 7, in based medium containing (g/l): K2HPO4 0.5; MgSO4, 7H2O 0.1, corresponding to an optimal enzymatic activity of 8.03 IU/ml at 27.83°C. The maximum production of enzyme was reached on the sixth day of experiment. The ANOVA test (P value ˂ 0.05) and adjusted R2 values close to the experimental R2 show that the obtained model of the active L-Asparaginase of CA01 strain production is significant with the following linear terms: temperature, substrate concentration, Glucose concentration and there squared.


Assuntos
Actinobacteria/enzimologia , Actinobacteria/isolamento & purificação , Asparaginase/biossíntese , Fibras na Dieta/microbiologia , Espaço Extracelular/enzimologia , Análise de Variância , Carbono/farmacologia , Cinética , Nitrogênio/farmacologia , Padrões de Referência , Fatores de Tempo
10.
Environ Microbiol ; 19(8): 3251-3267, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28618173

RESUMO

Gut microbiota research reveals a vital role for the luminal and mucosal gut microbiota in human health. Fewer studies, however, have characterized the microbiome associated with undigested, insoluble dietary particles in the gut. These particles can act as a food source for bacteria and offer a physical platform to which they can attach. In this study, the microbiome colonizing wheat bran particles was analyzed. In a batch experiment, wheat bran particles were separately incubated with the faecal microbiota derived from 10 donors and washed after 48 h to remove loosely attached bacteria. The response of the luminal community to wheat bran and inulin, acting as a well-characterized control, was largely donor-dependent, both functionally, and with respect to the microbiome composition. Depending on the donor, wheat bran and inulin fermentation yielded proportionally higher propionate or butyrate production. Clostridium cluster XIVa and, depending on the donor, Prevotella, Roseburia, Megamonas, Bifidobacterium and Bacteroides species were enriched on the wheat bran particles. These genera include species with the documented ability to serve as primary degraders of wheat bran components and other species depending on cross-feeding to obtain their energy. Both functional groups were present in all donors, despite the large inter-individual differences.


Assuntos
Bacteroides/metabolismo , Bifidobacterium/metabolismo , Clostridium/metabolismo , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal/fisiologia , Inulina/metabolismo , Prevotella/metabolismo , Bacteroides/crescimento & desenvolvimento , Bifidobacterium/crescimento & desenvolvimento , Butiratos/metabolismo , Clostridium/crescimento & desenvolvimento , Dieta , Fibras na Dieta/microbiologia , Fezes/microbiologia , Fermentação , Humanos , Prevotella/crescimento & desenvolvimento , Propionatos/metabolismo
11.
BMC Biol ; 14: 3, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26754945

RESUMO

BACKGROUND: Dietary intake of specific non-digestible carbohydrates (including prebiotics) is increasingly seen as a highly effective approach for manipulating the composition and activities of the human gut microbiota to benefit health. Nevertheless, surprisingly little is known about the global response of the microbial community to particular carbohydrates. Recent in vivo dietary studies have demonstrated that the species composition of the human faecal microbiota is influenced by dietary intake. There is now potential to gain insights into the mechanisms involved by using in vitro systems that produce highly controlled conditions of pH and substrate supply. RESULTS: We supplied two alternative non-digestible polysaccharides as energy sources to three different human gut microbial communities in anaerobic, pH-controlled continuous-flow fermentors. Community analysis showed that supply of apple pectin or inulin resulted in the highly specific enrichment of particular bacterial operational taxonomic units (OTUs; based on 16S rRNA gene sequences). Of the eight most abundant Bacteroides OTUs detected, two were promoted specifically by inulin and six by pectin. Among the Firmicutes, Eubacterium eligens in particular was strongly promoted by pectin, while several species were stimulated by inulin. Responses were influenced by pH, which was stepped up, and down, between 5.5, 6.0, 6.4 and 6.9 in parallel vessels within each experiment. In particular, several experiments involving downshifts to pH 5.5 resulted in Faecalibacterium prausnitzii replacing Bacteroides spp. as the dominant sequences observed. Community diversity was greater in the pectin-fed than in the inulin-fed fermentors, presumably reflecting the differing complexity of the two substrates. CONCLUSIONS: We have shown that particular non-digestible dietary carbohydrates have enormous potential for modifying the gut microbiota, but these modifications occur at the level of individual strains and species and are not easily predicted a priori. Furthermore, the gut environment, especially pH, plays a key role in determining the outcome of interspecies competition. This makes it crucial to put greater effort into identifying the range of bacteria that may be stimulated by a given prebiotic approach. Both for reasons of efficacy and of safety, the development of prebiotics intended to benefit human health has to take account of the highly individual species profiles that may result.


Assuntos
Fibras na Dieta/microbiologia , Microbioma Gastrointestinal , Inulina/metabolismo , Pectinas/metabolismo , Bacteroides/crescimento & desenvolvimento , Bacteroides/isolamento & purificação , Reatores Biológicos , Fibras na Dieta/metabolismo , Eubacterium/crescimento & desenvolvimento , Eubacterium/isolamento & purificação , Ácidos Graxos/metabolismo , Fermentação , Firmicutes/crescimento & desenvolvimento , Firmicutes/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/análise
13.
Appl Microbiol Biotechnol ; 100(8): 3499-510, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26649737

RESUMO

The consumption of fiber-rich foods such as cereal bran is highly recommended due to its beneficial health effects. Pre-fermentation of bran with lactic acid bacteria can be used to improve the otherwise impaired flavor and textural qualities of bran-rich products. These positive effects are attributed to enzymatic modification of bran components and the production of functional metabolites like organic acids and exopolysaccharides such as dextrans. The aim of this study was to investigate dextran production in wheat and rye bran by fermentation with two Weissella confusa strains. Bran raw materials were analyzed for their chemical compositions and mineral content. Microbial growth and acidification kinetics were determined from the fermentations. Both strains produced more dextran in rye bran in which the fermentation-induced acidification was slower and the acidification lag phase longer than in wheat bran. Higher dextran production in rye bran is expected to be due to the longer period of optimal pH for dextran synthesis during fermentation. The starch content of wheat bran was higher, which may promote isomaltooligosaccharide formation at the expense of dextran production. W. confusa Cab3 produced slightly higher amounts of dextran than W. confusa VTT E-90392 in all raw materials. Fermentation with W. confusa Cab3 also resulted in lower residual fructose content which has technological relevance. The results indicate that wheat and particularly rye bran are promising matrices for producing technologically significant amounts of dextran, which facilitates the use of nutritionally valuable raw bran in food applications.


Assuntos
Dextranos/biossíntese , Fibras na Dieta/metabolismo , Secale/metabolismo , Triticum/metabolismo , Weissella/metabolismo , Meios de Cultura/metabolismo , Fibras na Dieta/microbiologia , Fermentação , Secale/microbiologia , Triticum/microbiologia
14.
BMC Genomics ; 16: 1116, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714477

RESUMO

BACKGROUND: The rumen microbiota functions as an effective system for conversion of dietary feed to microbial proteins and volatile fatty acids. In the present study, metagenomic approach was applied to elucidate the buffalo rumen microbiome of Jaffrabadi buffalo adapted to varied dietary treatments with the hypothesis that the microbial diversity and subsequent in the functional capacity will alter with diet change and enhance our knowledge of effect of microbe on host physiology. Eight adult animals were gradually adapted to an increasing roughage diet (4 animals each with green and dry roughage) containing 50:50 (J1), 75:25 (J2) and 100:0 (J3) roughage to concentrate proportion for 6 weeks. Metagenomic sequences of solid (fiber adherent microbiota) and liquid (fiber free microbiota) fractions obtained using Ion Torrent PGM platform were analyzed using MG-RAST server and CAZymes approach. RESULTS: Taxonomic analysis revealed that Bacteroidetes was the most abundant phylum followed by Firmicutes, Fibrobacter and Proteobacteria. Functional analysis revealed protein (25-30 %) and carbohydrate (15-20 %) metabolism as the dominant categories. Principal component analysis demonstrated that roughage proportion, fraction of rumen and type of forage affected rumen microbiome at taxonomic as well as functional level. Rumen metabolite study revealed that rumen fluid nitrogen content reduced in high roughage diet fed animals and pathway analysis showed reduction in the genes coding enzymes involved in methanogenesis pathway. CAZyme annotation revealed the abundance of genes encoding glycoside hydrolases (GH), with the GH3 family most abundant followed by GH2 and GH13 in all samples. CONCLUSIONS: Results reveals that high roughage diet feed improved microbial protein synthesis and reduces methane emission. CAZyme analysis indicated the importance of microbiome in feed component digestion for fulfilling energy requirements of the host. The findings help determine the role of rumen microbes in plant polysaccharide breakdown and in developing strategies to maximize productivity in ruminants.


Assuntos
Búfalos/metabolismo , Fibras na Dieta/microbiologia , Microbiota/genética , Animais , Búfalos/genética , Glicosídeo Hidrolases/genética , Metagenoma/genética , Metagenômica , Rúmen
15.
Biotechnol Appl Biochem ; 62(2): 245-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24888562

RESUMO

The production of extracellular xylanolytic enzymes such as xylanase, α-l-arabinofuranosidase (α-l-AFase), and acetyl xylan esterase (Axe) by marine Arthrobacter sp. and Lactobacillus sp. was investigated using different carbon sources. Induction and repression of all these enzymes differed with carbon source and also with the organism. Wheat bran was the best carbon source for the production of xylanase and α-l-AFase, whereas both isolates showed maximum Axe production when grown on oat bran as a carbon source. Preferential utilization of a carbon source for enzyme production can give us better insights into regulatory mechanism in these marine bacteria. Elution profile as well as zymogram analysis indicated the possibility of bifunctional α-l-AFase-Axes in both marine bacteria.


Assuntos
Arthrobacter/enzimologia , Carbono/metabolismo , Fibras na Dieta/microbiologia , Lactobacillus/enzimologia , Xilosidases/biossíntese , Xilosidases/química , Arthrobacter/classificação , Ativação Enzimática , Estabilidade Enzimática , Lactobacillus/classificação , Especificidade da Espécie , Xilosidases/isolamento & purificação
16.
Lett Appl Microbiol ; 61(3): 252-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26058926

RESUMO

UNLABELLED: Laccase isoenzymes (LacI,II,III) produced on wheat bran from Trametes hirsuta were partially purified through anion exchange chromatography. The three isoenzymes had the same MW of 65 kDa, and their main physico-chemical properties were studied. As single isoenzymes, laccases were unable to decolourize dye. Among several mediators evaluated, syringaldehyde was the most effective in dye decolourization (100%). A remarkable increase in dye decolourization was observed when LacI, II, III in mixture or crude enzyme were added to the reaction system, indicating that the laccases acted synergistically. SIGNIFICANCE AND IMPACT OF THE STUDY: Laccases have a great potential of application in bioremediation processes. White rot fungi produces several laccase isoenzymes and many of them have been purified and characterized. However, the additive or synergic action between laccase isoenzymes in dye decolourization has not yet been described. Such studies will help to better understand their action and to improve the process with isoenzymes mixtures. This study showed synergistic action between isoenzymes laccases produced by Trametes hirsuta Bm2 during decolourization of indigo carmine.


Assuntos
Índigo Carmim/química , Lacase/metabolismo , Trametes/enzimologia , Gerenciamento de Resíduos/métodos , Biodegradação Ambiental , Corantes/química , Fibras na Dieta/microbiologia , Dados de Sequência Molecular , Águas Residuárias
17.
Food Microbiol ; 49: 211-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846933

RESUMO

Despite its potential health benefits, the integration of wheat bran into the food sector is difficult due to several adverse technological and sensory properties such as bitterness and grittiness. Sourdough fermentation is a promising strategy to improve the sensory quality of bran without inducing severe changes to the bran matrix. Therefore, identification of species/strains with potential for industrial sourdough fermentations is important. We compared the effects of different representatives of species of lactic acid bacteria (LAB) on wheat bran. Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus brevis, Lactobacillus sanfranciscensis and Fructobacillus fructosus produced highly individual fermentation patterns as judged from carbohydrate consumption and organic acid production. Interestingly, fructose was released during all bran fermentations and possibly influenced the fermentation profiles of obligately heterofermentative species to varying degrees. Except for the reduction of ferulic acid by L. plantarum and L. pentosus, analyses of phenolic compounds and alkylresorcinols suggested that only minor changes thereof were induced by the LAB metabolism. Sensory analysis of breads baked with fermented bran did not reveal significant differences regarding perceived bitterness and aftertaste. We conclude that in addition to more traditionally used sourdough species such as L. sanfranciscensis and L. brevis, also facultatively heterofermentative species such as L. plantarum and L. pentosus possess potential for industrial wheat bran fermentations and should be considered in further investigations.


Assuntos
Pão/microbiologia , Fibras na Dieta/microbiologia , Lactobacillaceae/metabolismo , Triticum/microbiologia , Fibras na Dieta/metabolismo , Fermentação , Humanos , Ácido Láctico/metabolismo , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Paladar , Triticum/metabolismo
18.
BMC Genomics ; 15: 523, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24965873

RESUMO

BACKGROUND: Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide range of biochemical properties. Several Aspergilli have the ability to produce a variety of proteases, but no comprehensive comparative study has been carried out on protease productivity in this genus so far. RESULTS: We have performed a combined analysis of comparative genomics, proteomics and enzymology tests on seven Aspergillus species grown on wheat bran and sugar beet pulp. Putative proteases were identified by homology search and Pfam domains. These genes were then clusters based on orthology and extracellular proteases were identified by protein subcellular localization prediction. Proteomics was used to identify the secreted enzymes in the cultures, while protease essays with and without inhibitors were performed to determine the overall protease activity per protease class. All this data was then integrated to compare the protease productivities in Aspergilli. CONCLUSIONS: Genomes of Aspergillus species contain a similar proportion of protease encoding genes. According to comparative genomics, proteomics and enzymatic experiments serine proteases make up the largest group in the protease spectrum across the species. In general wheat bran gives higher induction of proteases than sugar beet pulp. Interesting differences of protease activity, extracellular enzyme spectrum composition, protein occurrence and abundance were identified for species. By combining in silico and wet-lab experiments, we present the intriguing variety of protease productivity in Aspergilli.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/genética , Serina Proteases/genética , Aspergillus/genética , Fibras na Dieta/microbiologia , Indução Enzimática , Proteínas Fúngicas/metabolismo , Serina Proteases/metabolismo
19.
Fungal Genet Biol ; 72: 131-136, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24657475

RESUMO

Agrocybe praecox is a litter-decomposing Basidiomycota species of the order Agaricales, and is frequently found in forests and open woodlands. A. praecox grows in leaf-litter and the upper soil and is able to colonize bark mulch and wood chips. It produces extracellular manganese peroxidase (MnP) activities and mineralizes synthetic lignin. In this study, the A. praecox MnP1 isozyme was purified, cloned and enzymatically characterized. The enzyme catalysed the oxidation of Mn(2+) to Mn(3+), which is the specific reaction for manganese-dependent class II heme-peroxidases, in the presence of malonate as chelator with an activity maximum at pH 4.5; detectable activity was observed even at pH 7.0. The coding sequence of the mnp1 gene demonstrates a short-type of MnP protein with a slightly modified Mn(2+) binding site. Thus, A. praecox MnP1 may represent a novel group of atypical short-MnP enzymes. In lignocellulose-containing cultures composed of cereal bran or forest litter, transcription of mnp1 gene was followed by quantitative real-time RT-PCR. On spruce needle litter, mnp1 expression was more abundant than on leaf litter after three weeks cultivation. However, the expression was constitutive in wheat and rye bran cultures. Our data show that the atypical MnP of A. praecox is able to catalyse Mn(2+) oxidation, which suggests its involvement in lignocellulose decay by this litter-decomposer.


Assuntos
Agrocybe/enzimologia , Peroxidases/genética , Peroxidases/metabolismo , Agrocybe/genética , Agrocybe/metabolismo , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Fibras na Dieta/metabolismo , Fibras na Dieta/microbiologia , Estabilidade Enzimática , Expressão Gênica , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Manganês/metabolismo , Dados de Sequência Molecular , Oxirredução , Peroxidases/química , Peroxidases/isolamento & purificação , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
20.
Nutr Res Rev ; 27(2): 295-307, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25623083

RESUMO

Domestic cats are obligate carnivores and in this light hindgut fermentation has been considered unimportant in this species. However, a diverse microbiota has been found in the small and large intestines of domestic cats. Additionally, in vitro and in vivo studies support the hypothesis that microbial fermentation is significant in felines with potential benefits to the host. Results on microbiota composition and microbial counts in different regions of the feline gastrointestinal tract are compiled, including a description of modulating host and technical factors. Additionally, the effects of dietary fibre supplementation on the microbiota composition are described. In a second section, in vitro studies, using inocula from fresh feline faeces and focusing on the fermentation characteristics of diverse plant substrates, are described. In vivo studies have investigated the effects of dietary fibre on a broad range of physiological outcomes. Results of this research, together with studies on effects of plant fibre on colonic morphology and function, protein and carbohydrate metabolism, and the effects of plant fibre on disease conditions that require a decrease in dietary protein intake, are shown in a third section of the present review. Conclusively, for fructans and beet pulp, for example, diverse beneficial effects have been demonstrated in the domestic cat. Both dietary fibre sources are regularly used in the pet food industry. More research is warranted to reveal the potential benefits of other fibre sources that can be used on a large scale in feline diets for healthy and diseased cats.


Assuntos
Gatos/microbiologia , Fibras na Dieta/microbiologia , Trato Gastrointestinal/microbiologia , Microbiota/fisiologia , Estado Nutricional , Animais de Estimação/microbiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA