Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.202
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(6): 1230-1243.e14, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931246

RESUMO

Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo B/genética , Fitocromo B/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Luz , Transdução de Sinal Luminoso , Mutação
2.
Annu Rev Biochem ; 90: 475-501, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33781076

RESUMO

Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.


Assuntos
Bioquímica/métodos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Luz , Optogenética/métodos , Processos Fotoquímicos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Domínios Proteicos , Engenharia de Proteínas/métodos , Vitamina B 12/metabolismo
3.
Cell ; 171(6): 1254-1256, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195071

RESUMO

Phytochrome signaling allows plants to sense and respond to light through gene regulation. Ushijima et al. (2017) demonstrate a role for phytochromes in widespread regulation of alternative promoter usage, resulting in light-dependent protein isoforms with altered subcellular localization that help the plant respond metabolically to fluctuating light conditions.


Assuntos
Arabidopsis , Fitocromo , Luz , Transporte Proteico , Transdução de Sinais
4.
Cell ; 171(6): 1316-1325.e12, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29129375

RESUMO

Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fitocromo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Regiões Promotoras Genéticas
5.
Annu Rev Biochem ; 84: 519-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706899

RESUMO

Genetically encoded optical tools have revolutionized modern biology by allowing detection and control of biological processes with exceptional spatiotemporal precision and sensitivity. Natural photoreceptors provide researchers with a vast source of molecular templates for engineering of fluorescent proteins, biosensors, and optogenetic tools. Here, we give a brief overview of natural photoreceptors and their mechanisms of action. We then discuss fluorescent proteins and biosensors developed from light-oxygen-voltage-sensing (LOV) domains and phytochromes, as well as their properties and applications. These fluorescent tools possess unique characteristics not achievable with green fluorescent protein-like probes, including near-infrared fluorescence, independence of oxygen, small size, and photosensitizer activity. We next provide an overview of available optogenetic tools of various origins, such as LOV and BLUF (blue-light-utilizing flavin adenine dinucleotide) domains, cryptochromes, and phytochromes, enabling control of versatile cellular processes. We analyze the principles of their function and practical requirements for use. We focus mainly on optical tools with demonstrated use beyond bacteria, with a specific emphasis on their applications in mammalian cells.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas Luminescentes/química , Optogenética , Arabidopsis/química , Deinococcus/química , Proteínas Luminescentes/genética , Fitocromo/química , Engenharia de Proteínas , Rodopseudomonas/química
6.
EMBO J ; 42(8): e111472, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36912149

RESUMO

For shade-intolerant plants, changes in light quality through competition from neighbors trigger shade avoidance syndrome (SAS): a series of morphological and physiological adaptations that are ultimately detrimental to plant health and crop yield. Phytochrome-interacting factor 7 (PIF7) is a major transcriptional regulator of SAS in Arabidopsis; however, how it regulates gene expression is not fully understood. Here, we show that PIF7 directly interacts with the histone chaperone anti-silencing factor 1 (ASF1). The ASF1-deprived asf1ab mutant showed defective shade-induced hypocotyl elongation. Histone regulator homolog A (HIRA), which mediates deposition of the H3.3 variant into chromatin, is also involved in SAS. RNA/ChIP-sequencing analyses identified the role of ASF1 in the direct regulation of a subset of PIF7 target genes. Furthermore, shade-elicited gene activation is accompanied by H3.3 enrichment, which is mediated by the PIF7-ASF1-HIRA regulatory module. Collectively, our data reveal that PIF7 recruits ASF1-HIRA to increase H3.3 incorporation into chromatin to promote gene transcription, thus enabling plants to effectively respond to environmental shade.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator VII/genética , Fitocromo/genética , Cromatina/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/metabolismo
7.
Plant Cell ; 36(8): 2778-2797, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38593049

RESUMO

Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Fitocromo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regiões Promotoras Genéticas/genética , Fitocromo/metabolismo , Fitocromo/genética , Luz , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Germinação/genética
8.
PLoS Genet ; 20(5): e1011282, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768261

RESUMO

Light as a source of information regulates morphological and physiological processes of fungi, including development, primary and secondary metabolism, or the circadian rhythm. Light signaling in fungi depends on photoreceptors and downstream components that amplify the signal to govern the expression of an array of genes. Here, we investigated the effects of red and far-red light in the mycoparasite Trichoderma guizhouense on its mycoparasitic potential. We show that the invasion strategy of T. guizhouense depends on the attacked species and that red and far-red light increased aerial hyphal growth and led to faster overgrowth or invasion of the colonies. Molecular experiments and transcriptome analyses revealed that red and far-red light are sensed by phytochrome FPH1 and further transmitted by the downstream MAPK HOG pathway and the bZIP transcription factor ATF1. Overexpression of the red- and far-red light-induced fluffy gene fluG in the dark resulted in abundant aerial hyphae formation and thereby improvement of its antagonistic ability against phytopathogenic fungi. Hence, light-induced fluG expression is important for the mycoparasitic interaction. The increased aggressiveness of fluG-overexpressing strains was phenocopied by four random mutants obtained after UV mutagenesis. Therefore, aerial hyphae formation appears to be a trait for the antagonistic potential of T. guizhouense.


Assuntos
Regulação Fúngica da Expressão Gênica , Hifas , Luz , Fitocromo , Trichoderma , Hifas/crescimento & desenvolvimento , Hifas/genética , Fitocromo/metabolismo , Fitocromo/genética , Trichoderma/genética , Trichoderma/fisiologia , Trichoderma/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Rhizoctonia/crescimento & desenvolvimento , Luz Vermelha
9.
Proc Natl Acad Sci U S A ; 121(8): e2312853121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349881

RESUMO

Light is a crucial environmental factor that impacts various aspects of plant development. Phytochromes, as light sensors, regulate myriads of downstream genes to mediate developmental reprogramming in response to changes in environmental conditions. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is an E3 ligase for a number of substrates in light signaling, acting as a central repressor of photomorphogenesis. The interplay between phytochrome B (phyB) and COP1 forms an antagonistic regulatory module that triggers extensive gene expression reprogramming when exposed to light. Here, we uncover a role of COP1 in light-dependent chromatin remodeling through the regulation of VIL1 (VIN3-LIKE 1)/VERNALIZATION 5, a Polycomb protein. VIL1 directly interacts with phyB and regulates photomorphogenesis through the formation of repressive chromatin loops at downstream growth-promoting genes in response to light. Furthermore, we reveal that COP1 governs light-dependent formation of chromatin loop and limiting a repressive histone modification to fine-tune expressions of growth-promoting genes during photomorphogenesis through VIL1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
EMBO J ; 41(19): e110988, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35942625

RESUMO

One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator V/genética , Fator V/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fitocromo/genética , Senescência Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Plant Cell ; 35(7): 2635-2653, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-36972404

RESUMO

PHYTOCHROME KINASE SUBSTRATE (PKS) proteins are involved in light-modulated changes in growth orientation. They act downstream of phytochromes to control hypocotyl gravitropism in the light and act early in phototropin signaling. Despite their importance for plant development, little is known about their molecular mode of action, except that they belong to a protein complex comprising phototropins at the plasma membrane (PM). Identifying evolutionary conservation is one approach to revealing biologically important protein motifs. Here, we show that PKS sequences are restricted to seed plants and that these proteins share 6 motifs (A to F from the N to the C terminus). Motifs A and D are also present in BIG GRAIN, while the remaining 4 are specific to PKSs. We provide evidence that motif C is S-acylated on highly conserved cysteines, which mediates the association of PKS proteins with the PM. Motif C is also required for PKS4-mediated phototropism and light-regulated hypocotyl gravitropism. Finally, our data suggest that the mode of PKS4 association with the PM is important for its biological activity. Our work, therefore, identifies conserved cysteines contributing to PM association of PKS proteins and strongly suggests that this is their site of action to modulate environmentally regulated organ positioning.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteína S/metabolismo , Luz , Fototropismo , Hipocótilo , Acilação
12.
Plant Cell ; 35(9): 3485-3503, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335905

RESUMO

Ambient light and the endogenous circadian clock play key roles in regulating Arabidopsis (Arabidopsis thaliana) seedling photomorphogenesis. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) acts downstream of both light and the circadian clock to promote hypocotyl elongation. Several members of the R2R3-MYB transcription factor (TF) family, the most common type of MYB TF family in Arabidopsis, have been shown to be involved in regulating photomorphogenesis. Nonetheless, whether R2R3-MYB TFs are involved in connecting the light and clock signaling pathways during seedling photomorphogenesis remains unknown. Here, we report that MYB112, a member of the R2R3-MYB family, acts as a negative regulator of seedling photomorphogenesis in Arabidopsis. The light signal promotes the transcription and protein accumulation of MYB112. myb112 mutants exhibit short hypocotyls in both constant light and diurnal cycles. MYB112 physically interacts with PIF4 to enhance the transcription of PIF4 target genes involved in the auxin pathway, including YUCCA8 (YUC8), INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19), and IAA29. Furthermore, MYB112 directly binds to the promoter of LUX ARRHYTHMO (LUX), the central component of clock oscillators, to repress its expression mainly in the afternoon and relieve LUX-inhibited expression of PIF4. Genetic evidence confirms that LUX acts downstream of MYB112 in regulating hypocotyl elongation. Thus, the enhanced transcript accumulation and transcriptional activation activity of PIF4 by MYB112 additively promotes the expression of auxin-related genes, thereby increasing auxin synthesis and signaling and fine-tuning hypocotyl growth under diurnal cycles.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Fitocromo , Arabidopsis/metabolismo , Relógios Circadianos/genética , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plântula/genética , Fitocromo/genética , Fitocromo/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz
13.
Plant Cell ; 35(8): 2997-3020, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37119239

RESUMO

Soil salinity is one of the most detrimental abiotic stresses affecting plant survival, and light is a core environmental signal regulating plant growth and responses to abiotic stress. However, how light modulates the plant's response to salt stress remains largely obscure. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings are more tolerant to salt stress in the light than in the dark, and that the photoreceptors phytochrome A (phyA) and phyB are involved in this tolerance mechanism. We further show that phyA and phyB physically interact with the salt tolerance regulator SALT OVERLY SENSITIVE2 (SOS2) in the cytosol and nucleus, and enhance salt-activated SOS2 kinase activity in the light. Moreover, SOS2 directly interacts with and phosphorylates PHYTOCHROME-INTERACTING FACTORS PIF1 and PIF3 in the nucleus. Accordingly, PIFs act as negative regulators of plant salt tolerance, and SOS2 phosphorylation of PIF1 and PIF3 decreases their stability and relieves their repressive effect on plant salt tolerance in both light and dark conditions. Together, our study demonstrates that photoactivated phyA and phyB promote plant salt tolerance by increasing SOS2-mediated phosphorylation and degradation of PIF1 and PIF3, thus broadening our understanding of how plants adapt to salt stress according to their dynamic light environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Fosforilação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tolerância ao Sal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Luz , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
14.
Plant Cell ; 35(6): 2044-2061, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36781395

RESUMO

Hypocotyl elongation is an important morphological response during plant thermomorphogenesis. Multiple studies indicate that the transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) is a key regulator of high temperature-induced hypocotyl elongation. However, the underlying cellular mechanisms regarding PIF4-mediated hypocotyl elongation are largely unclear. In this study, we found that PIF4 regulates the PLANT U-BOX TYPE E3 UBIQUITIN LIGASE 31 (PUB31)-SPIRAL1 (SPR1) module and alters cortical microtubule reorganization to promote hypocotyl cell elongation during Arabidopsis thaliana (Arabidopsis) thermomorphogenesis. SPR1 loss-of-function mutants exhibit much shorter hypocotyls when grown at 28 °C, indicating a positive role for SPR1 in high ambient temperature-induced hypocotyl elongation. High ambient temperature induces SPR1 expression in a PIF4-dependent manner, and stabilizes SPR1 protein to mediate microtubule reorganization. Further investigation showed that PUB31 interacts with and ubiquitinates SPR1. In particular, the ubiquitinated effect on SPR1 was moderately decreased at high temperature, which was due to the direct binding of PIF4 to the PUB31 promoter and down-regulating its expression. Thus, this study reveals a mechanism in which PIF4 induces SPR1 expression and suppresses PUB31 expression, resulting in the accumulation and stabilization of SPR1 protein, and further promoting hypocotyl cell elongation by altering cortical microtubule organization during Arabidopsis thermomorphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Fitocromo/metabolismo , Temperatura , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
15.
Plant Cell ; 35(8): 2972-2996, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37119311

RESUMO

Sun-loving plants trigger the shade avoidance syndrome (SAS) to compete against their neighbors for sunlight. Phytochromes are plant red (R) and far-red (FR) light photoreceptors that play a major role in perceiving the shading signals and triggering SAS. Shade induces a reduction in the level of active phytochrome B (phyB), thus increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs), a group of growth-promoting transcription factors. However, whether other factors are involved in modulating PIF activity in the shade remains largely obscure. Here, we show that SALT OVERLY SENSITIVE2 (SOS2), a protein kinase essential for salt tolerance, positively regulates SAS in Arabidopsis thaliana. SOS2 directly phosphorylates PIF4 and PIF5 at a serine residue close to their conserved motif for binding to active phyB. This phosphorylation thus decreases their interaction with phyB and posttranslationally promotes PIF4 and PIF5 protein accumulation. Notably, the role of SOS2 in regulating PIF4 and PIF5 protein abundance and SAS is more prominent under salt stress. Moreover, phyA and phyB physically interact with SOS2 and promote SOS2 kinase activity in the light. Collectively, our study uncovers an unexpected role of salt-activated SOS2 in promoting SAS by modulating the phyB-PIF module, providing insight into the coordinated response of plants to salt stress and shade.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Luz , Fitocromo B/genética , Fitocromo B/metabolismo , Regulação da Expressão Gênica de Plantas/genética
16.
PLoS Genet ; 19(5): e1010779, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216398

RESUMO

Integration of light and phytohormones is essential for plant growth and development. FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT 1 (JAR1) participates in phytochrome A (phyA)-mediated far-red (FR) light signaling in Arabidopsis and is a jasmonate (JA)-conjugating enzyme for the generation of an active JA-isoleucine. Accumulating evidence indicates that FR and JA signaling integrate with each other. However, the molecular mechanisms underlying their interaction remain largely unknown. Here, the phyA mutant was hypersensitive to JA. The double mutant fin219-2phyA-211 showed a synergistic effect on seedling development under FR light. Further evidence revealed that FIN219 and phyA antagonized with each other in a mutually functional demand to modulate hypocotyl elongation and expression of light- and JA-responsive genes. Moreover, FIN219 interacted with phyA under prolonged FR light, and MeJA could enhance their interaction with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) in the dark and FR light. FIN219 and phyA interaction occurred mainly in the cytoplasm, and they regulated their mutual subcellular localization under FR light. Surprisingly, the fin219-2 mutant abolished the formation of phyA nuclear bodies under FR light. Overall, these data identified a vital mechanism of phyA-FIN219-COP1 association in response to FR light, and MeJA may allow the photoactivated phyA to trigger photomorphogenic responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo A/genética , Fitocromo A/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo/genética , Mutação , Regulação da Expressão Gênica de Plantas
17.
Proc Natl Acad Sci U S A ; 120(39): e2304513120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725643

RESUMO

Nitrate supply is fundamental to support shoot growth and crop performance, but the associated increase in stem height exacerbates the risks of lodging and yield losses. Despite their significance for agriculture, the mechanisms involved in the promotion of stem growth by nitrate remain poorly understood. Here, we show that the elongation of the hypocotyl of Arabidopsis thaliana, used as a model, responds rapidly and persistently to upshifts in nitrate concentration, rather than to the nitrate level itself. The response occurred even in shoots dissected from their roots and required NITRATE TRANSPORTER 1.1 (NRT1.1) in the phosphorylated state (but not NRT1.1 nitrate transport capacity) and NIN-LIKE PROTEIN 7 (NLP7). Nitrate increased PHYTOCHROME INTERACTING FACTOR 4 (PIF4) nuclear abundance by posttranscriptional mechanisms that depended on NRT1.1 and phytochrome B. In response to nitrate, PIF4 enhanced the expression of numerous SMALL AUXIN-UP RNA (SAUR) genes in the hypocotyl. The growth response to nitrate required PIF4, positive and negative regulators of its activity, including AUXIN RESPONSE FACTORs, and SAURs. PIF4 integrates cues from the soil (nitrate) and aerial (shade) environments adjusting plant stature to facilitate access to light.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Nitratos/farmacologia , Fitocromo B , Arabidopsis/genética , Ácidos Indolacéticos , Transportadores de Nitrato , RNA , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
18.
PLoS Genet ; 19(5): e1010706, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163541

RESUMO

Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon.


Assuntos
Brachypodium , Fitocromo , Proteínas de Plantas , Fatores de Transcrição , Brachypodium/genética , Brachypodium/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Fotoperíodo , Fatores de Transcrição/metabolismo , Epistasia Genética , Mutação , Perfilação da Expressão Gênica , Flores/metabolismo
19.
J Biol Chem ; 300(7): 107369, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750792

RESUMO

Phytochromes (Phys) are a diverse collection of photoreceptors that regulate numerous physiological and developmental processes in microorganisms and plants through photointerconversion between red-light-absorbing Pr and far-red light-absorbing Pfr states. Light is detected by an N-terminal photo-sensing module (PSM) sequentially comprised of Period/ARNT/Sim (PAS), cGMP-phosphodiesterase/adenylyl cyclase/FhlA (GAF), and Phy-specific (PHY) domains, with the bilin chromophore covalently-bound within the GAF domain. Phys sense light via the Pr/Pfr ratio measured by the light-induced rotation of the bilin D-pyrrole ring that triggers conformational changes within the PSM, which for microbial Phys reaches into an output region. A key step is a ß-stranded to α-helical reconfiguration of a hairpin loop extending from the PHY domain to contact the GAF domain. Besides canonical Phys, cyanobacteria express several variants, including a PAS-less subfamily that harbors just the GAF and PHY domains for light detection. Prior 2D-NMR studies of a model PAS-less Phy from Synechococcus_sp._JA-2-3B'a(2-13) (SyB-Cph1) proposed a unique photoconversion mechanism involving an A-pyrrole ring rotation while magic-angle-spinning NMR probing the chromophore proposed the prototypic D-ring flip. To help solve this conundrum, we determined the crystallographic structure of the GAF-PHY region from SyB-Cph1 as Pr. Surprisingly, this structure differs from canonical Phys by having a Pr ZZZsyn,syn,anti bilin configuration but shifted to the activated position in the binding pocket with consequent folding of the hairpin loop to α-helical, an architecture common for Pfr. Collectively, the PSM of SyB-Cph1 as Pr displayed a mix of dark-adapted and photoactivated features whose co-planar A-C pyrrole rings support a D-ring flip mechanism.


Assuntos
Proteínas de Bactérias , Fitocromo , Fitocromo/química , Fitocromo/metabolismo , Fitocromo/genética , Cristalografia por Raios X , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/metabolismo , Luz , Domínios Proteicos , Modelos Moleculares , Conformação Proteica
20.
J Biol Chem ; 300(5): 107217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522512

RESUMO

Sensor-effector proteins integrate information from different stimuli and transform this into cellular responses. Some sensory domains, like red-light responsive bacteriophytochromes, show remarkable modularity regulating a variety of effectors. One effector domain is the GGDEF diguanylate cyclase catalyzing the formation of the bacterial second messenger cyclic-dimeric-guanosine monophosphate. While critical signal integration elements have been described for different phytochromes, a generalized understanding of signal processing and communication over large distances, roughly 100 Å in phytochrome diguanylate cyclases, is missing. Here we show that dynamics-driven allostery is key to understanding signal integration on a molecular level. We generated protein variants stabilized in their far-red-absorbing Pfr state and demonstrated by analysis of conformational dynamics using hydrogen-deuterium exchange coupled to mass spectrometry that single amino acid replacements are accompanied by altered dynamics of functional elements throughout the protein. We show that the conformational dynamics correlate with the enzymatic activity of these variants, explaining also the increased activity of a non-photochromic variant. In addition, we demonstrate the functional importance of mixed Pfr/intermediate state dimers using a fast-reverting variant that still enables wild-type-like fold-changes of enzymatic stimulation by red light. This supports the functional role of single protomer activation in phytochromes, a property that might correlate with the non-canonical mixed Pfr/intermediate-state spectra observed for many phytochrome systems. We anticipate our results to stimulate research in the direction of dynamics-driven allosteric regulation of different bacteriophytochrome-based sensor-effectors. This will eventually impact design strategies for the creation of novel sensor-effector systems for enriching the optogenetic toolbox.


Assuntos
Luz , Fósforo-Oxigênio Liases , Fitocromo , Regulação Alostérica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fósforo-Oxigênio Liases/metabolismo , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Fitocromo/metabolismo , Fitocromo/química , Fitocromo/genética , Multimerização Proteica , Luz Vermelha , Alteromonadaceae/enzimologia , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA