Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 513: 3-11, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38759942

RESUMO

The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.


Assuntos
Folículo Piloso , Unhas , Folículo Piloso/embriologia , Humanos , Unhas/embriologia , Unhas/crescimento & desenvolvimento , Animais , Transdução de Sinais , Regeneração/fisiologia
2.
Dev Biol ; 515: 60-66, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38964706

RESUMO

Terminal differentiation of epithelial cells is critical for the barrier function of the skin, the growth of skin appendages, such as hair and nails, and the development of the skin of amniotes. Here, we present the hypothesis that the differentiation of cells in the embryonic periderm shares characteristic features with the differentiation of epithelial cells that support the morphogenesis of cornified skin appendages during postnatal life. The periderm prevents aberrant fusion of adjacent epithelial sites during early skin development. It is shed off when keratinocytes of the epidermis form the cornified layer, the stratum corneum. A similar role is played by epithelia that ensheath cornifying skin appendages until they disintegrate to allow the separation of the mature part of the skin appendage from the adjacent tissue. These epithelia, exemplified by the inner root sheath of hair follicles and the epithelia close to the free edge of nails or claws, are referred to as scaffolding epithelia. The periderm and scaffolding epithelia are similar with regard to their transient functions in separating tissues and the conserved expression of trichohyalin and trichohyalin-like genes in mammals and birds. Thus, we propose that parts of the peridermal differentiation program were coopted to a new postnatal function during the evolution of cornified skin appendages in amniotes.


Assuntos
Diferenciação Celular , Diferenciação Celular/fisiologia , Animais , Pele/embriologia , Pele/citologia , Pele/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Epiderme/embriologia , Epiderme/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Folículo Piloso/embriologia , Folículo Piloso/citologia , Humanos , Morfogênese
3.
Genes Dev ; 30(20): 2325-2338, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807033

RESUMO

Growth and regeneration of one tissue within an organ compels accommodative changes in the surrounding tissues. However, the molecular nature and operating logic governing these concurrent changes remain poorly defined. The dermal adipose layer expands concomitantly with hair follicle downgrowth, providing a paradigm for studying coordinated changes of surrounding lineages with a regenerating tissue. Here, we discover that hair follicle transit-amplifying cells (HF-TACs) play an essential role in orchestrating dermal adipogenesis through secreting Sonic Hedgehog (SHH). Depletion of Shh from HF-TACs abrogates both dermal adipogenesis and hair follicle growth. Using cell type-specific deletion of Smo, a gene required in SHH-receiving cells, we found that SHH does not act on hair follicles, adipocytes, endothelial cells, and hematopoietic cells for adipogenesis. Instead, SHH acts directly on adipocyte precursors, promoting their proliferation and their expression of a key adipogenic gene, peroxisome proliferator-activated receptor γ (Pparg), to induce dermal adipogenesis. Our study therefore uncovers a critical role for TACs in orchestrating the generation of both their own progeny and a neighboring lineage to achieve concomitant tissue production across lineages.


Assuntos
Adipogenia/fisiologia , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Proteínas Hedgehog/metabolismo , Pele/metabolismo , Adipogenia/genética , Animais , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/embriologia , Folículo Piloso/crescimento & desenvolvimento , Masculino , Camundongos , Transdução de Sinais , Pele/embriologia , Pele/crescimento & desenvolvimento
4.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126021

RESUMO

The Basal Cell Carcinoma (BCC) is a sort of unique tumour due to its combined peculiar histological features and clinical behaviour, such as the constant binary involvement of the epithelium and the stroma, the virtual absence of metastases and the predilection of specific anatomical sites for both onset and spread. A potential correlation between the onset of BCC and a dysembryogenetic process has long been hypothesised. A selective investigation of PubMed-indexed publications supporting this theory retrieved 64 selected articles published between 1901 and 2024. From our analysis of the literature review, five main research domains on the dysembryogenetic pathogenesis of BCC were identified: (1) The correlation between the topographic distribution of BCC and the macroscopic embryology, (2) the correlation between BCC and the microscopic embryology, (3) the genetic BCC, (4) the correlation between BCC and the hair follicle and (5) the correlation between BCC and the molecular embryology with a specific focus on the Hedgehog signalling pathway. A large amount of data from microscopic and molecular research consistently supports the hypothesis of a dysembryogenetic pathogenesis of BCC. Such evidence is promoting advances in the clinical management of this disease, with innovative targeted molecular therapies on an immune modulating basis being developed.


Assuntos
Carcinoma Basocelular , Proteínas Hedgehog , Neoplasias Cutâneas , Carcinoma Basocelular/patologia , Carcinoma Basocelular/etiologia , Carcinoma Basocelular/genética , Humanos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/etiologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Transdução de Sinais , Folículo Piloso/patologia , Folículo Piloso/embriologia , Folículo Piloso/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(48): 30509-30519, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199643

RESUMO

Vertebrate Hox genes are critical for the establishment of structures during the development of the main body axis. Subsequently, they play important roles either in organizing secondary axial structures such as the appendages, or during homeostasis in postnatal stages and adulthood. Here, we set up to analyze their elusive function in the ectodermal compartment, using the mouse limb bud as a model. We report that the HoxC gene cluster was co-opted to be transcribed in the distal limb ectoderm, where it is activated following the rule of temporal colinearity. These ectodermal cells subsequently produce various keratinized organs such as nails or claws. Accordingly, deletion of the HoxC cluster led to mice lacking nails (anonychia), a condition stronger than the previously reported loss of function of Hoxc13, which is the causative gene of the ectodermal dysplasia 9 (ECTD9) in human patients. We further identified two mammalian-specific ectodermal enhancers located upstream of the HoxC gene cluster, which together regulate Hoxc gene expression in the hair and nail ectodermal organs. Deletion of these regulatory elements alone or in combination revealed a strong quantitative component in the regulation of Hoxc genes in the ectoderm, suggesting that these two enhancers may have evolved along with the mammalian taxon to provide the level of HOXC proteins necessary for the full development of hair and nail.


Assuntos
Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Folículo Piloso/metabolismo , Unhas/metabolismo , Animais , Biomarcadores , Ectoderma/embriologia , Folículo Piloso/embriologia , Humanos , Camundongos , Camundongos Knockout , Unhas/embriologia
6.
Mamm Genome ; 32(1): 12-29, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33367954

RESUMO

We investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.


Assuntos
Alopecia/genética , Alopecia/metabolismo , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Suscetibilidade a Doenças , Retrovirus Endógenos/genética , Regulação da Expressão Gênica , Mutação , Animais , Biomarcadores , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Morfogênese/genética
7.
Genes Dev ; 27(4): 450-8, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23431057

RESUMO

In hair follicle development, a placode-derived signal is believed to induce formation of the dermal condensation, an essential component of ectodermal organs. However, the identity of this signal is unknown. Furthermore, although induction and patterning of hair follicles are intimately linked, it is not known whether the mesenchymal condensation is necessary for inducing the initial epithelial pattern. Here, we show that fibroblast growth factor 20 (Fgf20) is expressed in hair placodes and is induced by and functions downstream from epithelial ectodysplasin (Eda)/Edar and Wnt/ß-Catenin signaling to initiate formation of the underlying dermal condensation. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles and subsequent formation of guard, awl, and auchene hairs. Although primary dermal condensations are absent in Fgf20 mutant mice, a regular array of hair placodes is formed, demonstrating that the epithelial patterning process is independent of known histological and molecular markers of underlying mesenchymal patterns during the initial stages of hair follicle development.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Folículo Piloso/embriologia , Animais , Ectodisplasinas/metabolismo , Receptor Edar/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Camundongos , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
8.
Genes Dev ; 27(1): 39-51, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23271346

RESUMO

The accurate maintenance of genomic integrity is essential for tissue homeostasis. Deregulation of this process leads to cancer and aging. BRCA1 is a critical mediator of this process. Here, we performed conditional deletion of Brca1 during epidermal development and found that BRCA1 is specifically required for hair follicle (HF) formation and for development of adult HF stem cells (SCs). Mice deficient for Brca1 in the epidermis are hairless and display a reduced number of HFs that degenerate progressively. Surprisingly, the interfollicular epidermis and the sebaceous glands remain unaffected by Brca1 deletion. Interestingly, HF matrix transient amplifying progenitors present increased DNA damage, p53 stabilization, and caspase-dependent apoptosis compared with the interfollicular and sebaceous progenitors, leading to hyperproliferation, apoptosis, and subsequent depletion of the prospective adult HF SCs. Concomitant deletion of p53 and Brca1 rescues the defect of HF morphogenesis and loss of HF SCs. During adult homeostasis, BRCA1 is dispensable for quiescent bulge SCs, but upon their activation during HF regeneration, Brca1 deletion causes apoptosis and depletion of Brca1-deficient bulge SCs. Our data reveal a major difference in the requirement of BRCA1 between different types of epidermal SCs and progenitors and during the different activation stages of adult HF SCs.


Assuntos
Proteína BRCA1/deficiência , Proteína BRCA1/metabolismo , Epiderme , Folículo Piloso/citologia , Células-Tronco , Animais , Apoptose/genética , Proteína BRCA1/genética , Dano ao DNA/genética , Células Epidérmicas , Epiderme/metabolismo , Deleção de Genes , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Development ; 144(10): 1887-1895, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28512199

RESUMO

SOX family proteins SOX2 and SOX18 have been reported as being essential in determining hair follicle type; however, the role they play during development remains unclear. Here, we demonstrate that Sox18 regulates the normal differentiation of the dermal papilla of all hair types. In guard (primary) hair dermal condensate (DC) cells, we identified transient Sox18 in addition to SOX2 expression at E14.5, which allowed fate tracing of primary DC cells until birth. Similarly, expression of Sox18 was detected in the DC cells of secondary hairs at E16.5 and in tertiary hair at E18.5. Dominant-negative Sox18 mutation (opposum) did not prevent DC formation in any hair type. However, it affected dermal papilla differentiation, restricting hair formation especially in secondary and tertiary hairs. This Sox18 mutation also prevented neonatal dermal cells or dermal papilla spheres from inducing hair in regeneration assays. Microarray expression studies identified WNT5A and TNC as potential downstream effectors of SOX18 that are important for epidermal WNT signalling. In conclusion, SOX18 acts as a mesenchymal molecular switch necessary for the formation and function of the dermal papilla in all hair types.


Assuntos
Diferenciação Celular/genética , Folículo Piloso/embriologia , Cabelo/embriologia , Fatores de Transcrição SOXF/fisiologia , Animais , Derme/embriologia , Derme/metabolismo , Embrião de Mamíferos , Células Epidérmicas , Epiderme/embriologia , Feminino , Genes Dominantes , Genes de Troca/fisiologia , Cabelo/metabolismo , Folículo Piloso/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Transcrição SOXF/genética
10.
PLoS Biol ; 15(7): e2002117, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28700594

RESUMO

Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction-diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction-diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern's condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) ß signalling, which serves to drive chemotactic mesenchymal patterning when reaction-diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis.


Assuntos
Folículo Piloso/embriologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Padronização Corporal , Diferenciação Celular , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos , Transdução de Sinais , Pele/citologia , Pele/embriologia , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
Biochem Biophys Res Commun ; 509(4): 862-868, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30638933

RESUMO

Sox13, a group D member of the Sry-related high-mobility group box (Sox) transcription factor family, is expressed in various tissues including the hair follicle. However, its spatiotemporal expression patterns in the hair follicle and its role in hair development remain to be elucidated. To address these questions, we generated Sox13-LacZ-knock-in mice (Sox13LacZ/+), in which the LacZ reporter gene was inserted in-frame into exon 2, which contains the translation initiation codon. X-gal staining in Sox13LacZ/+ embryos revealed that Sox13 is initially expressed in the epithelial portion of the placode, and subsequently in the hair germ and the hair peg during early hair follicle development. In postnatal catagen and anagen, Sox13 was detected in the epithelial sheath, whereas in telogen, Sox13 was localized in the bulge region, where hair follicle stem cells reside. Immunohistochemistry with an anti-ß-galactosidase antibody and anti-hair keratin antibodies that specifically mark the different layers of the hair follicle revealed that Sox13 was predominantly expressed in the outer root sheath in anagen. However, the integumentary structures of Sox13LacZ/LacZ mice were grossly and histologically indistinguishable from those of wild type mice. These results suggest that although Sox13 is dispensable for epidermal and adnexal development, Sox13 is a useful marker for early hair follicle development.


Assuntos
Autoantígenos/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Análise Espaço-Temporal , Animais , Autoantígenos/análise , Biomarcadores , Conexinas , Embrião de Mamíferos , Folículo Piloso/embriologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra
12.
Development ; 143(9): 1512-22, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26952977

RESUMO

In the epidermis of mice lacking transcription factor nuclear factor-kappa B (NF-κB) activity, primary hair follicle (HF) pre-placode formation is initiated without progression to proper placodes. NF-κB modulates WNT and SHH signaling at early stages of HF development, but this does not fully account for the phenotypes observed upon NF-κB inhibition. To identify additional NF-κB target genes, we developed a novel method to isolate and transcriptionally profile primary HF placodes with active NF-κB signaling. In parallel, we compared gene expression at the same developmental stage in NF-κB-deficient embryos and controls. This uncovered novel NF-κB target genes with potential roles in priming HF placodes for down-growth. Importantly, we identify Lhx2 (encoding a LIM/homeobox transcription factor) as a direct NF-κB target gene, loss of which replicates a subset of phenotypes seen in NF-κB-deficient embryos. Lhx2 and Tgfb2 knockout embryos exhibit very similar abnormalities in HF development, including failure of the E-cadherin suppression required for follicle down-growth. We show that TGFß2 signaling is impaired in NF-κB-deficient and Lhx2 knockout embryos and that exogenous TGFß2 rescues the HF phenotypes in Lhx2 knockout skin explants, indicating that it operates downstream of LHX2. These findings identify a novel NF-κB/LHX2/TGFß2 signaling axis that is crucial for primary HF morphogenesis, which may also function more broadly in development and disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Folículo Piloso/embriologia , Proteínas com Homeodomínio LIM/genética , Organogênese/genética , Fator de Transcrição RelA/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta2/genética , Animais , Caderinas/metabolismo , Diferenciação Celular/genética , Movimento Celular/genética , Embrião de Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
13.
Development ; 143(15): 2803-17, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317810

RESUMO

Oral epithelia protect against constant challenges by bacteria, viruses, toxins and injury while also contributing to the formation of ectodermal appendages such as teeth, salivary glands and lingual papillae. Despite increasing evidence that differentiation pathway genes are frequently mutated in oral cancers, comparatively little is known about the mechanisms that regulate normal oral epithelial development. Here, we characterize oral epithelial stratification and describe multiple distinct functions for the mitotic spindle orientation gene LGN (Gpsm2) in promoting differentiation and tissue patterning in the mouse oral cavity. Similar to its function in epidermis, apically localized LGN directs perpendicular divisions that promote stratification of the palatal, buccogingival and ventral tongue epithelia. Surprisingly, however, in dorsal tongue LGN is predominantly localized basally, circumferentially or bilaterally and promotes planar divisions. Loss of LGN disrupts the organization and morphogenesis of filiform papillae but appears to be dispensable for embryonic hair follicle development. Thus, LGN has crucial tissue-specific functions in patterning surface ectoderm and its appendages by controlling division orientation.


Assuntos
Proteínas de Transporte/metabolismo , Epitélio/metabolismo , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Varredura , Morfogênese/genética , Morfogênese/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Papilas Gustativas/embriologia , Papilas Gustativas/metabolismo , Língua/embriologia , Língua/metabolismo
14.
Exp Dermatol ; 28(4): 332-344, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30887615

RESUMO

Hair follicle (HF) formation in developing embryonic skin requires stepwise signalling between the epithelial epidermis and mesenchymal dermis, and their specialized derivatives, the placode/germ/peg and dermal condensate/papilla, respectively. Classically, distinct stages of HF morphogenesis have been defined, in the mouse model, based on (a) changes in cell morphology and aggregation; (b) expression of few known molecular markers; (c) the extent of follicle downgrowth; and (d) the presence of differentiating cell types. Refined genetic strategies and recent emerging technologies, such as live imaging and transcriptome analyses of isolated cell populations or single cells, have enabled a closer dissection of the signalling requirements at different stages of HF formation, particularly early on. They have also led to the discovery of precursor cells for placode, dermal condensate and future bulge stem cells that, combined with molecular insights into their fate specification and subsequent formation, serve as novel landmarks for early HF morphogenetic events and studies of the signalling networks mediating these processes. In this review, we integrate the emergence of HF precursor cell states and novel molecular markers of fate and formation to update the widely used 20-year-old seminal classification guide of HF morphogenetic stages by Paus et al. We then temporally describe the latest insights into the early cellular and molecular events and signalling requirements for HF morphogenesis in relation to one another in a holistic manner.


Assuntos
Folículo Piloso/embriologia , Animais , Humanos , Morfogênese , Transdução de Sinais
15.
Exp Dermatol ; 28(4): 355-366, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30681746

RESUMO

Human skin progenitor cells will form new hair follicles, although at a low efficiency, when injected into nude mouse skin. To better study and improve upon this regenerative process, we developed an in vitro system to analyse the morphogenetic cell behaviour in detail and modulate physical-chemical parameters to more effectively generate hair primordia. In this three-dimensional culture, dissociated human neonatal foreskin keratinocytes self-assembled into a planar epidermal layer while fetal scalp dermal cells coalesced into stripes, then large clusters, and finally small clusters resembling dermal condensations. At sites of dermal clustering, subjacent epidermal cells protruded to form hair peg-like structures, molecularly resembling hair pegs within the sequence of follicular development. The hair peg-like structures emerged in a coordinated, formative wave, moving from periphery to centre, suggesting that the droplet culture constitutes a microcosm with an asymmetric morphogenetic field. In vivo, hair follicle populations also form in a progressive wave, implying the summation of local periodic patterning events with an asymmetric global influence. To further understand this global patterning process, we developed a mathematical simulation using Turing activator-inhibitor principles in an asymmetric morphogenetic field. Together, our culture system provides a suitable platform to (a) analyse the self-assembly behaviour of hair progenitor cells into periodically arranged hair primordia and (b) identify parameters that impact the formation of hair primordia in an asymmetric morphogenetic field. This understanding will enhance our future ability to successfully engineer human hair follicle organoids.


Assuntos
Folículo Piloso/embriologia , Engenharia Tecidual/métodos , Folículo Piloso/citologia , Humanos , Modelos Biológicos , Morfogênese , Cultura Primária de Células
16.
PLoS Genet ; 12(7): e1006151, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27414999

RESUMO

An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.


Assuntos
Proteínas Hedgehog/fisiologia , Células de Merkel/citologia , Complexo Repressor Polycomb 2/fisiologia , Transdução de Sinais , Pele/embriologia , Animais , Linhagem da Célula , Proliferação de Células , Epiderme/embriologia , Epiderme/metabolismo , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Folículo Piloso/embriologia , Queratinócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Pele/metabolismo , Células-Tronco/citologia , Transcrição Gênica
17.
PLoS Genet ; 12(7): e1006150, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27414798

RESUMO

The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.


Assuntos
Ectodisplasinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Células de Merkel/citologia , Proteína Wnt1/metabolismo , Animais , Linhagem da Célula , Reparo do DNA , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Deleção de Genes , Genótipo , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Homeostase , Ligantes , Masculino , Camundongos , Microscopia de Fluorescência , Morfogênese , Mutação , Neurônios/metabolismo , Transdução de Sinais , Pele/embriologia , Pele/metabolismo , Tato
18.
Dev Biol ; 428(1): 188-203, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28599846

RESUMO

Hair follicles of the mammalian epidermis display local order and global alignment, a complex pattern instructed by the core planar cell polarity (PCP) pathway. Here we address the contributions of core PCP genes, Van Gogh-like and Frizzled, to the establishment, local refinement, and global order of embryonic and postnatal hair follicles. We find that, similar to Fz6 mutants, the disordered hair patterns of Vangl2 mutants are refined over time and eventually corrected. In both mutants, we find that tissue-level reorientation occurs through locally coordinated follicle rotation at stereotyped locations. Strikingly, Vangl2 and Fz6 mutant follicles collectively rotate with opposing directionalities, suggesting that redundant core PCP signals contribute to their directed realignment. Consistently, global follicle alignment is not restored upon conditional ablation of both Vangl1 and Vangl2 genes. Instead, spatially distinct patterns of whorls and crosses emerge and persist even after a complete cycle of hair follicle regeneration. Thus, local refinement of hair follicles into higher order patterns can occur independently of the core PCP system, however, their global alignment with the body axes requires PCP function throughout morphogenesis, growth and regeneration.


Assuntos
Padronização Corporal/genética , Polaridade Celular/genética , Receptores Frizzled/genética , Folículo Piloso/embriologia , Proteínas do Tecido Nervoso/genética , Animais , Padronização Corporal/fisiologia , Proteínas de Transporte/genética , Folículo Piloso/citologia , Folículo Piloso/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Morfogênese/genética , Transdução de Sinais/genética
19.
Development ; 142(3): 409-19, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25605777

RESUMO

How periodic patterns are generated is an open question. A number of mechanisms have been proposed--most famously, Turing's reaction-diffusion model. However, many theoretical and experimental studies focus on the Turing mechanism while ignoring other possible mechanisms. Here, we use a general model of periodic patterning to show that different types of mechanism (molecular, cellular, mechanical) can generate qualitatively similar final patterns. Observation of final patterns is therefore not sufficient to favour one mechanism over others. However, we propose that a mathematical approach can help to guide the design of experiments that can distinguish between different mechanisms, and illustrate the potential value of this approach with specific biological examples.


Assuntos
Padronização Corporal/fisiologia , Biologia do Desenvolvimento/métodos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Biológicos , Pigmentação da Pele/fisiologia , Animais , Padronização Corporal/genética , Difusão , Folículo Piloso/embriologia , Camundongos , Peixe-Zebra
20.
Development ; 142(12): 2194-202, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26023097

RESUMO

Hair follicle morphogenesis requires precisely controlled reciprocal communications, including hedgehog (Hh) signaling. Activation of the Hh signaling pathway relies on the primary cilium. Disrupting ciliogenesis results in hair follicle morphogenesis defects due to attenuated Hh signaling; however, the loss of cilia makes it impossible to determine whether hair follicle phenotypes in these cilia mutants are caused by the loss of cilia, disruption of Hh signaling, or a combination of these events. In this study, we characterized the function of Ift27, which encodes a subunit of intraflagellar transport (IFT) complex B. Hair follicle morphogenesis of Ift27-null mice was severely impaired, reminiscent of phenotypes observed in cilia and Hh mutants. Furthermore, the Hh signaling pathway was attenuated in Ift27 mutants, which was in association with abnormal ciliary trafficking of SMO and GLI2, and impaired processing of Gli transcription factors; however, formation of the ciliary axoneme was unaffected. The ciliary localization of IFT25 (HSPB11), the binding partner of IFT27, was disrupted in Ift27 mutant cells, and Ift25-null mice displayed hair follicle phenotypes similar to those of Ift27 mutants. These data suggest that Ift27 and Ift25 operate in a genetically and functionally dependent manner during hair follicle morphogenesis. This study suggests that the molecular trafficking machineries underlying ciliogenesis and Hh signaling can be segregated, thereby providing important insights into new avenues of inhibiting Hh signaling, which might be adopted in the development of targeted therapies for Hh-dependent cancers, such as basal cell carcinoma.


Assuntos
Folículo Piloso/embriologia , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Organogênese/genética , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Transporte Biológico/genética , Diferenciação Celular , Células Cultivadas , Cílios/fisiologia , Folículo Piloso/metabolismo , Proteínas Hedgehog/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Queratinócitos/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Knockout , Transporte Proteico/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Transplante de Pele , Receptor Smoothened , Proteína Gli2 com Dedos de Zinco , Proteínas rab de Ligação ao GTP/biossíntese , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA