Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.406
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(10): 1676-1693.e23, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35489334

RESUMO

Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.


Assuntos
Cannabis , Doenças Cardiovasculares , Alucinógenos , Analgésicos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Células Endoteliais , Genisteína/farmacologia , Genisteína/uso terapêutico , Inflamação/tratamento farmacológico , Camundongos , Receptor CB1 de Canabinoide , Receptores de Canabinoides
2.
Hum Mol Genet ; 32(7): 1090-1101, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36300303

RESUMO

Cysteamine is currently the only therapy for nephropathic cystinosis. It significantly improves life expectancy and delays progression to end-stage kidney disease; however, it cannot prevent it. Unfortunately, compliance to therapy is often weak, particularly during adolescence. Therefore, finding better treatments is a priority in the field of cystinosis. Previously, we found that genistein, an isoflavone particularly enriched in soy, can revert part of the cystinotic cellular phenotype that is not sensitive to cysteamine in vitro. To test the effects of genistein in vivo, we fed 2-month-old wild-type and Ctns-/- female mice with either a control diet, a genistein-containing diet or a cysteamine-containing diet for 14 months. Genistein (160 mg/kg/day) did not affect the growth of the mice or hepatic functionality. Compared with untreated mice at 16 months, Ctns-/- mice fed with genistein had lower cystine concentrations in their kidneys, reduced formation of cystine crystals, a smaller number of LAMP1-positive structures and an overall better-preserved parenchymal architecture. Cysteamine (400 mg/kg/day) was efficient in reverting the lysosomal phenotype and in preventing the development of renal lesions. These preclinical data indicate that genistein ameliorates kidney injury resulting from cystinosis with no side effects. Genistein therapy represents a potential treatment to improve the outcome for patients with cystinosis.


Assuntos
Cistinose , Nefropatias , Animais , Feminino , Camundongos , Cisteamina/uso terapêutico , Cistina/uso terapêutico , Cistinose/tratamento farmacológico , Cistinose/genética , Modelos Animais de Doenças , Genisteína/farmacologia , Genisteína/uso terapêutico , Rim
3.
Drug Resist Updat ; 73: 101056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277755

RESUMO

BACKGROUND: The treatment of dopamine agonists (DA) resistant prolactinomas remains a formidable challenge, as the mechanism of resistance is still unclear, and there are currently no viable alternative drug therapies available. This study seeks to investigate the mechanism of DA resistance in prolactinomas and identify new potentially effective drugs. METHODS: To explore the mechanism of DA resistance in prolactinomas, this study conducted transcriptome sequencing analysis on 27 cases of DA-resistant prolactinomas and 10 cases of sensitive prolactinomas. In addition, single-cell sequencing analysis was performed on 3 cases of DA-resistant prolactinomas and 3 cases of sensitive prolactinomas. Furthermore, to screen for potential therapeutic drugs, the study successfully established an organoids model for DA-resistant prolactinomas and screened 180 small molecule compounds using 8 organoids. The efficacy of the identified drugs was verified through various assays, including CCK-8, colony formation, CTG, and flow cytometry, and their mechanisms of action were confirmed through WB and IHC. The effectiveness of the identified drugs was evaluated both in vitro and in vivo. RESULTS: The results of transcriptome sequencing and single-cell sequencing analyses showed that DA resistance in prolactinomas is associated with the upregulation of the Focal Adhesion (FA) signaling pathway. Additionally, immunohistochemical validation revealed that FAK and Paxillin were significantly upregulated in DA-resistant prolactinomas. Screening of 180 small molecule compounds using 8 organoids identified Genistein as a potentially effective drug for DA-resistant prolactinomas. Experimental validation demonstrated that Genistein inhibited the proliferation of pituitary tumor cell lines and organoids and promoted apoptosis in pituitary tumor cells. Moreover, both the cell sequencing results and WB validation results of the drug-treated cells indicated that Genistein exerts its anti-tumor effect by inhibiting the FA pathway. In vivo, experiments also showed that Genistein can inhibit subcutaneous tumor formation. CONCLUSION: DA resistance in prolactinomas is associated with upregulation of the Focal Adhesion (FA) signaling pathway, and Genistein can exert its anti-tumor effect by inhibiting the expression of the FA pathway.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Prolactinoma , Humanos , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Prolactinoma/tratamento farmacológico , Prolactinoma/genética , Prolactinoma/metabolismo , Prolactina/metabolismo , Prolactina/uso terapêutico , Genisteína/uso terapêutico , Tumores Neuroendócrinos/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética
4.
J Virol ; 97(11): e0071923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37929962

RESUMO

IMPORTANCE: African swine fever virus (ASFV) is a highly fatal swine disease that severely affects the pig industry. Although ASFV has been prevalent for more than 100 years, effective vaccines or antiviral strategies are still lacking. In this study, we identified four Bacillus subtilis strains that inhibited ASFV proliferation in vitro. Pigs fed with liquid biologics or powders derived from four B. subtilis strains mixed with pellet feed showed reduced morbidity and mortality when challenged with ASFV. Further analysis showed that the antiviral activity of B. subtilis was based on its metabolites arctiin and genistein interfering with the function of viral topoisomerase II. Our findings offer a promising new strategy for the prevention and control of ASFV that may significantly alleviate the economic losses in the pig industry.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Bacillus subtilis , Animais , Febre Suína Africana/prevenção & controle , Antivirais/farmacologia , DNA Topoisomerases Tipo II/farmacologia , Genisteína/farmacologia , Suínos
5.
J Transl Med ; 22(1): 84, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245717

RESUMO

BACKGROUND: The main challenge in personalized treatment of breast cancer (BC) is how to integrate massive amounts of computing resources and data. This study aimed to identify a novel molecular target that might be effective for BC prognosis and for targeted therapy by using network-based multidisciplinary approaches. METHODS: Differentially expressed genes (DEGs) were first identified based on ESTIMATE analysis. A risk model in the TCGA-BRCA cohort was constructed using the risk score of six DEGs and validated in external and clinical in-house cohorts. Subsequently, independent prognostic factors in the internal and external cohorts were evaluated. Cell viability CCK-8 and wound healing assays were performed after PTGES3 siRNA was transiently transfected into the BC cell lines. Drug prediction and molecular docking between PTGES3 and drugs were further analyzed. Cell viability and PTGES3 expression in two BC cell lines after drug treatment were also investigated. RESULTS: A novel six-gene signature (including APOOL, BNIP3, F2RL2, HINT3, PTGES3 and RTN3) was used to establish a prognostic risk stratification model. The risk score was an independent prognostic factor that was more accurate than clinicopathological risk factors alone in predicting overall survival (OS) in BC patients. A high risk score favored tumor stage/grade but not OS. PTGES3 had the highest hazard ratio among the six genes in the signature, and its mRNA and protein levels significantly increased in BC cell lines. PTGES3 knockdown significantly inhibited BC cell proliferation and migration. Three drugs (gedunin, genistein and diethylstilbestrol) were confirmed to target PTGES3, and genistein and diethylstilbestrol demonstrated stronger binding affinities than did gedunin. Genistein and diethylstilbestrol significantly inhibited BC cell proliferation and reduced the protein and mRNA levels of PTGES3. CONCLUSIONS: PTGES3 was found to be a novel drug target in a robust six-gene prognostic signature that may serve as a potential therapeutic strategy for BC.


Assuntos
Neoplasias da Mama , Limoninas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Dietilestilbestrol , Genisteína , Simulação de Acoplamento Molecular , Prognóstico , RNA Mensageiro
6.
Osteoporos Int ; 35(3): 413-430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875614

RESUMO

Due to estrogen deficiency, postmenopausal women may suffer from an imbalance in bone metabolism that leads to bone fractures. Isoflavones, a type of phytoestrogen, have been suggested to improve bone metabolism and increase bone mass. Therefore, isoflavones are increasingly recognized as a promising natural alternative to hormone replacement therapy for postmenopausal women who face a heightened risk of osteoporosis and are susceptible to bone fractures. PURPOSE: This study aimed to evaluate the efficacy of isoflavone interventions on bone mineral density (BMD) in postmenopausal women by means of systematic review and meta-analysis. METHODS: The electronic database searches were performed on PubMed, Embase, Scopus, and Cochrane Library databases, covering literature up to April 20, 2023. A random-effects model was used to obtain the main effect estimates, with a mean difference (MD) and its 95% confidence interval (CI) as the effect size summary. The risk of bias assessment was conducted using the Risk of Bias 2 (RoB2) tool. RESULTS: A total of 63 randomized controlled trials comparing isoflavone interventions (n = 4,754) and placebo (n = 4,272) were included. The results indicated that isoflavone interventions significantly improved BMD at the lumbar spine (MD = 0.0175 g/cm2; 95% CI, 0.0088 to 0.0263, P < 0.0001), femoral neck (MD = 0.0172 g/cm2; 95% CI, 0.0046 to 0.0298, P = 0.0073), and distal radius (MD = 0.0138 g/cm2; 95% CI, 0.0077 to 0.0198, P < 0.0001) in postmenopausal women. Subgroup analysis showed that the isoflavone intervention was effective for improving BMD when the duration was ≥ 12 months and when the intervention contained genistein of at least 50 mg/day. CONCLUSION: This systematic review and meta-analysis suggests that isoflavone interventions, especially those containing genistein of at least 50 mg/day, can effectively enhance BMD in postmenopausal women.


Assuntos
Fraturas Ósseas , Isoflavonas , Osteoporose Pós-Menopausa , Feminino , Humanos , Densidade Óssea , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Genisteína/farmacologia , Genisteína/uso terapêutico , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/prevenção & controle , Pós-Menopausa , Ensaios Clínicos Controlados Aleatórios como Assunto , Fraturas Ósseas/tratamento farmacológico
7.
Mol Reprod Dev ; 91(3): e23737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450862

RESUMO

Extracellular vesicles (EVs) play an important role in the development and function of mammalian ovarian follicles. However, the mechanisms by which they are taken up by the follicular granulosa cells remain unclear. In addition, while oocytes play a pivotal role in follicular development, the possible interactions between oocyte-derived paracrine factors (ODPFs) and EV signals are unknown. Therefore, this study aimed to elucidate the mechanism of EV uptake and the effects of ODPFs on EV uptake by follicular somatic mural granulosa cells in mice. Fluorescence-labeled transferrin (TRF) and cholera toxin B (CTB), substrates for clathrin- and caveolae-mediated endocytosis, respectively, were taken up by mural granulosa cells in vitro. Their uptake was inhibited by Pitstop 2 and genistein, inhibitors of clathrin and caveolae pathways, respectively. Mural granulosa cells took up EVs, and this uptake was suppressed by Pitstop 2 and genistein. Moreover, ODPFs promoted the uptake of EVs and CTB, but not TRF, by mural granulosa cells. These results suggest that mural granulosa cells take up EVs through both clathrin- and caveolae-mediated endocytosis and that oocytes may promote caveolae-mediated endocytosis to facilitate the uptake of EVs.


Assuntos
Vesículas Extracelulares , Genisteína , Sulfonamidas , Tiazolidinas , Feminino , Animais , Camundongos , Genisteína/farmacologia , Células da Granulosa , Clatrina , Mamíferos
8.
Exp Eye Res ; 240: 109806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272381

RESUMO

Primary open-angle glaucoma (POAG) is the most common type of glaucoma leading to blindness. The search for ways to prevent/treat this entity is one of the main challenges of today's ophthalmology. One of such solution seems to be biologically active substances of natural origin, such as genistein (GEN), which can affect the function of isolated trabecular meshwork by the inhibition of protein tyrosine kinase. However, the role of GEN in viability as well as myofibroblastic transformation in human trabecular meshwork cells stimulated by TGF-ß is unknown. Using human trabecular meshwork cells (HTMCs) we investigated the effect of genistein on cell viability and myofibroblastic transformation stimulated by TGF-ß1 and TGF-ß2. Using Real-Time PCR, western blot and immunofluorescence we determined the effect on the expression changes of αSMA, TIMP1, collagen 1 and 3 at mRNA and protein level. We found that genistein increases the viability of HTMCs (1, 2, 3 µg/ml; P < 0.05 and 4, 5, 10, 15, 20 µg/ml; P < 0.01). Moreover, we found that addition of 10, 15 and 20 µg/ml is able to prevent myofibroblastic transformation of HTMCs by decreasing αSMA, TIMP1, collagen 1 and 3 mRNA and protein expression (P < 0.01). Based on the obtained results, we can conclude that genistein is a potential factor that can prevent the myofibroblastic transformation of HTMCs accompanying glaucoma. Describing GEN influence on myofibroblastic transformation processes in HTMC allows us to conclude that it can be considered a potential therapeutic agent or a substance supporting treatment in patients with glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Genisteína/farmacologia , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/prevenção & controle , Glaucoma de Ângulo Aberto/genética , Malha Trabecular/metabolismo , Células Cultivadas , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Glaucoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Colágeno/metabolismo
9.
FASEB J ; 37(8): e23079, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37410022

RESUMO

Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.


Assuntos
Adipócitos Bege , Camundongos , Ratos , Animais , Ativação Transcricional , Adipócitos Bege/metabolismo , Genisteína/farmacologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética , Elementos de Resposta , Tecido Adiposo Marrom/metabolismo
10.
Mol Cell Biochem ; 479(2): 431-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37084167

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the mucosa of the colon, resulting in severe inflammation and ulcers. Genistein is a polyphenolic isoflavone present in several vegetables, such as soybeans and fava beans. Therefore, we conducted the following study to determine the therapeutic effects of genistein on UC in rats by influencing antioxidant activity and mitochondrial biogenesis and the subsequent effects on the apoptotic pathway. UC was induced in rats by single intracolonic administration of 2 ml of 4% acetic acid. Then, UC rats were treated with 25-mg/kg genistein. Colon samples were obtained to assess the gene and protein expression of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), caspase-3, caspase-8, and caspase-9. In addition, colon sections were stained with hematoxylin/eosin to investigate the cell structure. The microimages of UC rats revealed inflammatory cell infiltration, hemorrhage, and the destruction of intestinal glands, and these effects were improved by treatment with genistein. Finally, treatment with genistein significantly increased the expression of PGC-1, TFAM, Nrf2, HO-1, and BCL2 and reduced the expression of BAX, caspase-3, caspase-8, and caspase-9. In conclusion, genistein exerted therapeutic effects against UC in rats. This therapeutic activity involved enhancing antioxidant activity and increasing mitochondrial biogenesis, which reduced cell apoptosis.


Assuntos
Colite Ulcerativa , Genisteína , Animais , Ratos , Genisteína/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Caspase 3 , Caspase 9 , Caspase 8 , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Biogênese de Organelas , Proteína X Associada a bcl-2
11.
J Chem Inf Model ; 64(3): 874-891, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277124

RESUMO

The emergence of the COVID-19 situation has become a global issue due to the lack of effective antiviral drugs for treatment. Flavonoids are a class of plant secondary metabolites that have antiviral activity against SARS-CoV-2 through inhibition of the main protease (3CLpro). In this study, 22 flavonoids obtained from natural sources and semisynthetic approaches were investigated for their inhibitory activity against SARS-CoV-2 3CLpro, along with cytotoxicity on Vero cells. The protein-ligand interactions were examined using molecular dynamics simulation. Moreover, QSAR analysis was conducted to clarify the structural effects on bioactivity. Accordingly, the in vitro investigation demonstrated that four flavonoids, namely, tectochrysin (7), 6″,6″-dimethylchromeno-[2″,3″:7,8]-flavone (9), panduratin A (19), and genistein (20), showed higher protease inhibitory activity compared to the standard flavonoid baicalein. Finally, our finding suggests that genistein (20), an isoflavone discovered in Millettia brandisiana, has potential for further development as a SARS-CoV-2 3CLpro inhibitor.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , SARS-CoV-2/metabolismo , Células Vero , Genisteína/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química , Peptídeo Hidrolases , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular
12.
Anal Bioanal Chem ; 416(7): 1759-1774, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363307

RESUMO

Exposure to polyphenols is relevant throughout critical windows of infant development, including the breastfeeding phase. However, the quantitative assessment of polyphenols in human breast milk has received limited attention so far, though polyphenols may positively influence infant health. Therefore, a targeted LC-MS/MS assay was developed to investigate 86 analytes representing different polyphenol classes in human breast milk. The sample preparation consisted of liquid extraction, salting out, freeze-out, and a dilution step. Overall, nearly 70% of the chemically diverse polyphenols fulfilled all strict validation criteria for full quantitative assessment. The remaining analytes did not fulfill all criteria at every concentration level, but can still provide useful semi-quantitative insights into nutritional and biomedical research questions. The limits of detection for all analyzed polyphenols were in the range of 0.0041-87 ng*mL-1, with a median of 0.17 ng*mL-1. Moreover, the mean recovery was determined to be 82% and the mean signal suppression and enhancement effect was 117%. The developed assay was applied in a proof-of-principle study to investigate polyphenols in breast milk samples provided by twelve Nigerian mothers at three distinct time points post-delivery. In total, 50 polyphenol analytes were detected with almost half being phenolic acids. Phase II metabolites, including genistein-7-ß-D-glucuronide, genistein-7-sulfate, and daidzein-7-ß-D-glucuronide, were also detected in several samples. In conclusion, the developed method was demonstrated to be fit-for-purpose to simultaneously (semi-) quantify a wide variety of polyphenols in breast milk. It also demonstrated that various polyphenols including their biotransformation products were present in breast milk and therefore likely transferred to infants where they might impact microbiome development and infant health.


Assuntos
Leite Humano , Polifenóis , Feminino , Humanos , Lactente , Monitoramento Biológico , Cromatografia Líquida , Genisteína/metabolismo , Glucuronídeos/metabolismo , Espectrometria de Massa com Cromatografia Líquida , Leite Humano/metabolismo , Espectrometria de Massas em Tandem/métodos
13.
Eur J Nutr ; 63(5): 1877-1888, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38592519

RESUMO

OBJECTIVES: Ulcerative colitis (UC) is a colonic immune system disorder, manifested with long duration and easy relapse. Genistein has been reported to possess various biological activities. However, it remains unclear whether genistein can ameliorate UC by modulating the homeostasis of the intestinal bacterial community. METHODS: The dextran sodium sulfate (DSS)-induced UC mice were administrated with genistein (20 mg/kg/day) or genistein (40 mg/kg/day) for ten days. The general physical condition of the mice was monitored. After sacrifice, the changes in colon length and colonic pathological morphology were observed. The expression of intestinal barrier proteins, inflammatory cytokines, and macrophage markers in the colon was detected. The composition and metabolic products of the intestinal microbiota were analyzed. RESULTS: Genistein treatment visibly improved body weight change and disease activity index in DSS-induced mice. Genistein treatment ameliorated colonic pathological alterations and promoted the expression of mucin-2 and tight junction proteins. Genistein administration inhibited myeloperoxidase activity and colonic inflammatory cytokines. Furthermore, genistein administration improved the structure of the intestinal microbial community, promoted the production of short-chain fatty acids, and modulated macrophage polarization. CONCLUSIONS: These results revealed that genistein mediated macrophage polarization balance by improving intestinal microbiota and its metabolites, thereby alleviating DSS-induced colitis.


Assuntos
Sulfato de Dextrana , Microbioma Gastrointestinal , Genisteína , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Genisteína/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Modelos Animais de Doenças , Colo/efeitos dos fármacos , Colo/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Citocinas/metabolismo , Colite/tratamento farmacológico , Colite/induzido quimicamente , Mucina-2/metabolismo
14.
J Biochem Mol Toxicol ; 38(4): e23697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578078

RESUMO

Genistein, an isoflavone has the potential to mimic, augment, or dysregulate the steroid hormone production pathways. We hypothesized that genistein affects the granulosa cell (GCs) functions through a series of biochemical, molecular, and genomic cascades. The present study was conducted to evaluate the impact of genistein exposure on GCs viability, apoptosis, and steroidogenesis. The present study involved 3/5 days of exposure to genistein on GCs collected from abattoir-derived ovine ovaries at doses of 0, 1, 10, 25, 50, and 100 µM. The harvested GCs were used for growth, cytotoxicity, and gene expression studies related to apoptosis, growth, and steroidogenesis. We observed that genistein had both stimulatory at 10 and 25 µM levels as well as inhibitory effects at 50 and 100 µM levels on the growth and proliferation of GCs. Genistein significantly decreased the levels of 17ß-estradiol at higher exposure (50 and 100 µM), whereas the progesterone level increased significantly as the genistein exposure increased. Additionally, genistein could also alter the mRNA expression of the steroidogenic receptor, enzymes, proteins, and growth-related genes suggesting that genistein could potentially alter the steroidogenic pathways. We conclude that genistein can interfere with cell survival and steroidogenesis by exhibiting a dose-dependent biphasic response on the viability, growth-related parameters, and the synthesis of 17ß-estradiol in the cultured GCs.


Assuntos
Genisteína , Isoflavonas , Feminino , Ovinos , Animais , Genisteína/farmacologia , Progesterona/metabolismo , Células da Granulosa/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Isoflavonas/farmacologia , Carneiro Doméstico/metabolismo , Células Cultivadas
15.
J Biochem Mol Toxicol ; 38(6): e23738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764152

RESUMO

Ulcerative colitis (UC) is a chronic problem of the intestine and relapsing in nature. Biochanin A is a nature-derived isoflavonoid and has numerous bioactivities. However, its role against UC and intestinal inflammation remains obscure. We aimed to comprehensively explore the pharmacological effect of biochanin A in alleviating colitis and to evaluate the potential mechanisms. Initially, we explored the anti-inflammatory action of biochanin A (15, 30, and 60 µM) by employing lipopolysaccharide (LPS)-activated RAW 264.7 cells. In RAW 264.7 cells under LPS stimulation, biochanin A inhibited the elevation of reactive oxygen species (ROS) (p < 0.0001), interleukin (IL)-1ß (p < 0.0001), IL-18 (p < 0.01), and tumor necrosis factor (TNF)-α (p < 0.01) release, nitrite production (p < 0.0001), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. Next, we studied the effectiveness of biochanin A (20 and 40 mg/kg) in mouse colitis induced with dextran sulfate sodium (DSS) by assessing colon length, disease activity index (DAI) scoring, and performing colonoscopy and histological analysis. The pro-inflammatory cytokines were estimated using ELISA. Western blot studies were performed to assess underlying mechanisms. In mice, biochanin A treatment alleviated DAI score (p < 0.0001), restored colon length (p < 0.05) and morphology, and re-established colon histopathology. Biochanin A affects the phosphorylation of proteins associated with NF-κB (p65) and mitogen-activated protein kinase (MAPK) axis and regulates colonic inflammation by reducing the expression of inflammatory cytokines and myeloperoxidase (MPO) activity. Altogether, our findings support the idea that the anticolitis potential of biochanin A is allied with anti-inflammatory activity by inhibiting the MAPK/NF-κB (p65) axis. Hence, biochanin A may be an alternative option to alleviate the risk of colitis.


Assuntos
Colite Ulcerativa , Genisteína , Fator de Transcrição RelA , Animais , Genisteína/farmacologia , Camundongos , Células RAW 264.7 , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fator de Transcrição RelA/metabolismo , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Sulfato de Dextrana/toxicidade
16.
J Biochem Mol Toxicol ; 38(9): e23817, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39177155

RESUMO

Heavy metal contamination is an alarming concern on a global scale, as drinking tainted water significantly increases human susceptibility to heavy metals. In a realistic scenario, humans are often exposed to a combination of harmful chemicals rather than a single toxicant. Phloretin (PHL), biochanin-A (BCA), and coenzyme Q10 (CoQ10) are bioactive compounds owning plentiful pharmacological properties. Henceforth, the current research explored the putative energizing effects of selected nutraceuticals in combined chromium (Cr) and arsenic (As) intoxicated Swiss albino mice. Potassium dichromate (75 ppm) and sodium meta-arsenite (100 ppm) were given in the drinking water to induce hepatotoxicity, conjugated with PHL and BCA (50 mg/kg each), and CoQ10 (10 mg/kg) intraperitoneally for 2 weeks. After the statistical evaluation, it was observed that the hepato-somatic index, metal load, and antioxidant activity (lipid peroxidation and protein carbonyl content) increased along with the concomitant decrease in the antioxidants (catalase, glutathione-S-transferase, superoxide dismutase, reduced glutathione, and total thiol) in the Cr and As intoxicated mice. Additionally, light microscopy observations, DNA breakages, decreased silent information regulator 1 (SIRT1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) gene expressions, together with stimulated apoptotic cell death manifested by the increased expressions of caspase 8 and caspase 3, thus, proved consistency with the aforementioned outcomes. Importantly, the treatment with nutraceuticals not only restored the antioxidant activity but also favorably altered the expressions of SIRT1, Nrf2, HO-1, and NQO1 signaling and apoptosis markers. These findings highlight the crucial role of the PHL, BCA, and CoQ10 combination in reducing Cr and As-induced hepatotoxicity in mice. By averting the triggered apoptosis in conjunction with oxidative stress, this combination increases the SIRT1, Nrf2, HO-1, and NQO1 signaling, thereby reassuringly maintaining the cellular equilibrium.


Assuntos
Apoptose , Cromo , Genisteína , Fígado , NAD(P)H Desidrogenase (Quinona) , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Floretina , Transdução de Sinais , Sirtuína 1 , Ubiquinona , Animais , Sirtuína 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Genisteína/farmacologia , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Cromo/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Floretina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Arsênio/toxicidade , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana
17.
Kidney Blood Press Res ; 49(1): 137-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266504

RESUMO

INTRODUCTION: The process of vascular calcification has severe clinical consequences in a number of diseases, including diabetes, atherosclerosis, and end-stage renal disease. In the present study, we investigated the effect of policosanol (Poli), genistein (Gen), and vitamin D (VitD) separately and in association to evaluate the possible synergistic action on inorganic phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs). METHODS: Primary human VSMCs were cultured with either growth medium or growth medium supplemented with calcium and phosphorus (calcification medium) in combination with Poli, Gen, and VitD. Alizarin Red staining, mineralization, and the protein expression of RUNX2 and superoxide dismutase-2 (SOD2) were investigated. RESULTS: All three substances tested were effective at reducing osteogenic differentiation of VSMCs in a dose-dependent manner. Poli+Gen, Poli+VitD, Gen+VitD treatment induced a greater inhibition of calcification and RUNX2 expression compared to single compounds treatments. Moreover, the association of Poli+Gen+VitD (Reduplaxin®) was more effective at inhibiting VSMCs mineralization and preventing the increase in RUNX2 expression induced by calcification medium but not modified SOD2 expression. CONCLUSIONS: The association of Pol, Gen, and VitD (Reduplaxin®) has an additive inhibitory effect on the calcification process of VSMCs induced in vitro by a pro-calcifying medium.


Assuntos
Álcoois Graxos , Genisteína , Músculo Liso Vascular , Calcificação Vascular , Vitamina D , Humanos , Vitamina D/farmacologia , Álcoois Graxos/farmacologia , Células Cultivadas , Calcificação Vascular/prevenção & controle , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Genisteína/farmacologia , Genisteína/uso terapêutico , Superóxido Dismutase/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo
18.
Phytopathology ; 114(6): 1196-1205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38281161

RESUMO

When Pseudomonas savastanoi pv. phaseolicola, the bacterium that causes halo blight, induces hypersensitive immunity in common bean leaves, salicylic acid and phytoalexins accumulate at the site of infection. Both salicylic acid and the phytoalexin resveratrol exert antibiotic activities and toxicities in vitro, adversely disrupting the P. savastanoi pv. phaseolicola proteome and metabolism and stalling replication and motility. These efficacious properties likely contribute to the cessation of bacterial spread in beans. Genistein is an isoflavonoid phytoalexin that also accumulates during bean immunity, so we tested its antibiotic potential in vitro. Quantitative proteomics revealed that genistein did not induce proteomic changes in P. savastanoi pv. phaseolicola in the same way that salicylic acid or resveratrol did. Rather, a dioxygenase that could function to metabolize genistein was among the most highly induced enzymes. Indeed, high-throughput metabolomics provided direct evidence for genistein catabolism. Metabolomics also revealed that genistein induced the bacterium to produce indole compounds, several of which had structural similarity to auxin. Additional mass spectrometry analyses proved that the bacterium produced an isomer of the auxin indole-3-acetic acid but not indole-3-acetic acid proper. These results reveal that P. savastanoi pv. phaseolicola can tolerate bean genistein and that the bacterium likely responds to bean-produced genistein during infection, using it as a signal to increase pathogenicity, possibly by altering host cell physiology or metabolism through the production of potential auxin mimics.


Assuntos
Genisteína , Fitoalexinas , Doenças das Plantas , Pseudomonas , Sesquiterpenos , Genisteína/farmacologia , Genisteína/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Pseudomonas/efeitos dos fármacos , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacologia , Indóis/metabolismo , Indóis/farmacologia , Ácido Salicílico/metabolismo , Folhas de Planta/microbiologia , Phaseolus/microbiologia , Proteômica , Ácidos Indolacéticos/metabolismo , Estilbenos/metabolismo , Estilbenos/farmacologia , Resveratrol/farmacologia , Resveratrol/metabolismo
19.
Cell Biochem Funct ; 42(2): e3932, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332678

RESUMO

Mucopolysaccharidosis type II (MPS II) is an inborn error of the metabolism resulting from several possible mutations in the gene coding for iduronate-2-sulfatase (IDS), which leads to a great clinical heterogeneity presented by these patients. Many studies demonstrate the involvement of oxidative stress in the pathogenesis of inborn errors of metabolism, and mitochondrial dysfunction and oxidative stress can be related since most of reactive oxygen species come from mitochondria. Cellular models have been used to study different diseases and are useful in biochemical research to investigate them in a new promising way. The aim of this study is to develop a heterozygous cellular model for MPS II and analyze parameters of oxidative stress and mitochondrial dysfunction and investigate the in vitro effect of genistein and coenzyme Q10 on these parameters for a better understanding of the pathophysiology of this disease. The HP18 cells (heterozygous c.261_266del6/c.259_261del3) showed almost null results in the activity of the IDS enzyme and presented accumulation of glycosaminoglycans (GAGs), allowing the characterization of this knockout cellular model by MPS II gene editing. An increase in the production of reactive species was demonstrated (p < .05 compared with WT vehicle group) and genistein at concentrations of 25 and 50 µm decreased in vitro its production (p < .05 compared with HP18 vehicle group), but there was no effect of coenzyme Q10 in this parameter. There was a tendency for lysosomal pH change in HP18 cells in comparison to WT group and none of the antioxidants tested demonstrated any effect on this parameter. There was no increase in the activity of the antioxidant enzymes superoxide dismutase and catalase and oxidative damage to DNA in HP18 cells in comparison to WT group and neither genistein nor coenzyme q10 had any effect on these parameters. Regarding mitochondrial membrane potential, genistein induced mitochondrial depolarization in both concentrations tested (p < .05 compared with HP18 vehicle group and compared with WT vehicle group) and incubation with coenzyme Q10 demonstrated no effect on this parameter. In conclusion, it is hypothesized that our cellular model could be compared with a milder MPS II phenotype, given that the accumulation of GAGs in lysosomes is not as expressive as another cellular model for MPS II presented in the literature. Therefore, it is reasonable to expect that there is no mitochondrial depolarization and no DNA damage, since there is less lysosomal impairment, as well as less redox imbalance.


Assuntos
Iduronato Sulfatase , Doenças Mitocondriais , Mucopolissacaridose II , Ubiquinona/análogos & derivados , Humanos , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética , Genisteína/farmacologia , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo
20.
J Sep Sci ; 47(1): e2300614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066409

RESUMO

The purpose of this research was to investigate the cardioprotective effects and pharmacokinetics of Dalbergia odorifera flavonoids. The cardioprotective effects were detected by hematoxylin-eosin staining histopathological observations and the detection of myocardial enzymes by kits in serum, peroxidation and antioxidant levels and ATPase activities by kits in the homogenate supernatant, and antioxidant and apoptosis-related protein expression in heart tissue by immunohistochemistry. The pharmacokinetics parameters of the flavonoids in rat plasma were investigated by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Molecular docking of the compounds absorbed by the blood with specific proteins was carried out. D. odorifera flavonoids significantly reduced the levels of creatinine kinase, alanine transaminase, nitric oxide, and Hydrogen peroxide, elevated the levels of glutathione, superoxide dismutase, and ATPase, significantly reduced the pathological degree of heart tissue and had obvious anti-myocardial ischemia efficacy. Nine out of the 17 flavonoids were detected in rat plasma. The peak concentration and the area under the plasma concentration-time curve values of 3'-O-methylviolanone and sativanone were significantly higher than those of other ingredients. The peak time of most flavonoids (except for Genistein and Pruneion) was lower than 2 h, while the half-life of elimination of the nine flavonoids ranged from 3.32 to 21.5 h. The molecular docking results showed that daidzein, dalbergin, formononetin, and genistein had the potential to bind to the target proteins. The results of the study provide an important basis for understanding the cardioprotective effects and clinical application of D. odorifera.


Assuntos
Dalbergia , Flavonoides , Ratos , Animais , Flavonoides/farmacologia , Flavonoides/química , Dalbergia/química , Simulação de Acoplamento Molecular , Genisteína , Antioxidantes/farmacologia , Adenosina Trifosfatases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA