Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.707
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(14): 5694-5701, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538547

RESUMO

Immunochromatography is a commonly used immediate detection technique, using signal labels to generate detection signals for rapid medical diagnosis. However, its detection sensitivity is affected by background fluorescence caused by the excitation light source. We have developed an immunochromatographic test strip using Zn2GeO4:Mn2+ (ZGM) persistent luminescent nanoparticles (PLNPs) for immediate fluorescence detection and highly sensitive persistent luminescence (PersL) detection without background fluorescence interference. ZGM emits a strong green light when exposed to ultraviolet (UV) excitation, and its green PersL can persist for over 30 min after the excitation light is turned off. We modified the surface of ZGM with heparin-binding protein (HBP) antibodies to create immunochromatographic test strips for the detection of HBP as the target analyte. Under UV excitation, the chromatography test paper can be visually observed at concentrations as low as 25 ng/mL. After the excitation light source is switched off, PersL can achieve a detection limit of 4.7 ng/mL without background interference. This dual-mode immunochromatographic detection, based on ZGM, shows great potential for in vitro diagnostic applications.


Assuntos
Germânio , Luminescência , Nanopartículas , Nanopartículas/química , Óxidos , Cromatografia de Afinidade/métodos
2.
Eur J Nucl Med Mol Imaging ; 51(4): 954-964, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38012446

RESUMO

PURPOSE: A solid-state PET/CT system uses bismuth germanium oxide (BGO) scintillating crystals coupled to silicon photomultipliers over an extended 32 cm axial field-of-view (FOV) to provide high spatial resolution and very high sensitivity. Performance characteristics were determined for this digital-BGO system, including NEMA and EARL standards. METHODS: Spatial resolution, scatter fraction (SF), noise equivalent count rate (NECR), sensitivity, count rate accuracy, and image quality (IQ) were evaluated for the digital-BGO system as per NEMA NU 2-2018, at 2 sites of first clinical install. System energy resolution was measured. Bayesian penalized-likelihood reconstruction (BPL) was used for IQ. EARL Standards 2 studies were reconstructed by BPL combined with a contrast-enhancing deep learning algorithm. An Esser PET phantom was evaluated. Three patient examples were obtained with low-dose radiotracer activity: 2 MBq/kg of [18F]FDG ([18F]-2-fluoro-2-deoxy-D-glucose), 2.3 MBq/kg [68Ga]Ga-DOTA-TATE ([dodecane tetra-acetic acid,Tyr3]-octreotate), and 14.5 MBq/kg [82Rb]RbCl ([82Rb]-rubidium-chloride). Total scan times were ≤ 8 min. RESULTS: NEMA sensitivity was 47.6 cps/kBq at the axial center. Spatial resolution at 1 cm from the center axis was ≤4.5 mm (filtered back projection) and ≤3.8 mm (ordered subset expectation maximization). SF was 35.6%, count rate accuracy was 2.16%, and peak NECR was 485.2 kcps at 16.9 kBq/mL. Contrast for IQ was 61.1 to 90.7% (smallest to largest sphere) with background variations from 7.6 to 2.1%, and a "lung" error of 4.7%. The average detector energy resolution was 9.67%. Image quality for patient scans was good. EARL Standards 2 criteria were robustly met and Esser phantom features ≥4.8 mm were resolved at 2 min per bed position. CONCLUSION: A solid-state 32 cm axial FOV digital-BGO PET/CT system provides good spatial and energy resolution, high count rates, and superior NEMA sensitivity in its class, enabling fast clinical acquisitions with low-dose radiotracer activity.


Assuntos
Bismuto , Germânio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Humanos , Teorema de Bayes , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas , Padrões de Referência
3.
Luminescence ; 39(7): e4822, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39019842

RESUMO

Holmium (Ho3+)-doped boro-bismuth-germanate glasses having the chemical composition (30-x)B2O3 + 20GeO2 + 20Bi2O3 + 20Na2O + 10Y2O3 + xHo2O3, where x = 0.1, 0.5, 1.0, and 2.0 mol% were prepared by melt-quenching technique. The prepared glasses were examined for thermal, optical, vibrational, and photoluminescent properties. The prepared glasses were found to be thermally very stable. The optical bandgap and Urbach energies of 0.1 mol% Ho2O3-doped boro-bismuth-germanate glass were calculated to be 3.3 eV and 377 MeV, respectively, using the absorption spectrum. The Judd-Ofelt analysis was performed on the 0.1 mol% Ho2O3-doped glass and compared the obtained parameters with literature. The branching ratio (ß) and emission cross-section (σem) of the green band were determined to be 0.7 and 0.24 × 10-20 cm2, respectively. Under 450 nm excitation, a strong green emission around 550 nm was observed and assigned to the (5S2 + 5F4) → 5I8 (Ho3+) transition. Upon an increase of Ho2O3 content from 0.1 to 2.0 mol%, the intensities of all observed emission bands as well as decay time of the (5S2 + 5F4) → 5I8 transition have been decreased gradually. The reasons behind the decrease in emission intensity and decay time were discussed. The strong green emission suggests that these glasses may be a better option for display devices and green emission applications.


Assuntos
Bismuto , Germânio , Vidro , Hólmio , Luminescência , Hólmio/química , Vidro/química , Germânio/química , Bismuto/química , Vibração , Medições Luminescentes , Fenômenos Ópticos
4.
Luminescence ; 39(10): e4907, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39350335

RESUMO

As one of the fundamental physical quantities, temperature is extremely important in various fields. In order to study the temperature sensing characteristics of dual-emitting center phosphors, Bi3+-doped and Bi3+/Sm3+-doped Sr2Ga2GeO7 phosphors were synthesized by high-temperature solid-phase method. Under 312 nm excitation, the Sr2Ga2GeO7:Bi3+ phosphor exhibits a blue broadband emission corresponding to the 3P1 → 1S0 transition of Bi3+ ions. By testing the temperature change spectrum of phosphors, it was found that Bi3+ exhibited strong thermal sensitivity. However, due to the fact that single ion doped phosphors are easily affected by other factors when applied to the field of temperature sensing, based on the thermal sensitivity of Bi3+, Sm3+ with low temperature sensitivity was selected as the co-doped ion, and it was found that the two ions had different thermal quenching characteristics when the temperature change spectrum was tested. Using the temperature detection method based on the fluorescence intensity ratio (FIR) of the dual emission centers, it was found that the best absolute sensitivity Sa was 3.125% K-1 and the maximum relative sensitivity Sr was 1.275% K-1 in the range of 303-423 K. These results show that Sr2Ga2GeO7:Bi3+/Sm3+ phosphors have broad application prospects in the field of optical temperature sensing.


Assuntos
Gálio , Luminescência , Substâncias Luminescentes , Samário , Estrôncio , Temperatura , Estrôncio/química , Samário/química , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Gálio/química , Bismuto/química , Germânio/química , Medições Luminescentes
5.
Reprod Domest Anim ; 59(8): e14703, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39149931

RESUMO

This study investigated the impact of various Ge132 (Bis-carboxyethyl germanium sesquioxide) concentrations on frozen bovine semen. Ejaculates from three bulls were pooled and divided into six groups, each one with different Ge132 concentrations (0, 500, and 1000 µg/mL) and each group was incubated in different conditions (33°C for 30 min (D: D0, D500, and D1000), and the other was immediately cooled to 4°C (R: R0-control; R500 and R1000)). Thawed semen was evaluated for sperm characteristics by CASA and flow cytometer. Results showed better motility in the immediate cooling group without Ge132 compared with high Ge132 concentrations. Values for total motility dropped after 5 and 60 min in groups with high Ge132 levels and some control groups. Linearity increased with 1000 µg/mL Ge132, while straightness differed between moments in multiple groups. Membrane integrity was higher in a control group and certain Ge132 groups. Lower O2 - generation occurred without Ge132. After oxidative stress induction, lipid peroxidation intensity increased with arachidonic acid, but D1000 had lower peroxidation than R0. Overall, Ge132 appears to have provided protection against PLM when subjected to oxidative stress, since even at high concentrations it maintained sperm metabolism.


Assuntos
Antioxidantes , Criopreservação , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Bovinos , Criopreservação/veterinária , Criopreservação/métodos , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides/efeitos dos fármacos , Antioxidantes/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Crioprotetores/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Germânio/farmacologia , Sêmen/efeitos dos fármacos , Análise do Sêmen/veterinária
6.
Int J Mol Sci ; 25(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39201696

RESUMO

A series of novel organogermanium(IV) catecholates 1-9 of the general formula R'2Ge(Cat), where R' = Ph, Et, have been synthesized. Compounds were characterized by 1H, 13C NMR, IR spectroscopy, and elemental analysis. The molecular structures of 1-3, 6, and 8 in crystal state were established using single-crystal X-ray analysis. The complexes are tetracoordinate germanium(IV) compounds containing a dioxolene ligand in a dianion (catecholato) form. Electrochemical transformations of target germanium(IV) complexes have been studied by cyclic voltammetry. The electro-oxidation mechanism of complexes 1-5, 7, and 10 (the related complex Ph2Ge(3,5-Cat) where 3,5-Cat is 3,5-di-tert-butylcatecholate) involves the consecutive formation of mono- and dicationic derivatives containing the oxidized forms of redox-active ligands. The stability of the generated monocations depends both on the hydrocarbon groups at the germanium atom and on the substituents in the catecholate ring. Compounds 6, 8, and 9 are oxidized irreversibly under the electrochemical conditions with the formation of unstable complexes. The radical scavenging activity and antioxidant properties of new complexes were estimated in the reaction with DPPH radical, ABTS radical cation, and CUPRACTEAC assay. It has been found that compounds 8 and 9 with benzothiazole or phenol fragments are more active in DPPH test. The presence of electron-rich moieties in the catecholate ligand makes complexes 5 and 7-9 more reactive to ABTS radical cation. The value of CUPRACTEAC for organogermanium(IV) catecholates varies from 0.23 to 1.45. The effect of compounds 1-9 in the process of lipid peroxidation of rat liver (Wistar) homogenate was determined in vitro. It was found that most compounds are characterized by pronounced antioxidant activity. A feature of complexes 1, 3, and 5-9 is the intensification of the antioxidant action with the incubation time. In the presence of additives of complexes 3, 5, 6, and 8, an induction period was observed during the process of lipid peroxidation.


Assuntos
Antioxidantes , Catecóis , Germânio , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Catecóis/química , Catecóis/farmacologia , Animais , Germânio/química , Oxirredução , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Ratos , Técnicas Eletroquímicas , Cristalografia por Raios X , Estrutura Molecular
7.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125901

RESUMO

Propagermanium (PG) has immune modulating activity and anti-inflammatory properties. This work aimed to study the therapeutic efficacy of PG on endothelial and perivascular dysfunction associated with type 2 diabetes. Non-obese type 2 diabetic Goto-Kakizaki (GK) rats were divided into four groups: (1) the control group; (2) the group treated with 50 mg/kg PG; (3) the group fed a high-fat diet (GKHFD); and (4) the group of GKHFD treated with 50 mg/kg PG. PG was given orally for 3 months. Several in vivo parameters and endothelial function were studied in aortas with perivascular adipose tissue PVAT (+) or without PVAT (-). We also determined the vascular inflammation and levels of CD36 in PVAT. In diabetic GK rats, PG did not affect the lipid profile or the results of the intraperitoneal glucose tolerance test. Instead, it improved the fasting glucose levels (18%, p < 0.01), insulin resistance (32%, p < 0.05), endothelial function (33 and 25% in aortas mounted with (+) or without PVAT (-), p < 0.05), and restored the anticontractile effect of the perivascular adipose tissue by reducing its inflammation (56%, p < 0.05) and oxidative stress profile (55%, p < 0.05). Due to its anti-inflammatory characteristics, PG likely improved endothelial dysfunction and restored the perivascular adipose tissue's anticontractile properties.


Assuntos
Diabetes Mellitus Tipo 2 , Endotélio Vascular , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ratos , Masculino , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Germânio , Tecido Adiposo/metabolismo , Glicemia/metabolismo , Resistência à Insulina , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Experimental , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
8.
J Environ Manage ; 366: 121699, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981255

RESUMO

Germanium (Ge) is a dispersed metal primarily recovered from secondary Ge-containing resources. The traditional treatment method is hindered by incomplete impurity removal, resulting in a low grade of tannin germanium residue (TGR) and Ge concentrate, high production costs, and significant hazardous waste. This study proposes a new technology involving ultrasonic pre-purification of TGR to enhance the quality of Ge concentrate prepared by roasting. Under optimal conditions (ultrasonic power 225 W, liquid-solid ratio 7:1, H2SO4 concentration 20 g/L, reaction time 30 min, and reaction temperature 40 °C), the removal efficiencies of impurities Zn, Mg, Fe, As, and S from purified tannin germanium residue (PTGR) increased by 4.2%, 4.2%, 17.4%, 8.7%, and 2.9% respectively. Moreover, the Ge content in PTGR increased from 2.9% to 4.1%. The mechanism of ultrasonic action indicated the ultrasonic energy reduced the particle size of the reactants from 67.698 µm to 31.768 µm, thereby accelerating impurity removal. Roasting ultrasonic-purified tannin germanium residue (U-PTGR) at 650 °C with 40 L/h air flow for 120 min produced Ge concentrate with a Ge grade of 33.26%, which is 6.11% higher than the regular method. Analysis using XRD and HRTEM, combined with crystallite size calculation, revealed that the Ge concentrate prepared by U-PTGR exhibited low sintering degree, good crystal properties, and high crystallinity. Implementing this technology could save enterprises approximately $57,412 annually in production costs. Additionally, it holds significant practical importance in reducing hazardous waste emissions and promoting the high-quality development of the Ge industry.


Assuntos
Germânio , Taninos , Ultrassom , Germânio/química , Taninos/química
9.
J Transl Med ; 21(1): 795, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940963

RESUMO

With the development of organic germanium and nanotechnology, germanium serves multiple biological functions, and its potential value in biochemistry and medicine has increasingly captured the attention of researchers. In recent years, germanium has gradually gained significance as a material in the field of biomedicine and shows promising application prospects. However, there has been a limited amount of research conducted on the biological effects and mechanisms of germanium, and a systematic evaluation is still lacking. Therefore, the aim of this review is to systematically examine the application of germanium in the field of biomedicine and contribute new insights for future research on the functions and mechanisms of germanium in disease treatment. By conducting a comprehensive search on MEDLINE, EMBASE, and Web of Science databases, we systematically reviewed the relevant literature on the relationship between germanium and biomedicine. In this review, we will describe the biological activities of germanium in inflammation, immunity, and antioxidation. Furthermore, we will discuss its role in the treatment of neuroscience and oncology-related conditions. This comprehensive exploration of germanium provides a valuable foundation for the future application of this element in disease intervention, diagnosis, and prevention.


Assuntos
Germânio , Nanotecnologia
10.
Inorg Chem ; 62(1): 75-86, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36574356

RESUMO

The continuously growing significance of information security and authentication has put forward many new requirements and challenges for modern luminescent materials and anti-counterfeiting technologies. Recently, luminescent materials have attracted much attention in this field owing to their legibility, repeatability, multicolor, and multiple stimuli-responsive nature. In this work, the efficient multicolor and multimodal luminescence material CaCd2Ga2Ge3O12:Mn2+ was successfully designed and synthesized using the strategy of single-doped Mn2+ in a single matrix. Also, we combined the morphology, crystal structure, energy band calculation, luminescence properties, and trap analysis to study the optical data storage capacity of CaCd2Ga2Ge3O12:Mn2+. Interestingly, in the presence of the 254 nm UV lamp, the sample can exhibit a tunable emission color from bule to cyan to yellow by increasing the dopant concentration of Mn2+. Also, under the afterglow and thermoluminescence luminescence modes, it presented strong yellow emission centered at 558 nm. Based on the advantage of multiple tunable luminescence, samples were made into anti-counterfeiting ink and were used to print four optical devices through the screen printing technology. The results show that the material has excellent multicolor anti-counterfeiting properties under the three luminescence modes, which has contributed to the development of many kinds of luminescent anti-counterfeiting materials for security purposes.


Assuntos
Luminescência , Humanos , Manganês , Germânio , Cádmio , Cálcio
11.
Luminescence ; 38(10): 1750-1757, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37464921

RESUMO

Samarium (Sm3+ )-doped glass has sparked a rising interest in demonstrating a noticeable emission in the range of 400-700, which is advantageous in solid-state lasers in the visible region, colour displays, undersea communication, and optical memory devices. This study reports the fabrication of Sm3+ -doped bismuth-germanium-borate glasses were established using a standard melt-quenching technique and inspection by absorption, steady-state luminescence, and transient studies. The typical peaks of Sm3+ ions were detected in the visible range under 403 nm excitation. A strong emission band was detected at 599 nm that resembles the 4 G5/2 →6 H7/2 transition of Sm3+ ions for BGBiNYSm0.5 glass. Furthermore, a reddish-orange (coral) luminescence at 646 nm that resembles the 4 G5/2 →6 H9/2 transition was also perceived. The stimulated emission cross-section of 4 G5/2 level for BGBiNYSm0.5 glass was 0.39 × 10-22  cm2 . Lifetime of the 4 G5/2 level was enhanced for the BGBiNYSm0.5 glass and decreased with an increase in active ion concentrations. The lifetime quenching of ions at the metastable state was because of energy transfer among Sm3+ ions by cross-relaxation channels. Commission Internationale de l'Éclairage (CIE) coordinates were evaluated from the emission spectra. Moreover, all the findings recommend these glass as light-emitting materials in the coral region at 599 nm for solid-state lighting applications.


Assuntos
Germânio , Samário , Bismuto , Boratos , Luminescência , Vidro , Íons
12.
Arch Environ Contam Toxicol ; 84(3): 368-376, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37031287

RESUMO

In recent years, the demand for critical raw materials such as gallium, gadolinium and germanium (G(s)) has steadily increased in various industries. However, treatment or recycling rates of these elements are extremely low, which can lead to environmental pollution. An assessment of the ecological risks was also not possible until now, as there were no calculated toxicity coefficients for G(s). In this study, a well-known method, the so-called potential ecological risk index (PERI), was used for the first time to calculate the toxicity coefficients of these elements using data from recent literature studies on G(s) elements. The toxicity coefficient of each of the three elements was determined as five (5). The results show that G(s) have the same toxicity coefficient as Cu and Pb and are higher than that of Cr. The ecological risk index results varied from 4 to 414, 0.98 to 25.98 and 2.50 to 284.64 for Ga, Gd and Ge, respectively. The results show that Ga and Ge pose high ecological risk while the Eri of Gd is low. The toxicity coefficients of these elements have been calculated for the first time in the literature and provide a practical use for calculating the potential ecological risk index.


Assuntos
Gálio , Germânio , Metais Pesados , Metais Pesados/análise , Gadolínio/toxicidade , Monitoramento Ambiental/métodos , Medição de Risco , China , Solo
13.
Nano Lett ; 22(13): 5086-5093, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35613359

RESUMO

Emerging twistronics based on van der Waals (vdWs) materials has attracted great interest in condensed matter physics. Recently, more neoteric three-dimensional (3D) architectures with interlayer twist are realized in germanium sulfide (GeS) crystals. Here, we further demonstrate a convenient way for tailoring the twist rate of helical GeS crystals via tuning of the growth temperature. Under higher growth temperatures, the twist angles between successive nanoplates of the GeS mesowires (MWs) are statistically smaller, which can be understood by the dynamics of the catalyst during the growth. Moreover, we fabricate self-assembled helical heterostructures by introducing germanium selenide (GeSe) onto helical GeS crystals via edge epitaxy. Besides the helical architecture, the moiré superlattices at the twisted interfaces are also inherited. Compared with GeS MWs, helical GeSe/GeS heterostructures exhibit improved electrical conductivity and photoresponse. These results manifest new opportunities in future electronics and optoelectronics by harnessing 3D twistronics based on vdWs materials.


Assuntos
Germânio , Eletrônica , Sulfetos
14.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958931

RESUMO

We present the stabilization of halide-terminated Ge nanoparticles prepared via a disproportionation reaction of metastable Ge(I)X solutions with well-defined size distribution. Further tailoring of the stability of the Ge nanoparticles was achieved using variations in the substituent. Ge nanoparticles obtained in this way are readily dispersed in organic solvents, long-term colloidally stable, and are perfect prerequisites for thin-film preparation. This gives these nanomaterials a future in surface-dependent optical applications, as shown for the halide-terminated nanoparticles.


Assuntos
Germânio , Nanopartículas , Nanoestruturas , Tecnologia
15.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047833

RESUMO

Germanium and germanium-based compounds are widely used in microelectronics, optics, solar cells, and sensors. Recently, germanium and its oxides, nitrides, and phosphides have been studied as active electrode materials in lithium- and sodium-ion battery anodes. Herein, the newly introduced highly soluble germanium oxide (HSGO) was used as a versatile precursor for germanium-based functional materials. In the first stage, a germanium-dioxide-reduced graphene oxide (rGO) composite was obtained by complete precipitation of GeO2 nanoparticles on the GO from an aqueous solution of HSGO and subsequent thermal treatment in argon at low temperature. The composition of the composite, GeO2-rGO (20 to 80 wt.% of crystalline phase), was able to be accurately determined by the HSGO to GO ratio in the initial solution since complete deposition and precipitation were achieved. The chemical activity of germanium dioxide nanoparticles deposited on reduced graphene oxide was shown by conversion to rGO-supported germanium nitride and phosphide phases. The GeP-rGO and Ge3N4-rGO composites with different morphologies were prepared in this study for the first time. As a test case, composite materials with different loadings of GeO2, GeP, and Ge3N4 were evaluated as lithium-ion battery anodes. Reversible conversion-alloying was demonstrated in all cases, and for the low-germanium loading range (20 wt.%), almost theoretical charge capacity based on the germanium content was attained at 100 mA g-1 (i.e., 2595 vs. 2465 mAh g-1 for Ge3N4 and 1790 vs. 1850 mAh g-1 for GeP). The germanium oxide was less efficiently exploited due to its lower conversion reversibility.


Assuntos
Germânio , Lítio , Eletrodos , Íons
16.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373364

RESUMO

Polydentate ligands are used for thermodynamic stabilization of tetrylenes-low-valent derivatives of Group 14 elements (E = Si, Ge, Sn, Pb). This work shows by DFT calculations how the structure (the presence or absence of substituents) and type (alcoholic, Alk, or phenolic, Ar) of tridentate ligands 2,6-pyridinobis(1,2-ethanols) [AlkONOR]H2 and 2,6-pyridinobis(1,2-phenols) [ArONOR]H2 (R = H, Me) may affect the reactivity or stabilization of tetrylene, indicating the unprecedented behavior of Main Group elements. This enables the unique control of the type of the occurring reaction. We found that unhindered [ONOH]H2 ligands predominantly led to hypercoordinated bis-liganded {[ONOH]}2Ge complexes, where an E(+2) intermediate was inserted into the ArO-H bond with subsequent H2 evolution. In contrast, substituted [ONOMe]H2 ligands gave [ONOMe]Ge: germylenes, which may be regarded as kinetic stabilized products; their transformation into E(+4) species is also thermodynamically favorable. The latter reaction is more probable for phenolic [ArONO]H2 ligands than for alcoholic [AlkONO]H2. The thermodynamics and possible intermediates of the reactions were also investigated.


Assuntos
Germânio , Teoria da Densidade Funcional , Ligantes , Termodinâmica , Fenóis/química , Receptores Proteína Tirosina Quinases
17.
J Environ Manage ; 347: 119043, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776794

RESUMO

Advanced high-tech applications for communication, renewable energy, and display, heavily rely on technology critical elements (TCEs) such as indium, gallium, and germanium. Ensuring their sustainable supply is a pressing concern due to their high economic value and supply risks in the European Union. Recovering these elements from end-of-life (EoL) products (electronic waste: e-waste) offers a potential solution to address TCEs shortages. The review highlights recent advances in pre-treatment and hydrometallurgical and biohydrometallurgical methods for indium, gallium, and germanium recovery from EoL products, including spent liquid crystal displays (LCDs), light emitting diodes (LEDs), photovoltaics (PVs), and optical fibers (OFs). Leaching methods, including strong mineral and organic acids, and bioleaching, achieve over 95% indium recovery from spent LCDs. Recovery methods emphasize solvent extraction, chemical precipitation, and cementation. However, challenges persist in separating indium from other non-target elements like Al, Fe, Zn, and Sn. Promising purification involves solid-phase extraction, electrochemical separation, and supercritical fluid extraction. Gallium recovery from spent GaN and GaAs LEDs achieves 99% yield via leaching with HCl after annealing and HNO3, respectively. Sustainable gallium purification techniques include solvent extraction, ionic liquid extraction, and nanofiltration. Indium and gallium recovery from spent CIGS PVs achieves over 90% extraction yields via H2SO4 with citric acid-H2O2 and alkali. Although bioleaching is slower than chemical leaching (several days versus several hours), indirect bioleaching shows potential, achieving 70% gallium extraction yield. Solvent extraction and electrolysis exhibit promise for pure gallium recovery. HF or alkali roasting leaches germanium with a high yield of 98% from spent OFs. Solvent extraction achieves over 90% germanium recovery with minimal silicon co-extraction. Solid-phase extraction offers selective germanium recovery. Advancements in optimizing and implementing these e-waste recovery protocols will enhance the circularity of these TCEs.


Assuntos
Resíduo Eletrônico , Gálio , Germânio , Resíduo Eletrônico/análise , Índio/química , Peróxido de Hidrogênio , Reciclagem/métodos , Tecnologia , Gálio/química , Solventes , Álcalis
18.
Molecules ; 28(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36838546

RESUMO

In this review, the latest achievements in the field of multiply bonded organogermanium derivatives, mostly reported within the last two decades, are presented. The isolable Ge-containing analogues of alkenes, alkynes, 1,3-dienes, allenes, and vinylidenes are discussed, and for each class of unsaturated organogermanium compounds, the most representative examples are given. The synthetic approaches toward homonuclear multiply bonded combinations solely consisting of germanium atoms, and their heteronuclear variants containing germanium and other group 14 elements, both acyclic and cyclic, are discussed. The peculiar structural features and nonclassical bonding nature of the abovementioned compounds are discussed based on their spectroscopic and structural characteristics, in particular their crystallographic parameters (double bond length, trans-bending at the doubly bonded centers, and twisting about the double bond). The prospects for the practical use of the title compounds in synthetic and catalytic fields are also briefly discussed.


Assuntos
Alcadienos , Germânio , Alcenos/química , Alcinos/química , Germânio/química
19.
Environ Geochem Health ; 45(11): 8803-8822, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37755578

RESUMO

Mining of precious metals contributes to environmental pollution, especially in coastal areas, and conventional treatment methods are not always effective in removing metal contaminants. Some of these metals, such as gadolinium, germanium and gallium, have caused increasing concern worldwide, as little is known about their current concentrations in the aquatic environment and their biological significance. Therefore, the aim of this study was to determine for the first time the variation of average G(s) concentrations (gallium, gadolinium and germanium) by month/season/site differences along the coast of Istanbul. The ecological risk index was calculated to assess the contamination of seawater and to serve as a diagnostic tool for the mitigation of water pollution. The average distribution G(s) in seawater was in the following order: Ga > Gd > Ge. In addition, the potential ecological risk in the sampling areas ranged from 68 to 1049. Of the three metals, Gd poses the highest ecological risk (grade III). In the spatial distribution of ecological risks, Gd mainly originated from discharges from wastewater treatment plants. Therefore, the sources of the anthropogenic Gd anomaly in wastewater should be identified, as this indicates the possibility of human exposure to potentially harmful anthropogenic compounds.


Assuntos
Gálio , Germânio , Metais Pesados , Poluentes Químicos da Água , Humanos , Gadolínio/análise , Água do Mar , Poluição Ambiental , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Medição de Risco
20.
Opt Express ; 30(22): 40265-40276, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298962

RESUMO

The development of a CMOS manufactured THz sensing platform could enable the integration of state-of-the-art sensing principles with the mixed signal electronics ecosystem in small footprint, low-cost devices. To this aim, in this work we demonstrate a label-free protein sensing platform using highly doped germanium plasmonic antennas realized on Si and SOI substrates and operating in the THz range of the electromagnetic spectrum. The antenna response to different concentrations of BSA shows in both cases a linear response with saturation above 20 mg/mL. Ge antennas on SOI substrates feature a two-fold sensitivity as compared to conventional Si substrates, reaching a value of 6 GHz/(mg/mL), which is four-fold what reported using metal-based metamaterials. We believe that this result could pave the way to a low-cost lab-on-a-chip biosensing platform.


Assuntos
Germânio , Ecossistema , Dispositivos Lab-On-A-Chip , Eletrônica , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA