Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Parasitology ; 151(6): 539-545, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767317

RESUMO

Small nucleolar RNAs (snoRNAs) are short non-coding RNAs that are abundant in the nucleoli of eukaryotic cells and play a crucial role in various aspects of ribosomal RNA (rRNA) maturation, including modifications such as 2'-O-methylation or pseudouridylation. On the other hand, Giardia duodenalis is a microaerophilic, flagellated, binucleate protozoan responsible for causing giardiasis. Although numerous snoRNAs have been detected in Giardia, their investigation remains limited. Nevertheless, they have been found to play a crucial role in the rRNA precursor processing pathway and influence other cellular functions. In addition, it has been proposed that some microRNAs are generated from these snoRNAs through excision by the Giardia endoribonuclease Dicer. These microRNAs are believed to contribute to the regulation of antigenic variation, which allows the parasite to evade the host immune response. Specifically, they play a role in modulating variant-specific surface proteins (VSPs) and other cysteine-rich surface antigens (CSAs). The main objective of this study was to bring together the available data on snoRNAs in Giardia, uncovering their functions in various processes and their importance on a global scale. In addition, the research delved into potential microRNAs speculated to originate from snoRNAs, exploring their impact on cellular processes.


Assuntos
MicroRNAs , RNA Nucleolar Pequeno , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Giardia/genética , Giardia lamblia/genética , Giardíase/parasitologia , RNA de Protozoário/análise , RNA de Protozoário/genética , Variação Antigênica , Animais
2.
Parasitology ; 151(4): 351-362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305092

RESUMO

Cryptosporidium spp., Giardia intestinalis and microsporidia are unicellular opportunistic pathogens that can cause gastrointestinal infections in both animals and humans. Since companion animals may serve as a source of infection, the aim of the present screening study was to analyse the prevalence of these intestinal protists in fecal samples collected from dogs living in 10 animal shelters in central Europe (101 dogs from Poland and 86 from the Czech Republic), combined with molecular subtyping of the detected organisms in order to assess their genetic diversity. Genus-specific polymerase chain reactions were performed to detect DNA of the tested species and to conduct molecular subtyping in collected samples, followed by statistical evaluation of the data obtained (using χ2 or Fisher's tests). The observed prevalence was 15.5, 10.2, 1 and 1% for G. intestinalis, Enterocytozoon bieneusi, Cryptosporidium spp. and Encephalitozoon cuniculi, respectively. Molecular evaluation has revealed the predominance of dog-specific genotypes (Cryptosporidium canis XXe1 subtype; G. intestinalis assemblages C and D; E. cuniculi genotype II; E. bieneusi genotypes D and PtEbIX), suggesting that shelter dogs do not pose a high risk of human transmission. Interestingly, the percentage distribution of the detected pathogens differed between both countries and individual shelters, suggesting that the risk of infection may be associated with conditions typical of a given location.


Assuntos
Criptosporidiose , Cryptosporidium , Doenças do Cão , Enterocytozoon , Fezes , Giardíase , Microsporidiose , Animais , Cães , Doenças do Cão/parasitologia , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Enterocytozoon/genética , Enterocytozoon/isolamento & purificação , Enterocytozoon/classificação , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Cryptosporidium/classificação , Microsporidiose/veterinária , Microsporidiose/epidemiologia , Polônia/epidemiologia , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Fezes/parasitologia , Fezes/microbiologia , República Tcheca/epidemiologia , Giardíase/veterinária , Giardíase/epidemiologia , Giardíase/parasitologia , Prevalência , Giardia/genética , Giardia/isolamento & purificação , Giardia/classificação , Genótipo , Giardia lamblia/genética , Giardia lamblia/isolamento & purificação , Giardia lamblia/classificação , Especificidade de Hospedeiro
3.
Food Microbiol ; 123: 104592, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038884

RESUMO

Vegetable and fruit contamination is recognized as a significant parasite transmission route. This review presents the current state of vegetables ad fruits contamination with food-borne parasitic protozoa worldwide. We consider the methodologies and strategies for detecting parasitic stages developed in the last decade and the contamination data. Asia had the highest number of reports (94 studies), followed by Africa (74 studies). At the country level, with 41 studies, Iran had the most reports among other countries, followed by Nigeria (28 studies). According to the studies included in the current review, 41.22% of vegetables and fruits were contaminated with different species of protozoan parasites. Among different continents, Asia accounted for the highest contamination rate of protozoan parasites (57.12%). Giardia spp. (10%) had the highest contamination rate in vegetables and fruits, followed by Entamoeba coli (8%), E. histolytica/dispar (7%), and Cryptosporidium spp. (6%). This study provides essential data for health authorities to develop food safety programs. The presence of protozoan parasites in fruits and vegetables highlights the critical need for maintaining rigorous food safety measures across the entire production and distribution process, particularly in countries that are major producers and distributors of these food items.


Assuntos
Contaminação de Alimentos , Frutas , Verduras , Verduras/parasitologia , Frutas/parasitologia , Contaminação de Alimentos/análise , Humanos , Animais , Inocuidade dos Alimentos , Parasitologia de Alimentos , Cryptosporidium/isolamento & purificação , Cryptosporidium/genética , Parasitos/isolamento & purificação , Parasitos/classificação , Parasitos/genética , Giardia/isolamento & purificação , Giardia/genética , Entamoeba/isolamento & purificação , Entamoeba/genética , Ásia
4.
Parasitol Res ; 123(4): 176, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573530

RESUMO

Giardiasis is a common intestinal infection caused by Giardia duodenalis, which is a major economic and health burden for humans and livestock. Currently, a convenient and effective detection method is urgently needed. CRISPR/Cas12a-based diagnostic methods have been widely used for nucleic acid-based detection of pathogens due to their high efficiency and sensitivity. In this study, a technique combining CRISPR/Cas12a and RPA was established that allows the detection of G. duodenalis in faecal samples by the naked eye with high sensitivity (10-1 copies/µL) and specificity (no cross-reactivity with nine common pathogens). In clinical evaluations, the RPA-CRISPR/Cas12a-based detection assay detected Giardia positivity in 2% (1/50) of human faecal samples and 47% (33/70) of cattle faecal samples, respectively, which was consistent with the results of nested PCR. Our study demonstrated that the RPA-CRISPR/Cas12a technique for G. duodenalis is stable, efficient, sensitive, specific and has low equipment requirements. This technique offers new opportunities for on-site detection in remote and poor areas.


Assuntos
Giardia lamblia , Giardíase , Humanos , Animais , Bovinos , Giardia lamblia/genética , Sistemas CRISPR-Cas , Giardíase/diagnóstico , Giardíase/veterinária , Giardia/genética , Bioensaio
5.
Parasitol Res ; 123(4): 179, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584235

RESUMO

Giardia duodenalis, the protozoan responsible for giardiasis, is a significant contributor to millions of diarrheal diseases worldwide. Despite the availability of treatments for this parasitic infection, therapeutic failures are alarmingly frequent. Thus, there is a clear need to identify new therapeutic targets. Giardia telomeres were previously identified, but our understanding of these structures and the critical role played by Giardia telomerase in maintaining genomic stability and its influence on cellular processes remains limited. In this regard, it is known that all Giardia chromosomes are capped by small telomeres, organized and protected by specific proteins that regulate their functions. To counteract natural telomere shortening and maintain high proliferation, Giardia exhibits constant telomerase activity and employs additional mechanisms, such as the formation of G-quadruplex structures and the involvement of transposable elements linked to telomeric repeats. Thus, this study aims to address the existing knowledge gap by compiling the available information (until 2023) about Giardia telomeres and telomerase, focusing on highlighting the distinctive features within this parasite. Furthermore, the potential feasibility of targeting Giardia telomeres and/or telomerase as an innovative therapeutic strategy is discussed.


Assuntos
Giardia lamblia , Giardíase , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Giardíase/parasitologia , Giardia/genética , Telômero/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo
6.
Parasitol Res ; 123(1): 107, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253768

RESUMO

Marsupials, inhabiting diverse ecosystems, including urban and peri-urban regions in Australasia and the Americas, intersect with human activities, leading to zoonotic spill-over and anthroponotic spill-back of pathogens, including Cryptosporidium and Giardia. This review assesses the current knowledge on the diversity of Cryptosporidium and Giardia species in marsupials, focusing on the potential zoonotic risks. Cryptosporidium fayeri and C. macropodum are the dominant species in marsupials, while in possums, the host-specific possum genotype dominates. Of these three species/genotypes, only C. fayeri has been identified in two humans and the zoonotic risk is considered low. Generally, oocyst shedding in marsupials is low, further supporting a low transmission risk. However, there is some evidence of spill-back of C. hominis into kangaroo populations, which requires continued monitoring. Although C. hominis does not appear to be established in small marsupials like possums, comprehensive screening and analysis are essential for a better understanding of the prevalence and potential establishment of zoonotic Cryptosporidium species in small marsupials. Both host-specific and zoonotic Giardia species have been identified in marsupials. The dominance of zoonotic G. duodenalis assemblages A and B in marsupials may result from spill-back from livestock and humans and it is not yet understood if these are transient or established infections. Future studies using multilocus typing tools and whole-genome sequencing are required for a better understanding of the zoonotic risk from Giardia infections in marsupials. Moreover, much more extensive screening of a wider range of marsupial species, particularly in peri-urban areas, is required to provide a clearer understanding of the zoonotic risk of Cryptosporidium and Giardia in marsupials.


Assuntos
Criptosporidiose , Cryptosporidium , Giardíase , Humanos , Animais , Giardia/genética , Giardíase/epidemiologia , Giardíase/veterinária , Cryptosporidium/genética , Criptosporidiose/epidemiologia , Ecossistema , Macropodidae
7.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37833237

RESUMO

The occurrence of Giardia and Cryptosporidium (oo)cysts in drinking source water poses a serious public health risk. Here, we established a method that combines membrane concentration and real-time polymerase chain reaction (PCR) to quantify Giardia and Cryptosporidium in drinking water. The water samples were filtered through a cellulose membrane to collect Giardia and Cryptosporidium, and then nucleic acids were extracted. Specific primers and probes were designed and synthesized according to the gph gene sequence of Giardia and 18S rRNA gene sequence of Cryptosporidium. The concentrations of the two targets were determined using real-time PCR technology. The sensitivity, specificity, and stability of the method were evaluated. Our findings revealed that the detection limits of real-time PCR method for detecting Giardia and Cryptosporidium were 0.926 and 0.65 copy/µL, respectively; the spiked recovery rates were above 60% and 38%, respectively, and relative standard deviations were under 0.95% and 2.26%, respectively. Therefore, this effective procedure based on the membrane concentration method and real-time PCR will be useful for detecting Giardia and Cryptosporidium in drinking water for purpose of continuous environmental monitoring.


Assuntos
Criptosporidiose , Cryptosporidium , Água Potável , Humanos , Cryptosporidium/genética , Giardia/genética , Reação em Cadeia da Polimerase em Tempo Real
8.
Mem Inst Oswaldo Cruz ; 118: e230088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37971095

RESUMO

BACKGROUND: The parasite Giardia duodenalis infects a wide range of vertebrate hosts, including domestic and wild animals as well as humans. Giardia is genotyped into eight assemblages (A-H). Zoonotic assemblages A and B have already been identified in humans and wild and domestic animals (non-human primates and cats) from Brazilian Amazon and in the world. Due to its zoonotic/zooanthroponotic nature, surveillance initiatives and the definition of Giardia assemblages are important in order to characterise the epidemiological scenario and to implement further control measures. OBJECTIVES: Determine assemblages of G. duodenalis in sloths from the Brazilian Amazon Region. METHODS: Faecal parasitological examination of sloths from Amazonas State. Polymerase chain reaction (PCR) targeting the beta giardin (BG), and genes from multilocus sequence typing (MLST) scheme, amplicon sequencing and phylogenetic analysis. FINDINGS: Here, we identified, by microscopy, Giardia in two northern sloths (Bradypus tridactylus). These two samples were submitted to molecular assays and it was revealed that both were infected by G. duodenalis assemblage A. Phylogenetic analysis showed that they belong to assemblage A within sequences from humans and wild and domestic animals. CONCLUSION: Therefore, besides showing, by the first time, the current presence of this parasite in sloths, our findings reveals that this wild animal species would be part of the zoonotic/zooanthroponotic scenario of this parasite in the Brazilian Amazon.


Assuntos
Giardia lamblia , Giardíase , Bichos-Preguiça , Animais , Humanos , Gatos , Giardia lamblia/genética , Bichos-Preguiça/genética , Tipagem de Sequências Multilocus , Filogenia , Brasil/epidemiologia , Fezes/parasitologia , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/diagnóstico , Zoonoses , Giardia/genética , Genótipo , Animais Domésticos , Animais Selvagens , Prevalência
9.
Parasitol Res ; 122(11): 2491-2501, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632544

RESUMO

Over the past three decades, a notable rise in the occurrence of enteric protozoan pathogens, especially Giardia and Cryptosporidium spp., in drinking water sources has been observed. This rise could be attributed not only to an actual increase in water contamination but also to improvements in detection methods. These waterborne pathogens have played a pivotal role in disease outbreaks and the overall escalation of disease rates in both developed and developing nations worldwide. Consequently, the control of waterborne diseases has become a vital component of public health policies and a primary objective of drinking water treatment plants (DWTPs). Limited studies applied real-time PCR (qPCR) and/or immunofluorescence assay (IFA) for monitoring Giardia and Cryptosporidium spp., particularly in developing countries like Egypt. Water samples from two conventional drinking water treatment plants and two compact units (CUs) were analyzed using both IFA and qPCR methods to detect Giardia and Cryptosporidium. Using qPCR and IFA, the conventional DWTPs showed complete removal of Giardia and Cryptosporidium, whereas Mansheyat Alqanater and Niklah CUs achieved only partial removal. Specifically, Cryptosporidium gene copies removal rates were 33.33% and 60% for Mansheyat Alqanater and Niklah CUs, respectively. Niklah CU also removed 50% of Giardia gene copies, but no Giardia gene copies were removed by Mansheyat Alqanater CU. Using IFA, both Mansheyat Alqanater and Niklah CUs showed a similar removal rate of 50% for Giardia cysts. Additionally, Niklah CU achieved a 50% removal of Cryptosporidium oocysts, whereas Mansheyat Alqanater CU did not show any removal of Cryptosporidium oocysts. Conventional DWTPs were more effective than CUs in removing enteric protozoa. The contamination of drinking water by enteric pathogenic protozoa remains a significant issue globally, leading to increased disease rates. Infectious disease surveillance in drinking water is an important epidemiological tool to monitor the health of a population.


Assuntos
Criptosporidiose , Cryptosporidium , Água Potável , Giardíase , Purificação da Água , Animais , Humanos , Giardia/genética , Cryptosporidium/genética , Criptosporidiose/epidemiologia , Criptosporidiose/prevenção & controle , Giardíase/epidemiologia , Giardíase/prevenção & controle , Oocistos
10.
Parasitol Res ; 123(1): 38, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091122

RESUMO

Giardia duodenalis is a common pathogenic intestinal protozoan parasite with high prevalence in developing countries, especially among children. The distribution of giardia assemblages among humans and their clinical relevance remains controversial. This study aimed to determine the prevalence and assemblage of Giardia among children under 5 years of age in Jimma, Southwest Ethiopia. Employing a case-control design, 606 children presenting with diarrhea at Jimma university medical center and Serbo Health Center were enrolled from December 2016 to July 2018 along with 617 matched controls without diarrhea. Giardia was detected and typed using real-time PCR. Univariate and multivariate regression analysis was performed. The total prevalence of Giardia was 41% (501/1223) and did not differ significantly between cases and controls (40% vs 42%). Prevalence increased by age, with the highest prevalence seen in children aged ≥ 25 months. Children without diarrhea with a history of diarrhea during the last month were more likely to be Giardia positive compared to children with no history diarrhea (OR 1.8 and 95%CI; 1.1-2.9). Regardless of current diarrhea symptoms, assemblage B predominated with 89%, followed by assemblage A (8%) and mixed infection assemblage A and B (3%). We report a high prevalence of Giardia by PCR detection in Jimma, Ethiopia, with assemblage B being predominant. There was a similar distribution of Giardia assemblages between children with and without diarrhea. Increasing age was a risk factor for Giardia infection. Community-based prevention and control strategies need to be employed to decrease the risk of giardia infection.


Assuntos
Giardia lamblia , Giardíase , Criança , Humanos , Pré-Escolar , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/parasitologia , Prevalência , Etiópia/epidemiologia , Estudos de Casos e Controles , Genótipo , Giardia/genética , Diarreia/epidemiologia , Diarreia/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Fezes/parasitologia
11.
Parasitol Res ; 122(9): 1961-1971, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400534

RESUMO

Giardia duodenalis is a protozoan intestinal parasite that causes a significant number of infections worldwide each year, particularly in low-income and developing countries. Despite the availability of treatments for this parasitic infection, treatment failures are alarmingly common. As a result, new therapeutic strategies are urgently needed to effectively combat this disease. On the other hand, within the eukaryotic nucleus, the nucleolus stands out as the most prominent structure. It plays a crucial role in coordinating ribosome biogenesis and is involved in vital processes such as maintaining genome stability, regulating cell cycle progression, controlling cell senescence, and responding to stress. Given its significance, the nucleolus presents itself as a valuable target for selectively inducing cell death in undesirable cells, making it a potential avenue for anti-Giardia treatments. Despite its potential importance, the Giardia nucleolus remains poorly studied and often overlooked. In light of this, the objective of this study is to provide a detailed molecular description of the structure and function of the Giardia nucleolus, with a primary focus on its involvement in ribosomal biogenesis. Likewise, it discusses the targeting of the Giardia nucleolus as a therapeutic strategy, its feasibility, and the challenges involved.


Assuntos
Nucléolo Celular , Giardia , Ribossomos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Giardia/citologia , Giardia/genética , RNA Ribossômico/genética , DNA Ribossômico/genética , DNA de Protozoário/genética , RNA de Protozoário/genética , Transcrição Gênica , Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA/genética , Ribossomos/genética , Ribossomos/metabolismo , Giardíase/tratamento farmacológico , Antiparasitários/uso terapêutico , Desenvolvimento de Medicamentos/tendências
12.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298511

RESUMO

The genetically related assemblages of the intestinal protozoa parasite Giardia lamblia are morphologically indistinguishable and are often derived from specific hosts. The Giardia assemblages are separated by large genetic distances, which might account for their relevant biological and pathogenic differences. In this work, we analyzed the RNAs cargo released into exosomal-like vesicles (ElVs) by the assemblages A and B, which differentially infect humans, and the assemblage E, which infects hoofed animals. The RNA sequencing analysis revealed that the ElVs of each assemblage contained distinct small RNA (sRNA) biotypes, suggesting a preference for specific packaging in each assemblage. These sRNAs were classified into three categories, ribosomal-small RNAs (rsRNAs), messenger-small RNAs (msRNAs), and transfer-small RNAs (tsRNAs), which may play a regulatory role in parasite communication and contribute to host-specificity and pathogenesis. Uptake experiments showed, for the first time, that ElVs were successfully internalized by the parasite trophozoites. Furthermore, we observed that the sRNAs contained inside these ElVs were first located below the plasma membrane but then distributed along the cytoplasm. Overall, the study provides new insights into the molecular mechanisms underlying the host-specificity and pathogenesis of G. lamblia and highlights the potential role of sRNAs in parasite communication and regulation.


Assuntos
Exossomos , Giardíase , Parasitos , Humanos , Animais , Giardia/genética , RNA/metabolismo , Exossomos/genética , Exossomos/metabolismo , Giardíase/parasitologia , RNA de Transferência/metabolismo , RNA Ribossômico/metabolismo
13.
Environ Monit Assess ; 195(4): 470, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36922479

RESUMO

The detection of Giardia duodenalis and Cryptosporidium spp. was performed, along with the identification of the ciliated protozoa biodiversity, to evaluate the correlation between these protozoa in freshwater quality monitoring. Water and sediment samples from two sites in the Atibaia River (Campinas, São Paulo, Brazil) were collected monthly for 2 years (n = 96). Pathogenic protozoa in water and sediment were detected by using immunomagnetic separation, followed by visualization by immunofluorescence assay (IFA). All positive aliquots in IFA were subjected to DNA extraction and subsequently nested PCR. Qualitative (in vivo observation and silver impregnation) and quantitative (in vivo enumeration) analyses were performed for the ciliated protozoa. Giardia cysts were detected in 62.5% of the surface water samples and Cryptosporidium spp. in 25.0%. In the sediment, cysts were detected in 35.4% samples and oocysts in 16.6%. A total of 57 samples positive for Giardia cysts were subjected to sequencing, 40 of which were harboring G. duodenalis (24 were characterized as sub-assemblage AII). For ciliated protozoa, 73 taxa belonging to 53 genera were identified over the period of the study. These results revealed a high degree of contamination by waterborne protozoa in the main water source which supplies drinking water for more than one million people in Campinas (São Paulo), highlighting the need for continuous monitoring of this catchment site. In addition, the present study provides important data regarding the sources of the water body degradation, i.e., fecal contamination of human origin, in addition to the survey of the ciliated protozoa.


Assuntos
Criptosporidiose , Cryptosporidium , Giardia lamblia , Humanos , Giardia lamblia/genética , Água/parasitologia , Brasil , Cryptosporidium/genética , Monitoramento Ambiental , Giardia/genética
14.
Mem Inst Oswaldo Cruz ; 116: e210280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35195158

RESUMO

BACKGROUND: Giardia duodenalis is a protozoan parasite that infects humans and other mammals and causes giardiasis worldwide. Giardia is genotyped into eight assemblages (A-H), with assemblages A and B considered zoonotic. OBJECTIVES: The aim of this study was to determine the assemblages of G. duodenalis from individuals living in rural and urban areas of the Amazonas State. METHODS: 103 human faecal specimens microscopically positive for the presence of Giardia obtained from four municipalities in Amazonas and four animal faecal specimens were genotyped based on the sequences of two genes, triosephosphate isomerase (TPI) and ß-giardin (BG). FINDINGS: In humans, assemblage A was the most represented with the identification of sub-assemblages AI, AII and AIII based on BG and sub-assemblages AI and AII based on TPI. Similarly, there is a diversity of sub-assemblage B considering BG (B and BIII) and TPI (B, BIII and BIV). In addition, we characterised homogeneous and heterogeneous genotypes comprising assemblages/sub-assemblages A and B in individuals from urban and rural areas. Here, for the first time, it was genotyped Giardia that infects animals from the Brazilian Amazon region. We identified sub-assemblage AI in one Ateles paniscus and two Felis catus and sub-assemblage BIV in one Lagothrix cana. MAIN CONCLUSIONS: Therefore, humans and animals from the urban and rural Amazon share Giardia genotypes belonging to assemblages A and B, which are found in cosmopolitan regions around the world.


Assuntos
Giardia lamblia , Giardíase , Animais , Brasil , Gatos , Fezes/parasitologia , Genótipo , Giardia/genética , Giardia lamblia/genética , Giardíase/parasitologia , Humanos , Filogenia , Triose-Fosfato Isomerase
15.
Food Microbiol ; 99: 103816, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119101

RESUMO

Protozoan contamination in produce is of growing importance due to their capacity to cause illnesses in consumers of fresh leafy greens. Viability assays are essential to accurately estimate health risk caused by viable parasites that contaminate food. We evaluated the efficacy of reverse transcription quantitative PCR (RT-qPCR), propidium monoazide coupled with (q)PCR, and viability staining using propidium iodide through systematic laboratory spiking experiments for selective detection of viable Cryptosporidium parvum, Giardia enterica, and Toxoplasma gondii. In the presence of only viable protozoa, the RT-qPCR assays could accurately detect two to nine (oo)cysts/g spinach (in 10 g processed). When different proportions of viable and inactivated parasite were spiked, mRNA concentrations correlated with increasing proportions of viable (oo)cysts, although low levels of false-positive mRNA signals were detectable in the presence of high amounts of inactivated protozoa. Our study demonstrated that among the methods tested, RT-qPCR performed more effectively to discriminate viable from inactivated C. parvum, G. enterica and T. gondii on spinach. This application of viability methods on leafy greens can be adopted by the produce industry and regulatory agencies charged with protection of human public health to screen leafy greens for the presence of viable protozoan pathogen contamination.


Assuntos
Cryptosporidium parvum/isolamento & purificação , Parasitologia de Alimentos/métodos , Giardia/isolamento & purificação , Spinacia oleracea/parasitologia , Toxoplasma/isolamento & purificação , Animais , Azidas/química , Cryptosporidium parvum/química , Cryptosporidium parvum/genética , Cryptosporidium parvum/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Giardia/química , Giardia/genética , Giardia/crescimento & desenvolvimento , Oocistos/química , Oocistos/crescimento & desenvolvimento , Oocistos/isolamento & purificação , Folhas de Planta/parasitologia , Propídio/análogos & derivados , Propídio/química , Reação em Cadeia da Polimerase em Tempo Real , Coloração e Rotulagem , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento
16.
Mem Inst Oswaldo Cruz ; 115: e200431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33503146

RESUMO

Giardia duodenalis infection is distributed worldwide and can achieve prevalence around 60%, especially in developing countries. This protozoan is divided into eight assemblages, in which A and B have high zoonotic potential, whereas C to H are host-specific. This scenario is changing as molecular studies progress, highlighting that knowledge on host-specificity still has a long way to go. Understanding the players involved in transmission routes enables rational designs of control strategies. Considering the high prevalence of giardiasis, this review aims to gather together the data on available studies on the distribution of G. duodenalis assemblages in Brazil until September 2020.


Assuntos
Fezes/parasitologia , Giardia/classificação , Giardia/genética , Giardíase/diagnóstico , Animais , Brasil/epidemiologia , Genótipo , Giardia/isolamento & purificação , Giardíase/epidemiologia , Giardíase/parasitologia , Giardíase/veterinária , Humanos , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Zoonoses
17.
Euro Surveill ; 26(35)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34477055

RESUMO

Giardiasis, the disease caused by the flagellate Giardia duodenalis (syn. G.lamblia, G. intestinalis), is the most commonly reported among the five food- and waterborne parasitic diseases under mandatory surveillance in 24 EU countries. From November 2018 to April 2019, an outbreak of giardiasis occurred in a municipality of the Bologna province, in north-eastern Italy. Microscopy and immunochromatography identified cysts and antigens, respectively, of the parasite in stool samples of 228 individuals. Molecular typing of 136 stool samples revealed a vast predominance (95%) of G. duodenalis assemblage B. Investigations into potential sources indicated tap water as the most likely vehicle of infection, although cysts were not detected in water samples. Control measures mostly aimed at preventing secondary transmission by informing citizens about the outbreak, and by treatment of patients with anti-parasitic drugs. This is the first documented human outbreak of giardiasis in Italy; its investigation has highlighted the difficulties in the timely detection and management of this parasite, which is often overlooked as a cause of human gastroenteritis. The long and variable incubation time, absence of specific symptoms and a general lack of awareness about this pathogen contributed to delay in diagnosis.


Assuntos
Giardia lamblia , Giardíase , Surtos de Doenças , Fezes , Genótipo , Giardia/genética , Giardia lamblia/genética , Giardíase/diagnóstico , Giardíase/epidemiologia , Humanos
18.
Parasitology ; 147(9): 1008-1018, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32338227

RESUMO

Giardia lamblia is a causative agent of persistent diarrhoea widespread in regions with low hygienic standards. Laboratory research is based on cloned lines issuing from various patient isolates typed in the late 1980s and 90s using restriction analysis and serology. In the present study, we compared the well-characterized strain WBC6 with another clone of the parent WB isolate termed WBA1 and with a clone from another isolate, GS/M-83-H7, using shotgun mass spectrometry proteomics. We identified 398 proteins differentially expressed between the GS and both WB isolates and 97 proteins differentially expressed between the two WB isolates. We investigated the expression levels of the predominant variant-specific surface proteins (VSPs) in each clone and matched the previously described major VSPs of each strain to the corresponding open reading frame sequences identified by whole-genome sequencing efforts. Furthermore, since the original WB isolate comes from a patient treated with metronidazole, we compared the susceptibilities of the strains to nitro compounds, as well the expression levels of enzymes involved in nitro reduction and on the corresponding enzyme activities and found distinct differences between the three strains.


Assuntos
Variação Antigênica/genética , Giardia/genética , Proteoma/imunologia , Proteínas de Protozoários/imunologia , Genômica , Giardia/imunologia , Proteômica
19.
Dig Dis Sci ; 65(8): 2345-2353, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31955285

RESUMO

BACKGROUND: Giardia duodenalis is a common cause of chronic diarrhea especially in tropical countries. Diagnosis is based on microscopy (three stool samples) for trophozoites/cysts. Role of stool or duodenal biopsy PCR as a diagnostic method needs to be defined. We conducted a prospective study to determine the diagnostic characteristics of G. duodenalis stool and duodenal biopsy PCR in comparison to stool microscopy (reference standard). Later, we compared other techniques with stool PCR, considering it as new reference standard and characterized the type of Giardia assemblage. METHODS: G. duodenalis stool nested PCR was first evaluated using 40 positive controls and 50 negative controls considering stool microscopy as reference standard. Patients with chronic diarrhea (n = 100) were evaluated by stool microscopy and nested PCR. In 30 patients in whom upper gastrointestinal endoscopy was performed, duodenal biopsy samples were obtained and evaluated by histopathology, imprint cytology, and nested PCR. The type of Giardia assemblage was detected by assemblage-specific PCR. RESULTS: Stool nested PCR was found to have sensitivity and specificity of 100% and 94%, respectively, compared to stool microscopy. In patients with chronic diarrhea, 48% had evidence of Giardia infection. Stool microscopy detected 65%, stool PCR detected an additional 27%, and duodenal biopsy PCR detected an additional 8% of cases. The commonest assemblage found was assemblage B. Clinical and demographic characteristics were similar in patients harboring either assemblage A or B. CONCLUSION: Stool PCR is more sensitive than stool microscopy. By utilizing stool microscopy, stool nested PCR, and duodenal biopsy PCR in sequential manner, diagnostic yield can be increased.


Assuntos
DNA de Protozoário/análise , Diarreia/parasitologia , Giardia/isolamento & purificação , Giardíase/diagnóstico , Reação em Cadeia da Polimerase/estatística & dados numéricos , Adulto , Criança , Pré-Escolar , Duodeno/parasitologia , Estudos Epidemiológicos , Fezes/química , Fezes/parasitologia , Feminino , Giardia/genética , Giardíase/parasitologia , Humanos , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Adulto Jovem
20.
Exp Parasitol ; 210: 107848, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32004534

RESUMO

Marine bivalves are usually cultivated in shallow, estuarine waters where there is a high concentration of nutrients. Many micro-pollutants, including the protozoan parasites Giardia duodenalis and Cryptosporidium spp., which also occur in such environments, may be concentrated in shellfish tissues during their feeding process. Shellfish can thus be considered as vehicles for foodborne infections, as they are usually consumed lightly cooked or raw. Therefore, the main objective of this study was to investigate the presence of both parasites in Mediterranean mussels, Mytilus galloprovincialis that are cultivated in Thermaikos Gulf, North Greece, which is fed by four rivers that are contaminated with both protozoa. Moreover, the occurrence of these protozoa was monitored in treated wastewaters from 3 treatment plants that discharge into the gulf. In order to identify potential sources of contamination and to estimate the risk for human infection, an attempt was made to genotype Giardia and Cryptosporidium in positive samples. Immunofluorescence was used for detection and molecular techniques were used for both detection and genotyping of the parasites. In total, 120 mussel samples, coming from 10 farms, were examined for the presence of both protozoa over the 6-month farming period. None of them were found positive by immunofluorescence microscopy for the presence of parasites. Only in 3 mussel samples, PCR targeting the GP60 gene detected Cryptosporidium spp. DNA, but sequencing was not successful. Thirteen out of 18 monthly samples collected from the 3 wastewater treatment plants, revealed the presence of Giardia duodenalis cysts belonging to sub-assemblage AII, at relatively low counts (up to 11.2 cysts/L). Cryptosporidium oocysts (up to 0.9 oocysts/L) were also detected in 4 out of 8 samples, although sequencing was not successful at any of the target genes. At the studied location and under the sampling conditions described, mussels tested were not found to be harboring Giardia cysts and the presence of Cryptosporidium was found only in few cases (by PCR detection only). Our results suggest that the likelihood that mussels from these locations act as vehicles of human infection for Giardia and Cryptosporidium seems low.


Assuntos
Bivalves/parasitologia , Cryptosporidium/isolamento & purificação , Doenças Transmitidas por Alimentos/parasitologia , Giardia/isolamento & purificação , Animais , Criptosporidiose/transmissão , Cryptosporidium/genética , DNA de Protozoário/isolamento & purificação , Giardia/genética , Giardíase/transmissão , Grécia , Humanos , Oocistos/isolamento & purificação , Reação em Cadeia da Polimerase , Rios/parasitologia , Águas Residuárias/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA