Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Prod Rep ; 40(4): 794-818, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36420976

RESUMO

Covering: 1990 up to 2022 Contrary to popular opinion, butterflies exhibit a rich chemistry and elaborate use of volatile compounds, especially for sexual communication, but also for defence. In contrast to night flying moths, in which commonly females are the producers of pheromones, male scent emission is prevalent in butterflies. While visual signals are generally important for long-range attraction, butterfly scent signals are often active only within a short range. Another feature of butterfly scent chemistry is the wide variety of compounds used, including alkaloids, terpenoids, fatty acid derivatives and aromatic compounds, sometimes with unique structures. This contrasts the strucutrally more restricted pheromone chemistry of moths. In this review, the compounds emitted predominately from male butterflies will be discussed and their ecological function explained, if known. The review includes material from 1990 to date, but will also cover older material to provide a necessary background.


Assuntos
Borboletas , Odorantes , Animais , Alcaloides/química , Alcaloides/metabolismo , Borboletas/química , Borboletas/genética , Borboletas/metabolismo , Filogenia , Glândulas Odoríferas/química , Glândulas Odoríferas/metabolismo , Olfato , Feromônios/química , Feromônios/metabolismo
2.
Chembiochem ; 24(22): e202300537, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37650217

RESUMO

Male Heliconius butterflies possess two pheromone emitting structures, wing androconia and abdominal clasper scent glands. The composition of the clasper scent gland of males of 17 Heliconius and Eueides species from an overlapping area in Ecuador, comprising three mimicry groups, was investigated by GC/MS. The chemical signal serves as an anti-aphrodisiac signal that is transferred from males to females during mating, indicating the mating status of the female to prevent them from harassment by other males. In addition, the odour may also serve in predator defence. There is potential for convergence driven by mimicry, although, such convergence might be detrimental for species recognition of the butterflies within the mimicry ring, making mating more difficult. More than 500 compounds were detected, consisting of volatile, semi-volatile or non-volatile compounds, including terpenes, fatty acid esters or aromatic compounds. Several novel esters were identified by GC/MS and GC/IR data, microderivatisation and synthesis, including butyl (Z)-3-dodecenoate and other (Z)-3-alkenoates, 3-oxohexyl citronellate and 5-methylhexa-3,5-dienyl (E)-2,3-dihydrofarnesoate. The secretions were found to be species specific, potentially allowing for species differentiation. Statistical analysis of the compounds showed differentiation by phylogenetic clade and species, but not by mimicry group.


Assuntos
Borboletas , Animais , Masculino , Feminino , Glândulas Odoríferas/química , Filogenia , Feromônios , Odorantes/análise
3.
Am J Physiol Regul Integr Comp Physiol ; 325(3): R238-R247, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37358350

RESUMO

Prostaglandins (PGs) serve as signaling molecules that regulate various physiological processes, including inflammation, immune response, blood clotting, and reproduction. The aim of this study was to investigate the immunolocalizations and expression patterns of prostaglandin-E2 (PGE2), cyclooxygenase (COX)-1, and COX-2, as well as its receptor subtypes 4 (EP4) in the scent glands of muskrats (Ondatra zibethicus) during the breeding and nonbreeding periods. There were significant seasonal differences in the scent glandular mass, with higher values in the breeding season and relatively low in the nonbreeding season. PGE2, EP4, COX-1, and COX-2 have been immunolocalized in the scent glandular and epithelial cells in both breeding and nonbreeding seasons, whereas no immunostaining was observed in the interstitial cells. The protein and mRNA expression levels of EP4, COX-1, and COX-2 were higher in the scent glands of the breeding season than those of the nonbreeding season. The mean mRNA levels of EP4, COX-1, and COX-2 were positively correlated with the scent glandular weights. The circulating follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), and PGE2, as well as scent glandular PGE2 and dihydrotestosterone (DHT) concentrations, were also significantly higher in the breeding season. In addition, the transcriptomic study in the scent glands identified that differentially expressed genes might be related to fatty carboxylic monocarboxylic acid, steroidogenic-related pathways, and prostanoid metabolic processes. These findings suggested that prostaglandin-E2 might play an essential autocrine or paracrine role in regulating seasonal changes in the scent glandular functions of the muskrats.


Assuntos
Arvicolinae , Dinoprostona , Animais , Ciclo-Oxigenase 2/genética , Estações do Ano , Dinoprostona/metabolismo , Arvicolinae/genética , Arvicolinae/metabolismo , Glândulas Odoríferas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo
4.
J Chem Ecol ; 49(7-8): 428-436, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37009954

RESUMO

The spined shoulder bug, Podisus maculiventris, is a generalist predator studied for its biocontrol potential. Despite our growing understanding of gland development, the conditions that elicit releases are largely unknown. To determine if male age or gland development affects the chemical composition and release behavior, we dissected adult male bugs and profiled the chemical composition of the male DAG 1, 7, and 14 d post-eclosion. To determine if gland development is related to sexual maturity, we counted the number of sperm present in the seminal vesicles at the same time points. Finally, we measured the diurnal release patterns of different aged males and in various male-female combinations. We observed that newly eclosed adults have under-developed glands and male seminal vesicles contained few sperm. One week post-eclosion the DAG contained previously reported semiochemical compounds and males contained many sperm. Mirroring the trend in reproductive maturation and gland development, the number of semiochemical releases increased with age and the majority of releases followed a scotophase pattern unaffected by sexual composition. These findings link male age to 1) dorsal abdominal gland development 2) release behavior and 3) sexual maturity, which will help our understanding of when these olfactory cues are present for other organisms, like prey, to perceive. Given the results, releasing adults that are at least 1 week post eclosion will maximize the non-consumptive effects of this biocontrol agent.


Assuntos
Heterópteros , Feromônios , Animais , Masculino , Feminino , Glândulas Odoríferas , Sêmen , Larva
5.
Mol Biol Evol ; 37(6): 1694-1707, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32077943

RESUMO

The Bicyclus lineage of satyrid butterflies exhibits male-specific traits, the scent organs, used for chemical communication during courtship. These organs consist of tightly packed brush-like scales (hair-pencils) that rub against scent patches to disperse pheromones, but the evolution and molecular basis of these organ's male-limited development remains unknown. Here, we examine the evolution of the number and location of the scent patches and hair-pencils within 53 species of Bicyclus butterflies, and the involvement of the sex determinant gene doublesex (dsx) in scent organ development in Bicyclus anynana using CRISPR/Cas9. We show that scent patches and hair-pencils arose via multiple, independent gains, in a correlated manner. Further, an initially nonsex-specific Dsx protein expression pattern in developing wing discs becomes male-specific and spatially refined to areas that develop the scent patches. Functional perturbations of dsx show that this gene activates patch development in males whereas hair-pencils develop in both sexes without Dsx input. Dsx in females is, instead, required to repress hair-pencils whereas Dsx in males regulates minor aspects of its development. These findings suggest that the patches and hair-pencils evolve as correlated composite organs presumably due to their functional integration. Divergence in the function of dsx isoforms occurred across the sexes, where the male isoform promotes patch development in males and the female isoform represses hair-pencil development in females, both leading to the development of male-limited traits. Furthermore, evolution in number of patches in males is due to the evolution of spatial regulation of dsx.


Assuntos
Evolução Biológica , Borboletas/genética , Proteínas de Insetos/genética , Comportamento Sexual Animal/fisiologia , Animais , Borboletas/anatomia & histologia , Feminino , Masculino , Glândulas Odoríferas/crescimento & desenvolvimento
6.
Chembiochem ; 22(23): 3300-3313, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547164

RESUMO

The butterfly Heliconius erato occurs in various mimetic morphs. The male clasper scent gland releases an anti-aphrodisiac pheromone and additionally contains a complex mixture of up to 350 components, varying between individuals. In 114 samples of five different mimicry groups and their hybrids 750 different compounds were detected by gas chromatography/mass spectrometry (GC/MS). Many unknown components occurred, which were identified using their mass spectra, gas chromatography/infrared spectroscopy (GC/IR)-analyses, derivatization, and synthesis. Key compounds proved to be various esters of 3-oxohexan-1-ol and (Z)-3-hexen-1-ol with (S)-2,3-dihydrofarnesoic acid, accompanied by a large variety of other esters with longer terpene acids, fatty acids, and various alcohols. In addition, linear terpenes with up to seven uniformly connected isoprene units occur, e. g. farnesylfarnesol. A large number of the compounds have not been reported before from nature. Discriminant analyses of principal components of the gland contents showed that the iridescent mimicry group differs strongly from the other, mostly also separated, mimicry groups. Comparison with data from other species indicated that Heliconius recruits different biosynthetic pathways in a species-specific manner for semiochemical formation.


Assuntos
Borboletas/metabolismo , Feromônios/metabolismo , Glândulas Odoríferas/metabolismo , Animais , Cromatografia Gasosa-Espectrometria de Massas , Feromônios/química , Glândulas Odoríferas/química
7.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33704442

RESUMO

Olfactory communication is an important mediator of social interactions in mammals, thought to provide information about an individual's identity and current social, reproductive, and health status. In comparison with other taxa such as carnivores and rodents, few studies have examined primate olfactory communication. Tamarins (Callitrichidae) conspicuously deposit odorous secretions, produced by specialized scent glands, in their environment. In this study, we combined behavioral and chemical data on captive cotton-top tamarins, Saguinus oedipus, and bearded emperor tamarins, S. imperator subgrisescens, to examine the role of olfactory communication in the advertisement of species, sex, and reproductive status. We observed no difference in scent-marking behavior between species; however, females marked more frequently than males, and reproductive individuals more than non-reproductive ones. In addition, tamarins predominantly used their anogenital gland when scent-marking, followed by the suprapubic gland. We collected swabs of naturally deposited tamarin anogenital scent marks, and analyzed these samples using headspace gas chromatography-mass spectrometry. Despite a limited sample size, we established differences in tamarin anogenital mark chemical composition between species, sex and reproductive status, and identified 41 compounds. The compounds identified, many of which have been reported in previous work on mammalian semiochemistry, form targets for future bioassay studies to identify semiochemicals. Our non-invasive method for collecting deposited scent marks makes it a promising method for the study of olfactory communication in scent-marking animal species, applicable to field settings and for the study of elusive animals.


Assuntos
Comunicação Animal , Glândulas Odoríferas/fisiologia , Comportamento Sexual Animal/fisiologia , Olfato/fisiologia , Animais , Saguinus , Fatores Sexuais
8.
J Chem Ecol ; 47(1): 43-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33103230

RESUMO

Much of the growing interest in avian chemical signals has focused on the role of kin recognition or mate attraction, often with an emphasis on males, with uropygial gland secretions perhaps providing information about an individual's identity and quality. Yet, data collected to date suggest sexual dimorphism in uropygial glands and secretions are often emphasized in female, rather than in male birds. That is, when a sexual difference occurs (often during the breeding season only), it is the female that typically exhibits one of three patterns: (1) a larger uropygial gland, (2) a greater abundance of volatile or semi-volatile preen oil compounds and/or (3) greater diversity of preen oil compounds or associated microbes. These patterns fit a majority of birds studied to date (23 of 30 chemically dimorphic species exhibit a female emphasis). Multiple species that do not fit are confounded by a lack of data for seasonal effects or proper quantitative measures of chemical compounds. We propose several social functions for these secretions in female-based patterns, similar to those reported in mammals, but which are largely unstudied in birds. These include: (1) intersexual advertisement of female receptivity or quality, including priming effects on male physiology, (2) intrasexual competition, including scent marking and reproductive suppression or (3) parental behaviors, such as parent-offspring recognition and chemical protection of eggs and nestlings. Revisiting the gaps of chemical studies to quantify the existence of female social chemosignals and any fitness benefit(s) during breeding are potentially fruitful but overlooked areas of future research.


Assuntos
Comunicação Animal , Aves/fisiologia , Glândulas Odoríferas/fisiologia , Atrativos Sexuais/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Comportamento Competitivo/fisiologia , Feminino , Comportamento Materno/fisiologia
9.
Am J Primatol ; 83(3): e23236, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33534928

RESUMO

Chemosignals are mediators of social interactions in mammals, providing con- and hetero-specifics with information on fixed (e.g., species, sex, group, and individual identity) and variable (e.g., social, reproductive, and health status) features of the signaler. Yet, methodological difficulties of recording and quantifying odor signals, especially in field conditions, have hampered studies of natural systems. We present the first use of the Torion® portable gas chromatography-mass spectrometry (GC-MS) instrument for in situ chemical analysis of primate scents. We collected and analyzed swab samples from the scent glands and skin from 13 groups (57 individuals) of two sympatric species of wild emperor tamarins, Saguinus imperator, and Weddell's saddleback tamarins, Leontocebus weddelli (Callitrichidae). In total, 11 compounds of interest (i.e., probably derived from the animals) could be detected in the samples, with 31 of 215 samples containing at least one compound of interest. The composition of these 31 samples varied systematically with species, group, sex, and breeding status. Moreover, we tentatively identified seven of the compounds of interest as methyl hexanoate, benzaldehyde, ethyl hexanoate, acetophenone, a branched C15 alkane, 4-methoxybenzaldehyde, and hexadecan-1-ol. As the field of primate semiochemistry continues to grow, we believe that portable GC-MS instruments have the potential to help make progress in the study of primate chemosignaling in field conditions, despite limitations that we encountered. We further provide recommendations for future use of the Torion® portable GC-MS for in situ analyses.


Assuntos
Odorantes , Glândulas Odoríferas , Animais , Secreções Corporais , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Feromônios
10.
J Chem Ecol ; 46(10): 927-934, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32929616

RESUMO

The dotted white geometrid moth, Naxa seriaria Motschulsky (Lepidoptera: Geometridae), is a pest of Oleaceae in Korea, Japan, and China. In this study, we identified (3Z,6Z,9Z,12Z,15Z)-heneicosapentaene (C-21 pentaene) as the only compound in extracts of the pheromone glands of female N. seriaria causing a response from receptors on the antennae of males in analyses by gas chromatography with electroantennographic detection. The synthetic sex pheromone elicited dose-dependent electrophysiological responses from antennae of male N. seriaria. In field tests, more male moths were captured in traps baited with synthetic C-21 pentaene than in unbaited traps, and increasing the loading of C-21 pentaene in the lure increased catches of male moths. Significantly more male N. seriaria moths were caught in delta traps than in bucket traps. Based on these results, C-21 pentaene is proposed to be the major, if not the only, component of the sex pheromone of N. seriaria.


Assuntos
Mariposas/fisiologia , Polienos/isolamento & purificação , Glândulas Odoríferas/química , Atrativos Sexuais/isolamento & purificação , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Oleaceae/crescimento & desenvolvimento
11.
J Nat Prod ; 83(11): 3278-3286, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33064479

RESUMO

When threatened, the harvestman Egaenus convexus (Opiliones: Phalangiidae) ejects a secretion against offenders. The secretion originates from large prosomal scent glands and is mainly composed of two isomers of 4-hydroxy-5-octyl-4,5-dihydro-3H-furan-2-one (1), a ß-hydroxy-γ-lactone. The compounds were characterized by GC-MS of their microreaction derivatives, HRMS, and NMR. After the synthesis of all four possible stereoisomers of 1, followed by their separation by chiral-phase GC, the absolute configurations of the lactones in the Egaenus secretion was found to be (4S,5R)-1 (90%) and (4S,5S)-1 (10%). Hydroxy-γ-lactones represent a new class of exocrine defense compounds in harvestmen.


Assuntos
Aracnídeos/química , Lactonas/química , Animais , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Glândulas Odoríferas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Estereoisomerismo
12.
J Chem Ecol ; 46(1): 10-20, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31845137

RESUMO

Female moths release sex pheromone to attract mates. In most species, sex pheromone is produced in, and released from, a specific gland. In a previous study, we used empirical data and compartmental modeling to account for the major pheromone gland processes of female Chloridea virescens: synthesis, storage, catabolism and release; we found that females released little (20-30%) of their pheromone, with most catabolized. The recent publication of a new pheromone collection method led us to reinvestigate pheromone release and catabolism in C. virescens on the basis that our original study might have underestimated release rate (thereby overestimating catabolism) due to methodology and females not calling (releasing) continuously. Further we wished to compare pheromone storage/catabolism between calling and non-calling females. First, we observed calling intermittency of females. Then, using decapitated females, we used the new collection method, along with compartmental modeling, gland sampling and stable isotope labeling, to determine differences in pheromone release, catabolism and storage between (forced) simulated calling and non-calling females. We found, (i) intact 1 d females call intermittently; (ii) pheromone is released at a higher rate than previously determined, with simulations estimating that continuously calling females release ca. 70% of their pheromone (only 30% catabolized); (iii) extension (calling)/retraction of the ovipositor is a highly effective "on/off' mechanism for release; (iv) both calling and non-calling females store most pheromone on or near the gland surface, but calling females catabolize less pheromone; (v) females are capable of producing and releasing pheromone very rapidly. Thus, not only is the moth pheromone gland efficient, in terms of the proportion of pheromone released Vs. catabolized, but it is highly effective at shutting on/off a high flux of pheromone for release.


Assuntos
Mariposas/fisiologia , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal , Aldeídos/análise , Aldeídos/farmacologia , Animais , Isótopos de Carbono/química , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glucose/química , Glucose/metabolismo , Marcação por Isótopo , Masculino , Glândulas Odoríferas/metabolismo , Atrativos Sexuais/análise , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos
13.
J Insect Sci ; 20(6)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295983

RESUMO

Aldehyde oxidases (AOXs) are a subfamily of cytosolic molybdo-flavoenzymes that play critical roles in the detoxification and degradation of chemicals. Active AOXs, such as AOX1 and AOX2, have been identified and functionally analyzed in insect antennae but are rarely reported in other tissues. This is the first study to isolate and characterize the cDNA that encodes aldehyde oxidase 5 (BmAOX5) in the pheromone gland (PG) of the silkworm, Bombyx mori. The size of BmAOX5 cDNA is 3,741 nucleotides and includes an open reading frame, which encodes a protein of 1,246 amino acid residues. The theoretical molecular weight and isoelectric point of BmAOX5 are approximately 138 kDa and 5.58, respectively. BmAOX5 shares a similar primary structure with BmAOX1 and BmAOX2, containing two [2Fe-2S] redox centers, a FAD-binding domain, and a molybdenum cofactor (MoCo)-binding domain. RT-PCR revealed BmAOX5 to be particularly highly expressed in the PG (including ovipositor) of the female silkworm moth, and the expression was further confirmed by in situ hybridization, AOX activity staining, and anti-BmAOX5 western blotting. Further, BmAOX5 was shown to metabolize aromatic aldehydes, such as benzaldehyde, salicylaldehyde, and vanillic aldehyde, and fatty aldehydes, such as heptaldehyde and propionaldehyde. The maximum reaction rate (Vmax) of benzaldehyde as substrate was 21 mU and Km was 1.745 mmol/liter. These results suggested that BmAOX5 in the PG could metabolize aldehydes in the cytoplasm for detoxification or participate in the degradation of aldehyde pheromone substances and odorant compounds to identify mating partners and locate suitable spawning sites.


Assuntos
Aldeído Oxidase , Bombyx , Feromônios/metabolismo , Glândulas Odoríferas/metabolismo , Aldeído Oxidase/química , Aldeído Oxidase/genética , Aldeído Oxidase/isolamento & purificação , Aldeído Oxidase/metabolismo , Animais , Antenas de Artrópodes/metabolismo , Bombyx/genética , Bombyx/metabolismo , Genes de Insetos , Mariposas/genética , Mariposas/metabolismo
14.
Chem Senses ; 44(3): 205-214, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30799500

RESUMO

Recognition of individuals or classes of individuals plays an important role in the communication systems of many mammals. The ability of otariid (i.e., fur seal and sea lion) females to locate and identify their offspring in colonies after returning from regular foraging trips is essential to successful pup rearing. It has been shown that olfaction is used to confirm the identity of the pup by the mother when they reunite, yet the processes by which this chemical recognition occurs remain unclear. Using gas chromatography-mass spectrometry, we examined chemical profiles of integumentary and glandular secretions/excretions from pre- and post-molt Australian sea lion pups (Neophoca cinerea) and compared fur and swab samples to assess data collection methods. Multivariate statistics were applied to assess differences in chemical composition between body regions and sexes. We found differences among secretions from various body regions, driven by the distinctiveness of the oral odor mixture. The fine-scale trends in pre- and post-molt pups seem to differ due to changes in the behavior of pups and consequent decrease in the transfer of compounds among adjacent body regions in older pups. Volatile compounds from exocrine substrates were not distinct for different sexes. We also show that swab samples provide better data for exploring social olfaction than fur samples for this species. Obtaining fundamental chemical information, in this case chemical profiles of animals, and discerning differences in chemical composition is an important step toward fully exploring the intricacies of mother-offspring olfactory recognition and its underlying processes.


Assuntos
Odorantes/análise , Glândulas Odoríferas/química , Animais , Austrália , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Análise Multivariada , Leões-Marinhos
15.
J Chem Ecol ; 45(1): 9-17, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30506243

RESUMO

Aldehydes are components of many moth sex pheromones, and are thought to be produced from analogous alcohols by oxidase(s) in the cell membrane or the gland cuticle. This implies that the two types of components are produced and/or stored in different parts of the gland: alcohols in cells and aldehydes in cuticle. Few studies have investigated the distribution of components in moth pheromone glands. Using rinse/extract sampling, stable isotope tracer/tracee methods, and decapitation/ pheromone biosynthesis activating neuropeptide stimulation, we studied production and distribution of (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-hexadecenol (Z11-16:OH) in the gland of Chloridea virescens (formerly Heliothis virescens). The rinse, which likely sampled the surface and outer cuticle, contained large amounts of aldehyde and small amounts of alcohol. By contrast, the residual extract, which likely sampled cells and less solvent-accessible (inner) cuticle, had large amounts of alcohol and small amounts of aldehyde. When a tracer (U-13C-glucose) was fed to females, the aldehyde had higher isotopic enrichment than the alcohol in the rinse, but not in the residual extract, showing that in the rinse pool, Z11-16:Ald was, on average, synthesized before Z11-16:OH. This is consistent with greater aldehyde than alcohol flux through the cuticle. While our results are consistent with cell/cuticle synthesis sites for alcohol/aldehyde components, we cannot rule out both being synthesized in gland cells. We propose two alternative conceptual models for how site of production, cuticular transport and catabolism/metabolism might explain the relative masses of Z11-16:Ald and Z11-16:OH translocated to the pheromone gland surface in female C. virescens.


Assuntos
Aldeídos/metabolismo , Álcoois Graxos/metabolismo , Mariposas/metabolismo , Atrativos Sexuais/metabolismo , Aldeídos/análise , Animais , Vias Biossintéticas , Álcoois Graxos/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Mariposas/química , Neuropeptídeos/metabolismo , Glândulas Odoríferas/química , Glândulas Odoríferas/metabolismo , Atrativos Sexuais/análise
16.
Gen Comp Endocrinol ; 281: 58-66, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121166

RESUMO

The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) system plays an important role in regulating the cellular growth and organ development. The present study investigated the seasonal expressions of growth hormone receptor (GHR), IGF-1 and insulin-like growth factor 1 receptor (IGF-1R) in the scented glands of the muskrats. Morphological changes in the scented glands of the muskrats were observed significantly between the breeding and non-breeding seasons. Immunohistochemically, the expressions of GH, GHR, IGF-1 and IGF-1R were found in glandular cells and epithelial cells of the scented glands in both seasons. The protein and mRNA expression levels of GHR, IGF-1 and IGF-1R in the scented glands during the breeding season were noticeably higher than those of the non-breeding season. In parallel, the levels of GH and IGF-1 in the sera and scented glands were remarkably higher during the breeding season. In addition, small RNA sequencing showed that the predicted targets of the significantly changed hsa-miR-5100 and mmu-miR-6937-5p might regulate the expressions of Ghr, Igf-1 or Igf-1r. These results suggested that the morphological changes in the scented glands of the muskrats during the different seasons might be related to the expression levels of GHR, IGF-1 and IGF-1R. Meanwhile, GHR/IGF-1 system might regulate the scented glandular functions via endocrine or autocrine/paracrine manners.


Assuntos
Arvicolinae/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptores de Somatomedina/metabolismo , Receptores da Somatotropina/metabolismo , Glândulas Odoríferas/metabolismo , Estações do Ano , Animais , Arvicolinae/anatomia & histologia , Arvicolinae/sangue , Hormônio do Crescimento/sangue , Fator de Crescimento Insulin-Like I/genética , Antígeno Ki-67/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores da Somatotropina/genética
17.
Am J Primatol ; 81(1): e22951, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30663779

RESUMO

Primate chemical communication remains underappreciated, as primates are considered to rely on other sensory modalities. However, various lines of evidence suggest that olfaction plays an important role in primate societies, including the conspicuous scent-marking behavior of many strepsirrhines and callitrichines. Although lemurs typically show scent-marking, little is known about this behavior in red-ruffed lemurs (Varecia variegata rubra). We combined behavioral observations and semiochemistry analyses to improve our understanding of scent-marking in two captive troops housed at Dudley and Twycross zoos (UK). We collected olfactory behavioral observations by focusing on two family troops (N = 7) for 132 hr. We investigated the volatile compounds of ano-genital scent-marks using solid-phase microextraction and gas chromatography-mass spectrometry and compared volatile chemical profiles with features of the signaller. Males scent-marked most frequently and predominantly in specific meaningful areas of the enclosure, while within females the occurrence of scent-marking was related to their age. We found behavioral sexual dimorphism, with male predominantly depositing secretions via neck and mandible glands and females via ano-genital glands. We identified a total of 32 volatile components of ano-genital gland secretion, including compounds that have already been found in other mammals as sex pheromones and cues to fitness, in ano-genital scent-marks spontaneously left on filter paper by adult females. Our findings suggest that red-ruffed lemurs might use scent-marking to convey information about sex and female age, with male neck-marking behavior playing defensive territorial functions and ano-genital marking related to socio-sexual communication.


Assuntos
Comunicação Animal , Lemuridae , Odorantes/análise , Comportamento Sexual Animal/fisiologia , Fatores Etários , Animais , Animais de Zoológico/fisiologia , Feminino , Masculino , Glândulas Odoríferas , Caracteres Sexuais , Territorialidade , Reino Unido
18.
Am J Primatol ; 81(10-11): e22974, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30932230

RESUMO

Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host-microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage-specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent-gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host-microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis-driven research.


Assuntos
Comportamento Alimentar , Lemuridae/microbiologia , Microbiota , Glândulas Odoríferas/microbiologia , Criação de Animais Domésticos , Animais , Dieta/veterinária , Feminino , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Madagáscar , Masculino , Filogenia
19.
J Chem Ecol ; 44(11): 975-986, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30078062

RESUMO

Chemical signals are ubiquitous, but often overlooked as potentially important for conveying information relevant for sexual selection. The male greater spear-nosed bat, Phyllostomus hastatus, possesses a sexually dimorphic gland on the chest that produces an odoriferous secretion. Here, we investigate the potential for this glandular secretion to act as a sexually selected olfactory signal by examining gland activity in and out of the mating season and determining if variation in its chemical composition reflects variation in male mating status or attributes of the individual. Based on gas chromatography-mass spectrometry (GC-MS) measurements of samples collected from wild bats roosting in caves in Trinidad, West Indies, we find that males that defend and roost with groups of females (harem holders) have significantly different chemical profiles from males found roosting in all male groups (bachelors). Additionally, profiles differed significantly among individuals. Taken together, these results suggest that this chemical signal has the potential to communicate both mating status and individual identity and thus could be used to mediate interactions among individuals within this harem-based social mating system.


Assuntos
Quirópteros/fisiologia , Glândulas Odoríferas/química , Comportamento Sexual Animal/fisiologia , Envelhecimento , Animais , Análise Discriminante , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Análise de Componente Principal , Glândulas Odoríferas/metabolismo , Atrativos Sexuais/análise
20.
J Chem Ecol ; 44(6): 525-533, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29744747

RESUMO

Moths are exemplars of chemical communication, especially with regard to specificity and the minute amounts they use. Yet, little is known about how females manage synthesis and storage of pheromone to maintain release rates attractive to conspecific males and why such small amounts are used. We developed, for the first time, a quantitative model, based on an extensive empirical data set, describing the dynamical relationship among synthesis, storage (titer) and release of pheromone over time in a moth (Heliothis virescens). The model is compartmental, with one major state variable (titer), one time-varying (synthesis), and two constant (catabolism and release) rates. The model was a good fit, suggesting it accounted for the major processes. Overall, we found the relatively small amounts of pheromone stored and released were largely a function of high catabolism rather than a low rate of synthesis. A paradigm shift may be necessary to understand the low amounts released by female moths, away from the small quantities synthesized to the (relatively) large amounts catabolized. Future research on pheromone quantity should focus on structural and physicochemical processes that limit storage and release rate quantities. To our knowledge, this is the first time that pheromone gland function has been modeled for any animal.


Assuntos
Mariposas/fisiologia , Glândulas Odoríferas/metabolismo , Atrativos Sexuais/metabolismo , Comunicação Animal , Animais , Isótopos de Carbono/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Modelos Biológicos , Atrativos Sexuais/análise , Atrativos Sexuais/química , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA