RESUMO
Creatine is a natural nitrogenous organic acid that is integral to energy metabolism and crucial for proper cell functioning. The kidneys are involved in the first step of creatine production. With kidney transplantation being the gold-standard treatment for end-stage kidney disease, kidney transplant recipients (KTR) may be at risk of impaired creatine synthesis. We aimed to compare creatine homeostasis between KTR and controls. Plasma and urine concentrations of arginine, glycine, guanidinoacetate, creatine and creatinine were measured in 553 KTR and 168 healthy controls. Creatine intake was assessed using food frequency questionnaires. Iothalamate-measured GFR data were available in subsets of 157 KTR and 167 controls. KTR and controls had comparable body weight, height and creatine intake (all P > 0.05). However, the total creatine pool was 14% lower in KTR as compared to controls (651 ± 178 vs. 753 ± 239 mmol, P < 0.001). The endogenous creatine synthesis rate was 22% lower in KTR as compared to controls (7.8 ± 3.0 vs. 10.0 ± 4.1 mmol per day, P < 0.001). Despite lower GFR, the plasma guanidinoacetate and creatine concentrations were 21% and 41% lower in KTR as compared to controls (both P < 0.001). Urinary excretion of guanidinoacetate and creatine were 66% and 59% lower in KTR as compared to controls (both P < 0.001). In KTR, but not in controls, a higher measured GFR was associated with a higher endogenous creatine synthesis rate (std. beta: 0.21, 95% CI: 0.08; 0.33; P = 0.002), as well as a higher total creatine pool (std. beta: 0.22, 95% CI: 0.11; 0.33; P < 0.001). These associations were fully mediated (93% and 95%; P < 0.001) by urinary guanidinoacetate excretion which is consistent with production of the creatine precursor guanidinoacetate as rate-limiting factor. Our findings highlight that KTR have a disturbed creatine homeostasis as compared to controls. Given the direct relationship of measured GFR with endogenous creatine synthesis rate and the total creatine pool, creatine supplementation might be beneficial in KTR with low kidney function.Trial registration ID: NCT02811835.Trial registration URL: https://clinicaltrials.gov/ct2/show/NCT02811835 .
Assuntos
Creatina , Homeostase , Transplante de Rim , Rim , Humanos , Creatina/urina , Creatina/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Rim/metabolismo , Glicina/análogos & derivados , Glicina/urina , Glicina/metabolismo , Glicina/sangue , Taxa de Filtração Glomerular , Transplantados , Estudos de Casos e Controles , Creatinina/urina , Creatinina/sangueRESUMO
In most mammals, running is fuelled by oxidization of endogenous carbohydrates and lipids while amino acids contribute little (< 5-10%). Common vampire bats (Desmodus rotundus), however, specialize on a unique, protein-rich blood diet. Therefore, we hypothesized that (i) vampire bats would rapidly begin utilizing dietary amino acids to support running metabolism, and (ii) that relative reliance on essential and non-essential amino acids would be similar. We fed bats cow's blood enriched either with isotopically labelled glycine (non-essential amino acid) or leucine (essential amino acid). Bats were exercised at speeds of 10, 20 and 30 m min-1 on a respirometry treadmill, allowing us to assess metabolic rate (i.e. O2 consumption and CO2 production) and track the oxidation of labelled amino acids in exhaled CO2. Vampire bats oxidized amino acids as their primary fuel as indicated by a respiratory exchange ratio (RER = ratio of CO2 production to O2 consumption rates) of approximately 0.8-0.9 at all speeds, with the labelled meal accounting for as much as 60% of oxidized fuels at peak usage. Similar oxidation rates indicated bats did not discriminate between essential and non-essential amino acid use. These findings reiterate how strongly metabolism can be shaped by a specialized diet.
Assuntos
Dióxido de Carbono , Quirópteros , Corrida , Animais , Quirópteros/metabolismo , Quirópteros/fisiologia , Quirópteros/sangue , Dióxido de Carbono/metabolismo , Corrida/fisiologia , Consumo de Oxigênio , Aminoácidos/metabolismo , Aminoácidos/sangue , Leucina/metabolismo , Aminoácidos Essenciais/metabolismo , Aminoácidos Essenciais/sangue , Dieta/veterinária , Metabolismo Energético , Oxirredução , Glicina/metabolismo , Glicina/sangueRESUMO
Intracellular levels of glutathione, the major mammalian antioxidant, are reported to decline with age in several species. To understand whether ageing affects circulating glutathione levels in cats, blood was sampled from two age groups, < 3 years and > 9 years. Further, to determine whether dietary supplementation with glutathione precursor glycine (GLY) affects glutathione concentrations in senior cats (> 8 years), a series of free GLY inclusion level dry diets were fed. Subsequently, a 16-week GLY feeding study was conducted in senior cats (> 7 years), measuring glutathione, and markers of oxidative stress. Whole blood and erythrocyte total, oxidised and reduced glutathione levels were significantly decreased in senior cats, compared with their younger counterparts (P ≤ 0·02). The inclusion level study identified 1·5 % free GLY for the subsequent dry diet feeding study. Significant increases in erythrocyte total and reduced glutathione were observed between senior cats fed supplemented and control diets at 4 weeks (P ≤ 0·03; maximum difference of 1·23 µM). Oxidative stress markers were also significantly different between groups at 8 (P = 0·004; difference of 0·68 nG/ml in 8-hydroxy-2'-deoxyguanosine) and 12 weeks (P ≤ 0·049; maximum difference of 0·62 nG/mG Cr in F2-isoprostane PGF2α). Senior cats have lower circulating glutathione levels compared with younger cats. Feeding senior cats a complete and balanced dry diet supplemented with 1·5 % free GLY for 12 weeks elevated initial erythrocyte glutathione and altered markers of oxidative stress. Dietary supplementation with free GLY provides a potential opportunity to restore age-associated reduction in glutathione in cats.
Assuntos
Envelhecimento , Suplementos Nutricionais , Eritrócitos , Glutationa , Glicina , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Gatos , Glutationa/sangue , Glicina/sangue , Masculino , Eritrócitos/metabolismo , Feminino , Biomarcadores/sangue , Ração Animal/análise , Antioxidantes/análise , Dieta/veterinária , Dinoprosta/análogos & derivados , Dinoprosta/sangueRESUMO
Diquat (DQ), paraquat (PQ), glufosinate (GLU), and glyphosate (GLYP) are commonly used herbicides that have been confirmed to be toxic to humans. Rapid and accurate measurements of these toxicants in clinical practice are beneficial for the correct diagnosis and timely treatment of herbicide-poisoned patients. The present study aimed to establish an efficient, convenient, and reliable method to achieve the simultaneous quantification of DQ, PQ, GLU, and GLYP in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS) without using derivatization or ion-pairing reagents. DQ, PQ, GLU, and GLYP were extracted by the rapid protein precipitation and liquid-liquid extraction method and then separated and detected by LC-MS/MS. Subsequently, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, extraction recovery, matrix effect, dilution integrity, and stability were evaluated to validate the method based on the FDA criteria. Finally, the validated method was applied to real plasma samples collected from 166 Chinese patients with herbicide poisoning. The results showed satisfactory linearity with low LOD (1 ng/mL for DQ and PQ, 5 ng/mL for GLU, and 10 ng/mL for GLYP, respectively) and low LOQ (5 ng/mL for DQ and PQ, 25 ng/mL for GLU and GLYP, respectively). In addition, the precision, accuracy, extraction recovery, and stability of the method were acceptable. The matrix effect was not observed in the analyzed samples. Moreover, the developed method was successfully applied to determine the target compounds in real plasma samples. These data provided reliable evidence for the application of this LC-MS/MS method for clinical poisoning detection.
Assuntos
Aminobutiratos , Diquat , Glicina , Glifosato , Herbicidas , Limite de Detecção , Paraquat , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Glicina/análogos & derivados , Glicina/sangue , Aminobutiratos/sangue , Diquat/sangue , Diquat/intoxicação , Paraquat/sangue , Paraquat/intoxicação , Herbicidas/sangue , Herbicidas/intoxicação , Cromatografia Líquida/métodos , Reprodutibilidade dos TestesRESUMO
PURPOSE: Several preliminary studies suggest dietary guanidinoacetic acid (GAA) might impact methyl group availability and/or methylation biomarkers, fueling ongoing debates. This study aimed to explore the relationship between dietary GAA intake and plasma indicators of the methylation cycle in individuals aged one year and older, using data from the 2001-2002 National Health and Nutrition Examination Survey (NHANES). METHODS: Dietary information was obtained from individuals who completed a 24-hour Dietary Recall, with total daily intake of GAA calculated by aggregating all relevant food items. Relevant variables related to the methylation cycle, such as red blood cell (RBC) folate and serum folate, vitamin B12, total homocysteine (tHCy), and methylmalonic acid (MMA), were identified from the NHANES 2001-2002 laboratory assessments. RESULTS: A total of 9,115 individuals (51.3% females) were included in the final analysis. Linear regression unveiled a significant association between higher GAA intake and diminished RBC folate (p < 0.001), serum folate (p < 0.001), and MMA levels (p = 0.007). It also revealed an elevation in tHCy levels with increased GAA intake (p < 0.001). These associations remained significant even after adjusting for demographic variables and dietary factors pertinent to the methylation cycle (p < 0.05). CONCLUSION: Our findings suggest that dietary exposure to GAA (resulting in conversion to creatine) could be considered a nutritional factor associated with the consumption of methyl groups in the general population.
Assuntos
Biomarcadores , Dieta , Ácido Fólico , Glicina , Homocisteína , Ácido Metilmalônico , Inquéritos Nutricionais , Vitamina B 12 , Humanos , Feminino , Masculino , Estudos Transversais , Ácido Fólico/sangue , Ácido Fólico/administração & dosagem , Homocisteína/sangue , Biomarcadores/sangue , Inquéritos Nutricionais/métodos , Inquéritos Nutricionais/estatística & dados numéricos , Pessoa de Meia-Idade , Adulto , Vitamina B 12/sangue , Glicina/análogos & derivados , Glicina/sangue , Metilação , Dieta/métodos , Dieta/estatística & dados numéricos , Ácido Metilmalônico/sangue , Criança , Adulto Jovem , Adolescente , Idoso , Pré-Escolar , Lactente , Eritrócitos/metabolismoRESUMO
Whey protein ingestion during recovery from exercise increases myofibrillar but not muscle connective protein synthesis rates. It has been speculated that whey protein does not provide sufficient glycine to maximize postexercise muscle connective protein synthesis rates. In the present study, we assessed the impact of coingesting different amounts of collagen with whey protein as a nutritional strategy to increase plasma glycine availability during recovery from exercise. In a randomized, double-blind, crossover design, 14 recreationally active men (age: 26 ± 5 years; body mass index: 23.8 ± 2.1 kg·m-2) ingested in total 30 g protein, provided as whey protein with 0 g (WHEY), 5 g (WC05); 10 g (WC10), and 15 g (WC15) of collagen protein immediately after a single bout of resistance exercise. Blood samples were collected frequently over 6 hr of postexercise recovery to assess postprandial plasma amino acid kinetics and availability. Protein ingestion strongly increased plasma amino acid concentrations (p < .001) with no differences in plasma total amino acid availability between treatments (p > .05). The postprandial rise in plasma leucine and essential amino acid availability was greater in WHEY compared with the WC10 and WC15 treatments (p < .05). Plasma glycine and nonessential amino acid concentrations declined following whey protein ingestion but increased following collagen coingestion (p < .05). Postprandial plasma glycine availability averaged -8.9 ± 5.8, 9.2 ± 3.7, 23.1 ± 6.5, and 39.8 ± 11.0 mmol·360 min/L in WHEY, WC05, WC10, and WC15, respectively (incremental area under curve values, p < .05). Coingestion of a small amount of collagen (5 g) with whey protein (25 g) is sufficient to prevent the decline in plasma glycine availability during recovery from lower body resistance-type exercise in recreationally active men.
Assuntos
Colágeno , Estudos Cross-Over , Glicina , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/administração & dosagem , Masculino , Adulto , Glicina/sangue , Glicina/administração & dosagem , Método Duplo-Cego , Adulto Jovem , Período Pós-Prandial , Exercício Físico/fisiologia , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Aminoácidos/sangue , Aminoácidos/administração & dosagem , Músculo Esquelético/metabolismoRESUMO
A heterozygous mutation (c.643C.A; p.Q215X) in the creatine transporter SLC16A12 has been proposed to cause a syndrome with juvenile cataracts, microcornea, and glucosuria in humans. To further explore the role of SLC16A12 in renal physiology and decipher the mechanism underlying the phenotype of humans with the SLC16A12 mutation, we studied Slc16a12 knockout (KO) rats. Slc16a12 KO rats had lower plasma levels and increased absolute and fractional urinary excretion of creatine and its precursor guanidinoacetate (GAA). Slc16a12 KO rats displayed lower plasma and urinary creatinine levels, but the glomerular filtration rate was normal. The phenotype of heterozygous rats was indistinguishable from wild-type (WT) rats. Renal artery to vein (RAV) concentration differences in WT rats were negative for GAA and positive for creatinine. However, RAV differences for GAA were similar in Slc16a12 KO rats, indicating incomplete compensation of urinary GAA losses by renal GAA synthesis. Together, our results reveal that Slc16a12 in the basolateral membrane of the proximal tubule is critical for the reabsorption of creatine and GAA. Our data suggest a dominant-negative mechanism underlying the phenotype of humans affected by the heterozygous SLC16A12 mutation. Furthermore, in the absence of Slc16a12, urinary losses of GAA are not adequately compensated by increased tubular synthesis, likely caused by feedback inhibition of the rate-limiting enzyme l-arginine:glycine amidinotransferase by creatine in proximal tubular cells.NEW & NOTEWORTHY SLC16A12 is a recently identified creatine transporter of unknown physiological function. A heterozygous mutation in the human SLC16A12 gene causes juvenile cataracts and reduced plasma guanidinoacetate (GAA) levels with an increased fractional urinary excretion of GAA. Our study with transgenic SLC16A12-deficient rats reveals that SLC16A12 is critical for tubular reabsorption of creatine and GAA in the kidney. Our data furthermore indicate a dominant-negative mechanism underlying the phenotype of humans affected by the heterozygous SLC16A12 mutation.
Assuntos
Creatinina/urina , Glicina/análogos & derivados , Túbulos Renais Proximais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Reabsorção Renal , Animais , Creatinina/sangue , Técnicas de Inativação de Genes , Genótipo , Glicina/sangue , Glicina/urina , Fígado/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Fenótipo , Ratos Endogâmicos F344 , Ratos TransgênicosRESUMO
Glycine (Gly) is used as a model system to evaluate the ability of ultrafast two-dimensional infrared (2D-IR) spectroscopy to detect and quantify the low-molecular-weight proteinaceous components of blood serum. Combining data acquisition schemes to suppress absorption bands of H2O that overlap with the protein amide I band with analysis of peak patterns appearing in the off-diagonal region of the 2D-IR spectrum allows separation of the Gly spectral signature from that of the dominant protein fraction of serum in a transmission-mode 2D-IR measurement without any sample manipulation, e.g., filtration or drying. 2D-IR spectra of blood serum samples supplemented with varying concentrations of Gly were obtained, and a range of data analysis methods compared, leading to a detection limit of â¼3 mg/mL for Gly. The reported methodology provides a platform for a critical assessment of the sensitivity of 2D-IR for measuring the concentrations of amino acids, peptides, and low-molecular-weight proteins present in serum samples. We conclude that, in the case of several clinically relevant diagnostic molecules and their combinations, the potential exists for 2D-IR to complement IR absorption methods as the benefits of the second frequency dimension offered by 2D-IR spectroscopy outweigh the added technical complexity of the measurement.
Assuntos
Glicina/sangue , Animais , Cavalos , Espectrofotometria InfravermelhoRESUMO
The glycine cleavage system H protein (GCSH) is an integral part of the glycine cleavage system with its additional involvement in the synthesis and transport of lipoic acid. We hypothesize that pathogenic variants in GCSH can cause variant nonketotic hyperglycinemia (NKH), a heterogeneous group of disorders with findings resembling a combination of severe NKH (elevated levels of glycine in plasma and CSF, progressive lethargy, seizures, severe hypotonia, no developmental progress, early death) and mitochondriopathies (lactic acidosis, leukoencephalopathy and Leigh-like lesions on MRI). We herein report three individuals from two unrelated Indian families with clinical, biochemical, and radiological findings of variant NKH, harboring a biallelic start loss variant, c.1A > G in GCSH.
Assuntos
Proteína H do Complexo Glicina Descarboxilase/genética , Hiperglicinemia não Cetótica/genética , Pré-Escolar , Feminino , Glicina/sangue , Glicina/líquido cefalorraquidiano , Humanos , Hiperglicinemia não Cetótica/etiologia , Masculino , Mutação , LinhagemRESUMO
BACKGROUND: Endometrial cancer is strongly associated with obesity and dysregulation of metabolic factors such as estrogen and insulin signaling are causal risk factors for this malignancy. To identify additional novel metabolic pathways associated with endometrial cancer we performed metabolomic analyses on pre-diagnostic plasma samples from 853 case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS: A total of 129 metabolites (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexoses, and sphingolipids) were measured by liquid chromatography-mass spectrometry. Conditional logistic regression estimated the associations of metabolites with endometrial cancer risk. An analysis focusing on clusters of metabolites using the bootstrap lasso method was also employed. RESULTS: After adjustment for body mass index, sphingomyelin [SM] C18:0 was positively (OR1SD: 1.18, 95% CI: 1.05-1.33), and glycine, serine, and free carnitine (C0) were inversely (OR1SD: 0.89, 95% CI: 0.80-0.99; OR1SD: 0.89, 95% CI: 0.79-1.00 and OR1SD: 0.91, 95% CI: 0.81-1.00, respectively) associated with endometrial cancer risk. Serine, C0 and two sphingomyelins were selected by the lasso method in >90% of the bootstrap samples. The ratio of esterified to free carnitine (OR1SD: 1.14, 95% CI: 1.02-1.28) and that of short chain to free acylcarnitines (OR1SD: 1.12, 95% CI: 1.00-1.25) were positively associated with endometrial cancer risk. Further adjustment for C-peptide or other endometrial cancer risk factors only minimally altered the results. CONCLUSION: These findings suggest that variation in levels of glycine, serine, SM C18:0 and free carnitine may represent specific pathways linked to endometrial cancer development. If causal, these pathways may offer novel targets for endometrial cancer prevention.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias do Endométrio/diagnóstico , Idoso , Biomarcadores Tumorais/metabolismo , Índice de Massa Corporal , Carnitina/sangue , Carnitina/metabolismo , Estudos de Casos e Controles , Neoplasias do Endométrio/sangue , Neoplasias do Endométrio/epidemiologia , Neoplasias do Endométrio/metabolismo , Feminino , Glicina/sangue , Glicina/metabolismo , Humanos , Metabolômica , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Serina/sangue , Serina/metabolismo , Esfingomielinas/sangue , Esfingomielinas/metabolismoRESUMO
BACKGROUND AND AIMS: Glycine is involved in a wide range of metabolic pathways and increased circulating glycine is associated with reduced risk of cardio-metabolic diseases in Europeans but the genetic association between circulating glycine and cardiovascular risk is largely unknown in East Asians. METHODS AND RESULTS: We conducted a genome-wide association study (GWAS) in Singaporean Chinese participants and investigated if genetically determined serum glycine were associated with incident coronary artery disease (CAD) (711 cases and 1,246 controls), cardiovascular death (1,886 cases and 21,707 controls) and angiographic CAD severity (as determined by the Modified Gensini score, N = 1,138). CONCLUSION: Our study, a first in East Asians, suggest a protective role of glycine against CAD.
Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Artéria Coronariana/genética , Glicina/sangue , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , Biomarcadores/sangue , Estudos de Casos e Controles , China/etnologia , Angiografia Coronária , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/etnologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fatores de Risco de Doenças Cardíacas , Humanos , Incidência , Prognóstico , Estudos Prospectivos , Medição de Risco , Singapura/epidemiologiaRESUMO
Lipoate serves as a cofactor for the glycine cleavage system (GCS) and four 2-oxoacid dehydrogenases functioning in energy metabolism (α-oxoglutarate dehydrogenase [α-KGDHc] and pyruvate dehydrogenase [PDHc]), or amino acid metabolism (branched-chain oxoacid dehydrogenase, 2-oxoadipate dehydrogenase). Mitochondrial lipoate synthesis involves three enzymatic steps catalyzed sequentially by lipoyl(octanoyl) transferase 2 (LIPT2), lipoic acid synthetase (LIAS), and lipoyltransferase 1 (LIPT1). Mutations in LIAS have been associated with nonketotic hyperglycinemia-like early-onset convulsions and encephalopathy combined with a defect in mitochondrial energy metabolism. LIPT1 deficiency spares GCS deficiency and has been associated with a biochemical signature of combined 2-oxoacid dehydrogenase deficiency leading to early death or Leigh-like encephalopathy. We report on the identification of biallelic LIPT2 mutations in three affected individuals from two families with severe neonatal encephalopathy. Brain MRI showed major cortical atrophy with white matter abnormalities and cysts. Plasma glycine was mildly increased. Affected individuals' fibroblasts showed reduced oxygen consumption rates, PDHc, α-KGDHc activities, leucine catabolic flux, and decreased protein lipoylation. A normalization of lipoylation was observed after expression of wild-type LIPT2, arguing for LIPT2 requirement in intramitochondrial lipoate synthesis. Lipoic acid supplementation did not improve clinical condition nor activities of PDHc, α-KGDHc, or leucine metabolism in fibroblasts and was ineffective in yeast deleted for the orthologous LIP2.
Assuntos
Aciltransferases/genética , Atrofia/patologia , Encefalopatias/genética , Encéfalo/patologia , Lipoilação/genética , Mitocôndrias/metabolismo , Aminoácidos/metabolismo , Encéfalo/diagnóstico por imagem , Encefalopatias/patologia , Mapeamento Encefálico/métodos , Células Cultivadas , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Glicina/sangue , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Mitocôndrias/genética , Consumo de Oxigênio/genética , Ligação Proteica/genética , Ácido Tióctico/metabolismoRESUMO
Niemann-Pick disease type C (NPC) is a neurodegenerative disease in which mutation of NPC1 or NPC2 gene leads to lysosomal accumulation of unesterified cholesterol and sphingolipids. Diagnosis of NPC disease is challenging due to non-specific early symptoms. Biomarker and genetic tests are used as first-line diagnostic tests for NPC. In this study, we developed a plasma test based on N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl)glycine (TCG) that was markedly increased in the plasma of human NPC1 subjects. The test showed sensitivity of 0.9945 and specificity of 0.9982 to differentiate individuals with NPC1 from NPC1 carriers and controls. Compared to other commonly used biomarkers, cholestane-3ß,5α,6ß-triol (C-triol) and N-palmitoyl-O-phosphocholine (PPCS, also referred to as lysoSM-509), TCG was equally sensitive for identifying NPC1 but more specific. Unlike C-triol and PPCS, TCG showed excellent stability and no spurious generation of marker in the sample preparation or aging of samples. TCG was also elevated in lysosomal acid lipase deficiency (LALD) and acid sphingomyelinase deficiency (ASMD). Plasma TCG was significantly reduced after intravenous (IV) 2-hydroxypropyl-ß-cyclodextrin (HPßCD) treatment. These results demonstrate that plasma TCG was superior to C-triol and PPCS as NPC1 diagnostic biomarker and was able to evaluate the peripheral treatment efficacy of IV HPßCD treatment.
Assuntos
Glicina/sangue , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/genética , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Ácidos e Sais Biliares/sangue , Biomarcadores/sangue , Feminino , Glicina/análogos & derivados , Glicina/isolamento & purificação , Humanos , Masculino , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/patologia , Espectrometria de Massas em Tandem , Proteínas de Transporte Vesicular/genéticaRESUMO
Background Mutant isocitrate dehydrogenase 1 and 2 (IDH1/IDH2) enzymes produce the oncometabolite D-2-hydroxyglutarate (2-HG). Ivosidenib (AG-120) is a targeted mutant IDH1 inhibitor under evaluation in a phase 1 dose escalation and expansion study of IDH1-mutant advanced solid tumors including cholangiocarcinoma, chondrosarcoma, and glioma. We explored the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of ivosidenib in these populations. Methods Ivosidenib was administered orally once (QD) or twice (BID) daily in continuous 28-day cycles; 168 patients received ≥1 dose within the range 100 mg BID to 1200 mg QD. PK and PD were assessed using validated liquid chromatography-tandem mass spectrometry assays. Results Ivosidenib demonstrated good oral exposure after single and multiple doses, was rapidly absorbed, and had a long terminal half-life (mean 40-102 h after single dose). Exposure increased less than dose proportionally. Steady state was reached by day 15, with moderate accumulation across all tumors (1.5- to 1.7-fold for area-under-the-curve at 500 mg QD). None of the intrinsic and extrinsic factors assessed affected ivosidenib exposure, including patient/disease characteristics and concomitant administration of weak CYP3A4 inhibitors/inducers. After multiple doses in patients with cholangiocarcinoma or chondrosarcoma, plasma 2-HG was reduced by up to 98%, to levels seen in healthy subjects. Exposure-response relationships for safety and efficacy outcomes were flat across the doses tested. Conclusions Ivosidenib demonstrated good oral exposure and a long half-life. Robust, persistent plasma 2-HG inhibition was observed in IDH1-mutant cholangiocarcinoma and chondrosarcoma. Ivosidenib 500 mg QD is an appropriate dose irrespective of various intrinsic and extrinsic factors. Trial RegistrationClinicalTrials.gov (NCT02073994).
Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Glicina/análogos & derivados , Isocitrato Desidrogenase/antagonistas & inibidores , Neoplasias/metabolismo , Piridinas/administração & dosagem , Piridinas/farmacocinética , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/sangue , Relação Dose-Resposta a Droga , Feminino , Glutaratos/sangue , Glicina/administração & dosagem , Glicina/sangue , Glicina/farmacocinética , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Piridinas/sangueRESUMO
INTRODUCTION: Prostatitis is likely to occur in younger or middle-aged men, while prostate cancer is likely to occur in older men. Although amino acids and lipids as biomarkers of prostate cancer have been examined using prostate cancer cell lines/tissues, no previous studies have evaluated amino acids or lipids as potential chronic prostatitis biomarkers. OBJECTIVES: The study's aim was to identify amino acids and lipids that could serve as potential biomarkers of chronic prostatitis. METHODS: We profiled the amino acids and lipids found in plasma from rats collected in a previous study. In brief, a total of 148 Sprague-Dawley rats (offspring) were dosed with estradiol benzoate (EB) on postnatal days (PNDs) 1, 3 and 5, and subsequently dosed with testosterone (T)/estradiol (E) tubes via subcutaneous implants from PND 90 to 200. Plasma was collected on PNDs 30, 90, 100, 145 and 200. Analysis was conducted with a Xevo TQ-S triple-quadrupole mass spectrometer using a Biocrates AbsoluteIDQ p180 kit. RESULTS: Plasma acylcarnitines [(C2, C16:1, C18, C18:1, C18:1-OH, and C18:2)], glycerophospholipids (lysophosphatidylcholine-acyl, -di-acyl, and -di-acyl acyl-alkyl) and sphingomyelins [SM (OH) C16:1, SM C18:0, SM C18:1, and SM C20:2] significantly increased on PND 145, when chronic inflammation was observed in the dorsolateral prostate of rats dosed with EB, T, and E. No statistical significances of amino acid levels were observed in the EB + T + E group on PND 145. CONCLUSION: Exposure to EB, T, and E altered lipid levels in rat plasma with chronic prostate inflammation. These findings suggest that the identified lipids may be predictive chronic prostatitis biomarkers. The results require confirmation through additional nonclinical and human studies.
Assuntos
Estradiol/análogos & derivados , Estradiol/sangue , Hormônios Esteroides Gonadais/sangue , Inflamação/sangue , Lipídeos/sangue , Aminoácidos/sangue , Animais , Biomarcadores/sangue , Carnitina/análogos & derivados , Glicerofosfolipídeos/sangue , Glicina/sangue , Humanos , Masculino , Metabolômica/métodos , Plasma , Neoplasias da Próstata , Prostatite , Ratos , Ratos Sprague-Dawley , Esfingomielinas/sangueRESUMO
BACKGROUND: Arginine:glycine amidinotransferase, necessary for the conversion of arginine (Arg) to guanidinoacetic acid (GAA), is expressed mainly in kidney and pancreas. The methylation of GAA to creatine (Cre) primarily occurs in the liver. The role of the gut in Cre homeostasis has not been characterized. OBJECTIVE: We aimed to quantify the contribution of kidney, pancreas, and gut as sources of GAA for Cre synthesis. METHODS: Sow-reared, feed-deprived Yucatan miniature piglets (17-21 d old) were randomly assigned to acute intravenous treatments (expressed in µmol/kg/min) of: 1) Arg (4.8) + methionine (1.4) (Arg/Met), 2) Cre (0.6) with Arg/Met (Cre/Arg/Met), 3) citrulline (4.8) + methionine (1.4) (Cit/Met), or 4) alanine (6.2) (Ala). Suckling piglets were also studied. RESULTS: Renal GAA release was higher during Cit/Met compared with all other treatments (53-360% higher; P < 0.01), suggesting that Cit is a better precursor than Arg for renal GAA synthesis. Kidneys contributed higher (P < 0.01) proportions of the total GAA with Cit/Met (89%) and Arg/Met (68%) treatments compared with pancreas and gut. In the suckling pigs, kidneys contributed 88% of the GAA, with the remainder released by pancreas. None of the treatments resulted in a net flux of Cre across the kidney or pancreas. In the gut, Arg/Met and Cre/Arg/Met, but not Cit/Met, resulted in a net release of Cre. Cre/Arg/Met resulted in a higher net GAA release from the gut (P < 0.0001) and pancreas (P < 0.001) (68% of total GAA produced) compared with all other treatments (<19% from both organs), perhaps because GAA not needed for creatine synthesis was subsequently released. CONCLUSIONS: Cit is a better precursor than Arg for renal GAA synthesis, and kidney is the major source of GAA for Cre synthesis in neonatal piglets, but the gut also has the capacity to synthesize GAA and Cre when Arg and Met are available.
Assuntos
Creatina/biossíntese , Glicina/análogos & derivados , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pâncreas/metabolismo , Aminoácidos/metabolismo , Animais , Creatina/sangue , Feminino , Glicina/sangue , Glicina/metabolismo , Metilação , Suínos , Porco MiniaturaRESUMO
BACKGROUND: Cys is limiting for reduced glutathione (GSH) synthesis and can be synthesized from Met. We hypothesized that the dietary Met hydroxyl analogue dl-2-hydroxy-4-methylthiobutyric acid (dl-HMTBA) affects Cys and GSH metabolism and oxidative stress defense differently than Met. OBJECTIVE: The objective was to elucidate whether dl-HMTBA supplementation of a Met-deficient diet affects Cys flux, GSH fractional synthetic rate (FSR), and the basal oxidative stress level relative to Met supplementation in pigs. METHODS: Twenty-nine male German Landrace piglets aged 28 d were allocated to 3 dietary groups: a basal diet limiting in Met (69% of Met plus Cys requirement) supplemented with either 0.15% l-Met (LMET; n = 9), 0.15% dl-Met (DLMET; n = 11), or 0.17% dl-HMTBA (DLHMTBA; n = 9) on an equimolar basis. At age 54 d the pigs received a continuous infusion of [1-13C]-Cys to calculate Cys flux and Cys oxidation. After 3 d, GSH FSR was determined by [2,2-2H2]-glycine infusion, and RBC GSH and oxidized GSH concentrations were measured. At age 62 d the animals were killed to determine hepatic mRNA abundances of enzymes involved in GSH metabolism, GSH concentrations, and plasma oxidative stress defense markers. RESULTS: The Cys oxidation was 21-39% and Cys flux 5-15% higher in the fed relative to the feed-deprived state (P < 0.001). On average, GSH FSR was 49% lower (P < 0.01), and RBC GSH and total GSH concentrations were 12% and 9% lower, respectively, in DLHMTBA and DLMET relative to LMET pigs (P < 0.05). In the feed-deprived state, Gly flux, the GSH:oxidized glutathione (GSSG) ratio, RBC GSSG concentrations, plasma oxidative stress markers, and the hepatic GSH content did not differ between groups. CONCLUSIONS: Although GSH FSR was higher in LMET compared with DLMET or DLHMTBA feed-deprived pigs, these differences were not reflected by lower oxidative stress markers and antioxidant defense enzymes in LMET pigs.
Assuntos
Aminoácidos Sulfúricos/administração & dosagem , Dieta/veterinária , Glutationa/biossíntese , Metionina/análogos & derivados , Sus scrofa/metabolismo , Aminoácidos/sangue , Animais , Antioxidantes/análise , Biomarcadores/sangue , Cisteína/sangue , Suplementos Nutricionais , Eritrócitos/química , Glutationa/análise , Glutationa/sangue , Glicina/sangue , Fígado/química , Masculino , Metionina/administração & dosagem , Estresse Oxidativo/fisiologia , DesmameRESUMO
Background: High-dose methotrexate (HD-MTX) therapy is widely implemented for leukemia, osteosarcoma, and lymphoma. Although various measures have been taken to avoid toxicity from high serum MTX concentrations, there are many cases of delayed elimination of MTX. Objective: We suspected that delayed elimination of serum MTX was caused by unknown interactions between MTX and concomitant drugs. Methods: Concerning concomitant drugs in the case of delayed elimination of MTX, we performed screening tests in 35 patients who had undergone HD-MTX therapy. We then investigated the risk factors for delayed MTX elimination in 94 patients with leukemia, lymphoma, or osteosarcoma retrospectively. Results: The percentages of concomitant use of Stronger Neo-Minophagen C (SNMC), a glycyrrhizin preparation, and vincristine were higher in the delayed group. The percentage of delayed MTX elimination in patients receiving HD-MTX therapy was 41%. Multiple logistic regression analysis revealed that the concomitant use of SNMC solely was a significant risk factor for delayed MTX (odds ratio = 12.20; 95% CI = 1.06-139.84). Conclusion and Relevance: Concomitant use of SNMC was shown to be related to delayed elimination of serum MTX, and our results suggested a previously unknown drug-drug interaction between MTX and SNMC.
Assuntos
Monitoramento de Medicamentos/métodos , Metotrexato/administração & dosagem , Metotrexato/sangue , Cisteína/administração & dosagem , Cisteína/sangue , Cisteína/uso terapêutico , Combinação de Medicamentos , Interações Medicamentosas , Feminino , Glicina/administração & dosagem , Glicina/sangue , Glicina/uso terapêutico , Ácido Glicirretínico/administração & dosagem , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/sangue , Ácido Glicirretínico/uso terapêutico , Humanos , Leucemia/sangue , Leucemia/tratamento farmacológico , Modelos Logísticos , Linfoma/sangue , Linfoma/tratamento farmacológico , Masculino , Taxa de Depuração Metabólica , Metotrexato/uso terapêutico , Osteossarcoma/sangue , Osteossarcoma/tratamento farmacológico , Estudos Retrospectivos , Fatores de Risco , Vincristina/administração & dosagem , Vincristina/sangue , Vincristina/uso terapêuticoRESUMO
AIM: The aim of the study is to report on epidemiological, clinical, and biochemical characteristics of nonketotic hyperglycinemia (NKH) in Tunisia. METHODS: Patients diagnosed with NKH in Laboratory of Biochemistry at Rabta hospital (Tunis, Tunisia) between 1999 and 2018 were included. Plasma and cerebrospinal fluid (CSF) free amino acids were assessed by ion exchange chromatography. Diagnosis was based on family history, patient's clinical presentation and course, and increased CSF to plasma glycine ratio. RESULTS: During 20 years, 69 patients were diagnosed with NKH, with 25 patients originating from Kairouan region. Estimated incidences were 1:55,641 in Tunisia and 1:9,684 in Kairouan. Consanguinity was found for 73.9% of the patients and 42% of the families have history of infantile death due to a disease of similar clinical course than the propositus. Clinical symptoms initiated within the first week of life in 75% of the patients and within the first 3 months in 95.7% ones. The phenotype was severe in 76.8% of the patients. Main symptoms were hypotonia, feeding difficulties, coma, apnea, and seizures. Most patients died within few days to months following diagnosis. CSF to plasma glycine ratio was increased in all patients. CSF and plasma glycine levels were negatively correlated with age of disease onset and severity. CONCLUSION: NKH is quite frequent in Tunisia. Kairouan region has the highest NKH incidence rate, worldwide. However, due to lack of confirmatory enzymatic and genetic tests, NKH diagnosis was based on first-line biochemical tests. Characterization of causal mutations is needed for accurate diagnosis and prenatal diagnosis of this devastating life-threatening disease.
Assuntos
Consanguinidade , Glicina/metabolismo , Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/epidemiologia , Hiperglicinemia não Cetótica/fisiopatologia , Idade de Início , Pré-Escolar , Feminino , Glicina/sangue , Glicina/líquido cefalorraquidiano , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Índice de Gravidade de Doença , Tunísia/epidemiologiaRESUMO
Guanidinoacetic acid (GAA, also known as glycocyamine or betacyamine) is a naturally-occurring derivative of glycine and a direct metabolic precursor of creatine, a key player in high-phosphate cellular bioenergetics. GAA is found in human serum and urine, with circulating GAA likely reflects an equilibrium between its endogenous production and utilization/excretion. GAA deficiency (as indicated by low serum GAA) has been reported in various conditions yet this intriguing clinical entity appears to be poorly characterized as yet, either as a primary deficit or a sequel of secondary disease. This minireview article summarizes the inherited and acquired disorders with apparent GAA deficiency and discusses a possible relevance of GAA shortfall in clinical medicine.