RESUMO
BACKGROUND: Little s antigen is mainly defined by a single nucleotide polymorphism at c.143C (p.Thr48) on the GYPB gene. Several variants on GYPB can alter the expression of s antigen. The aim of this study was to investigate the molecular basis of variant s antigen expression in the Chinese population. STUDY DESIGN AND METHODS: A total of 4983 whole blood samples were collected to screen the individuals with discrepant s typing results using two different monoclonal anti-s. Then, the sequence of GYPB exon 4 was analyzed by Sanger sequencing. Flow cytometry analysis was performed to quantify s antigen expression on red blood cells (RBCs). In vitro expression study was performed to verify the effect of the GYPB variants identified on the expression of s antigen. RESULTS: Four donors were identified to have discrepant s typing results. Sanger sequencing showed that three donors carried the c.173C > G variant (p.Pro58Arg) specific for sD antigen, the other one carried a novel GYPB (c.160C > T, p.Arg54Cys) variant. Flow cytometry identified a partial and weak expression of s antigen on the RBCs of the four donors. Furthermore, in vitro expression study confirmed the effect of the two variants on the s antigen expression. CONCLUSION: The results demonstrated that in addition to p.Thr48, the two extra amino acids p.Arg54 and p.Pro58 are also important for full expression of s antigen. Since the individuals with partial s antigen are at risk for the development of alloanti-s, it is important to select at least two different monoclonal anti-s for correct s typing.
Assuntos
Antígenos de Grupos Sanguíneos , Glicoforinas , Humanos , Alelos , Glicoforinas/genética , Antígenos de Grupos Sanguíneos/genética , Fenótipo , Eritrócitos/metabolismo , Sistema do Grupo Sanguíneo Rh-Hr/metabolismoRESUMO
BACKGROUND: Antibodies against blood group antigens play a key role in the pathophysiology of haemolytic transfusion reactions (HTRs) and haemolytic disease of the fetus and newborn (HDFN). This study aimed to determine the frequencies of alleles, genotypes, and risk of alloimmunisation of clinically significant blood group systems in ethnic northeastern Thais. METHODS: In total, 345 unrelated, healthy, ethnic northeastern Thais were tested using the in-house PCR-sequence specific primers (PCR-SSP) method for simultaneously genotyping of RHCE, Kell, Duffy, Kidd, Diego and MNS glycophorin hybrids and results confirmed by Sanger sequencing. RESULTS: In this cohort, the alleles RHCE*C (81.0%) and RHCE*e (84.8%) were more prevalent than RHCE*c (19.0%) and RHCE*E (15.2%). The most common predicted haplotype combinations of the RHCE alleles were C+c-E-e+(R1R1) (59.4%) followed by the C+c+E+e+ (R1R2) (20.6%) and C+c+E-e+ (R1r) (11.3%). The KEL*01 allele was not found in this study. The frequencies of FY*01 and FY*02 were 88.3% and 11.7%, respectively. The genotype FY*02/02 was found in four samples (1.2%). The frequencies of JK*01 and JK*02 were 52.5% and 47.5%, respectively. Homozygous JK*02/02 was found in 81 samples (23.5%). The frequencies of DI*01 and DI*02 were 0.6% and 99.4%, respectively. In total, 64 samples (18.6%) were found to carry the MNS glycophorin hybrids. CONCLUSIONS: Our results indicated a possible high risk of c, E, Fyb, Jka, Jkb and Mia alloimmunisation in these populations. Moreover, methods established for genotyping clinically significant blood groups in this study can now be utilised in routine clinical application.
Assuntos
Alelos , Sistema do Grupo Sanguíneo Duffy , Glicoforinas , Sistema do Grupo Sanguíneo Rh-Hr , Feminino , Humanos , Masculino , Antígenos de Grupos Sanguíneos/genética , Sistema do Grupo Sanguíneo Duffy/genética , Etnicidade/genética , Frequência do Gene , Perfil Genético , Genótipo , Glicoforinas/genética , Isoanticorpos/sangue , Sistema do Grupo Sanguíneo de Kell/genética , Sistema do Grupo Sanguíneo de Kell/imunologia , Sistema do Grupo Sanguíneo Kidd/genética , Glicoproteínas de Membrana , Metaloendopeptidases , Sistema do Grupo Sanguíneo MNSs/genética , Sistema do Grupo Sanguíneo Rh-Hr/genética , População do Sudeste AsiáticoRESUMO
Glycophorins are transmembrane proteins of red blood cells (RBCs), heavily glycosylated on their external-facing surface. In humans, there are four glycophorin proteins, glycophorins A, B, C and D. Glycophorins A and B are encoded by two similar genes GYPA and GYPB, and glycophorin C and glycophorin D are encoded by a single gene, GYPC. The exact function of glycophorins remains unclear. However, given their abundance on the surface of RBCs, it is likely that they serve as a substrate for glycosylation, giving the RBC a negatively charged, complex glycan "coat". GYPB and GYPE (a closely related pseudogene) were generated from GYPA by two duplication events involving a 120-kb genomic segment between 10 and 15 million years ago. Non-allelic homologous recombination between these 120-kb repeats generates a variety of duplication alleles and deletion alleles, which have been systematically catalogued from genomic sequence data. One allele, called DUP4, encodes the Dantu NE blood type and is strongly protective against malaria as it alters the surface tension of the RBC membrane. Glycophorins interact with other infectious pathogens, including viruses, as well as the malarial parasite Plasmodium falciparum, but the role of glycophorin variation in mediating the effects of these pathogens remains underexplored.
Assuntos
Doenças Transmissíveis , Glicoforinas , Humanos , Glicoforinas/genética , Glicoforinas/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Proteínas de Membrana/genética , Variação GenéticaRESUMO
Transmembrane helix folding and self-association play important roles in biological signaling and transportation pathways across biomembranes. With molecular simulations, studies to explore the structural biochemistry of this process have been limited to focusing on individual fragments of this process - either helix formation or dimerization. While at an atomistic resolution, it can be prohibitive to access long spatio-temporal scales, at the coarse grained (CG) level, current methods either employ additional constraints to prevent spontaneous unfolding or have a low resolution on sidechain beads that restricts the study of dimer disruption caused by mutations. To address these research gaps, in this work, we apply our recent, in-house developed CG model (ProMPT) to study the folding and dimerization of Glycophorin A (GpA) and its mutants in the presence of Dodecyl-phosphocholine (DPC) micelles. Our results first validate the two-stage model that folding and dimerization are independent events for transmembrane helices and found a positive correlation between helix folding and DPC-peptide contacts. The wild type (WT) GpA is observed to be a right-handed dimer with specific GxxxG contacts, which agrees with experimental findings. Specific point mutations reveal several features responsible for the structural stability of GpA. While the T87L mutant forms anti-parallel dimers due to an absence of T87 interhelical hydrogen bonds, a slight loss in helicity and a hinge-like feature at the GxxxG region develops for the G79L mutant. We note that the local changes in the hydrophobic environment, affected by the point mutation, contribute to the development of this helical bend. This work presents a holistic overview of the structural stability of GpA in a micellar environment, while taking secondary structural fluctuations into account. Moreover, it presents opportunities for applications of computationally efficient CG models to study conformational alterations of transmembrane proteins that have physiological relevance.
Assuntos
Glicoforinas , Mutação Puntual , Glicoforinas/química , Glicoforinas/genética , Glicoforinas/metabolismo , Proteínas de Membrana/química , Conformação Proteica , Estrutura Secundária de ProteínaRESUMO
Atrial fibrillation (AF) is the most common type of persistent arrhythmia. Although its incidence has been increasing, the pathogenesis of AF in stroke remains unclear. In this study, a total of 30 participants were recruited, including 10 controls, 10 patients with AF and 10 patients with AF and stroke (AF + STROKE). Differentially expressed genes (DEGs) were identified, and functional annotation of DEGs, comparative toxicogenomic database analysis associated with cardiovascular diseases, and predictions of miRNAs of hub genes were performed. Using RT-qPCR, biological process and support vector machine neural networks, numerous DEGs were found to be related to AF. HBG1, SNCA and GYPB were found to be upregulated in the AF group. Higher expression of hub genes in AF and AF + STROKE groups was detected via RT-PCR. Upon training the biological process neural network of SNCA and GYPB for HBG1, only small differences were detected. Based on the support vector machine, the predicted value of SNCA and GYPB for HBG1 was 0.9893. Expression of the hub genes of HBG1, SNCA and GYPB might therefore be significantly correlated to AF. These genes are involved in the incidence of AF complicated by stroke, and may serve as targets for early diagnosis and treatment.
Assuntos
Fibrilação Atrial , Glicoforinas , Hemoglobinas , Acidente Vascular Cerebral , alfa-Sinucleína , Fibrilação Atrial/diagnóstico , Biomarcadores , Redes Reguladoras de Genes , Glicoforinas/genética , Hemoglobinas/genética , Humanos , Redes Neurais de Computação , Acidente Vascular Cerebral/complicações , Máquina de Vetores de Suporte , alfa-Sinucleína/genéticaRESUMO
BACKGROUND: Low-prevalence antigen sD (MNS23) is encoded by GYPB c.173C > G. Hemolytic disease of the fetus and newborn (HDFN) due to anti-sD is rare. A mother delivered a newborn whose red blood cells (RBCs) were DAT-positive and was later diagnosed with HDFN. Serum from the mother was incompatible with the father's RBCs and was used to screen 184 Thai blood donors. This study aimed to investigate the cause of HDFN in a Thai family and determine the prevalence of sD in Thai blood donors. MATERIALS AND METHODS: Three family members and four blood donors were investigated in the study. Massively Parallel Sequencing (MPS) was used for genotyping. Standard hemagglutination techniques were used in titration studies, phenotyping, and enzyme/chemical studies. Anti-s, anti-Mia , anti-JENU, and anti-sD reagents were used in serological investigations. RESULTS: The mother was GYP*Mur/Mur. The father and the four donors were GYPB*s/sD predicting S - s + sD +. The baby was GYP*Mur/sD and his RBCs were Mia +, s + w with anti-s (P3BER) and JENU+w . RBCs from two GYPB*sD -positive blood donors reacted with anti-sD (Dreyer). Proteolytic enzyme α-chymotrypsin-treated sD + cells did not react with anti-sD (Wat) produced by the GP.Mur/Mur mother but reacted with the original anti-sD (Dreyer). DISCUSSION: This is the first report of HDFN due to anti-sD in the Asian population. The genotype frequency for GYPB*sD in a selected Thai blood donor population is 2.2% (4/184). Anti-sD should be considered in mothers with Southeast Asian or East Asian background when antibody identification is unresolved in pregnancies affected by HDFN.
Assuntos
Eritroblastose Fetal , Sistema do Grupo Sanguíneo MNSs , Doadores de Sangue , Eritroblastose Fetal/epidemiologia , Feminino , Feto , Glicoforinas/genética , Humanos , Recém-Nascido , Sistema do Grupo Sanguíneo MNSs/genética , Mães , Peptídeo Hidrolases/genética , Fenótipo , Gravidez , Prevalência , Tailândia/epidemiologiaRESUMO
BACKGROUND AND OBJECTIVES: High-frequency antigen Ena (MNS 28) is expressed on glycophorin A (GPA). En(a-) individuals can form anti-Ena when exposed to GPA. A Thai patient formed an antibody that reacted against all reagent red blood cells (RBCs). The patient received incompatible blood resulting in a fatal haemolytic transfusion reaction (HTR). This study aimed to characterize the antibody detected in the patient and investigate the cause of HTR. MATERIALS AND METHODS: Blood samples from the patient and three of his family members were investigated. Massively parallel sequencing (MPS) and DNA-microarray were used for genotyping. Standard haemagglutination techniques were used for phenotyping and antibody investigations. RESULTS: DNA sequencing showed the patient was homozygous for GYPA*M c.295delG (p.Val99Ter) predicting En(a-). Three family members were heterozygous for GYPA c.295delG. MPS and DNA-microarray predicted the patient was N- discordant with the N+ RBC phenotype. The patient's plasma was positive with enzyme/chemical-treated reagent RBCs but failed to react with En(a-) and Mk Mk RBCs. CONCLUSION: The GYPA c.295delG variant prevented GPA expression on RBCs resulting in En(a-) phenotype. The N+ phenotype result was probably due to the anti-N typing reagent detecting 'N' (MNS30) on GPB. The patient's alloantibody has anti-Ena specificity.
Assuntos
Glicoforinas , Reação Transfusional , Humanos , DNA , Glicoforinas/genética , Isoanticorpos , Sistema do Grupo Sanguíneo MNSs/genética , Tailândia , Reação Transfusional/genéticaRESUMO
BACKGROUND AND OBJECTIVES: The molecular basis of MNS blood group variants is not fully clear yet. In this study, we have characterized mRNA variants of GYPA and GYPB genes to reveal whether alternative RNA splicing may cause antigenic diversity of the MNS system. MATERIALS AND METHODS: Total RNA was extracted from peripheral blood of Chinese blood donors and full-length cDNA products were generated. A nested polymerase chain reaction (PCR)-based method was established for fragment amplification and Sanger sequencing. Resulted full-length mRNA sequences were aligned with GYPA or GYPB genomic sequences respectively for exon identification. Amino acid (AA) sequences of GPA and GPB proteins were extrapolated and GYPA-EGFP, GYPB-EGFP fusion genes were generated to monitor subcellular distribution of the encoded glycophorin (GP) proteins. RESULTS: Totally 10 blood samples were analysed. GYPB mRNAs of all the subjects demonstrated frequent exon insertion or deletion whereas this kind of variation was only observed in 3 of 10 GYPA mRNA samples. None of the reported Miltenberger hybrids was detected in any of the mRNA samples. The alternative splicing resulted in changes of AA sequences in N-terminal domains where the MNS antigenic motifs resided; however, subcellular localizations of GP-EGFP fusion proteins showed that the above-mentioned AA changes did not affect cell surface distribution of the encoded GP proteins. CONCLUSIONS: Alternative RNA splicing may influence the antigenic features of GP proteins but not their cell surface distribution. Therefore, GYPA and GYPB mRNA characterization might be an invaluable supplement to serological phenotyping and DNA-based genotyping in MNS blood grouping.
Assuntos
Doadores de Sangue , Glicoforinas , Sistema do Grupo Sanguíneo MNSs , Processamento Alternativo , China , Glicoforinas/genética , Glicoforinas/metabolismo , Humanos , RNA Mensageiro/sangue , RNA Mensageiro/genéticaRESUMO
Structural variation in the human genome can affect risk of disease. An example is a complex structural variant of the human glycophorin gene cluster, called DUP4, which is associated with a clinically significant level of protection against severe malaria. The human glycophorin gene cluster harbours at least 23 distinct structural variants, and accurate genotyping of this complex structural variation remains a challenge. Here, we use a polymerase chain reaction-based strategy to genotype structural variation at the human glycophorin gene cluster, including the alleles responsible for the U- blood group. We validate our approach, based on a triplex paralogue ratio test, on publically available samples from the 1000 Genomes project. We then genotype 574 individuals from a longitudinal birth cohort (Tori-Bossito cohort) using small amounts of DNA at low cost. Our approach readily identifies known deletions and duplications, and can potentially identify novel variants for further analysis. It will allow exploration of genetic variation at the glycophorin locus, and investigation of its relationship with malaria, in large sample sets at minimal cost, using standard molecular biology equipment.
Assuntos
Técnicas de Genotipagem , Glicoforinas/genética , Malária/genética , Benin , Genoma Humano , Genótipo , Humanos , Família Multigênica , Reação em Cadeia da PolimeraseRESUMO
Glycophorin A and glycophorin B are red blood cell surface proteins and are both receptors for the parasite Plasmodium falciparum, which is the principal cause of malaria in sub-Saharan Africa. DUP4 is a complex structural genomic variant that carries extra copies of a glycophorin A-glycophorin B fusion gene and has a dramatic effect on malaria risk by reducing the risk of severe malaria by up to 40%. Using fiber-FISH and Illumina sequencing, we validate the structural arrangement of the glycophorin locus in the DUP4 variant and reveal somatic variation in copy number of the glycophorin B-glycophorin A fusion gene. By developing a simple, specific, PCR-based assay for DUP4, we show that the DUP4 variant reaches a frequency of 13% in the population of a malaria-endemic village in south-eastern Tanzania. We genotype a substantial proportion of that village and demonstrate an association of DUP4 genotype with hemoglobin levels, a phenotype related to malaria, using a family-based association test. Taken together, we show that DUP4 is a complex structural variant that may be susceptible to somatic variation and show that DUP4 is associated with a malarial-related phenotype in a longitudinally followed population.
Assuntos
Variação Estrutural do Genoma/genética , Glicoforinas/genética , Hemoglobinas/genética , Malária/genética , Linhagem Celular , Criança , Pré-Escolar , Eritrócitos/metabolismo , Feminino , Genótipo , Humanos , Estudos Longitudinais , Masculino , Mosaicismo , Fenótipo , Plasmodium falciparum/genética , TanzâniaRESUMO
BACKGROUND: In this study, we identified a novel glycophorin variant (GP.MOT) in a Mia -positive Japanese blood donor. The proband with this glycophorin variant was discovered by antigen screening of samples from 475,493 Japanese blood donors using monoclonal anti-Mia . STUDY DESIGN AND METHODS: Standard serological techniques and flow cytometry were performed. GP.MOT RBCs were examined by immunoblotting using anti-GPA, anti-MUT or anti-Mur. Genome DNA was extracted from whole blood, and the GYPA/GYPB was analyzed by polymerase chain reactions and Sanger sequencing. RESULTS: The MNS blood group of the proband was M + N + w S-s + with the presence of other low-frequency antigens including Mia , Mur, MUT, and KIPP. A 43-kDa molecule, which is almost equivalent in size to glycophorin A (GPA), was identified by immunoblotting using monoclonal anti-MUT and anti-Mur. Sanger sequencing clearly indicated that the proband had two different GYPA*M alleles at SNP rs62334651 (GYPA*M232 + 55A and GYPA*M232 + 55G), as well as a GYP(B-A) hybrid allele (GYP*MOT) with breakpoints located on pseudoexon 3 of GYPB from c.210 to c.219. DISCUSSION: We identified a hybrid glycophorin GP.MOT with the deduced unique amino acid sequence GPB (20-45)-GPΨB (46-70)-GPA (71-149), which has not been previously reported.
Assuntos
Glicoforinas/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Doadores de Sangue , Variação Genética , Humanos , Japão , Sistema do Grupo Sanguíneo MNSs/genética , Análise de Sequência de DNARESUMO
BACKGROUND: The hybrid glycophorins of MNS blood group system express a series of low incidence antigens including Mia , which are commonly found in Southeast Asian populations. In this study, the molecular basis of Mia -positive hybrid glycophorins was firstly clarified in the Chinese Southern Han population. RNA transcripts of GYPB gene in the homozygous GP.Mur individuals were also analyzed. STUDY DESIGN AND METHODS: DNAs were extracted from the whole blood samples of 111 Mia -positive donors. Then, high-resolution melting (HRM) analysis for GYP(B-A-B) was used to analyze the genotypes. Sequencing of GYPB pseudoexon 3 was conducted in the samples with variant melting curves. TA-cloning and subsequent sequencing of GYPA exons 2-4 were performed in the Mia -positive samples with normal GYPB/GYPB genotype by HRM. The transcript analysis of GYPB was conducted in homozygous GP.Mur and wild-type glycophorin B (GPB) individuals using RNA extracted from the cultured erythroblast. RESULTS: The heterozygous GYP*Mur/GYPB (n = 101), homozygous GYP*Mur/GYP*Mur (n = 7) including one novel GYP*Mur allele with an extra GYPA/GYPE specific nucleotide substitution (c.229+110A>T), heterozygous GYP*Bun/GYPB (n = 1) and GYP*Vw/GYPA (n = 2) with two novel GYP*Vw alleles were identified. RNA transcript analysis revealed multiple transcripts of GYPB existing in both homozygous GP.Mur and normal GPB individuals. CONCLUSION: The results showed the genetic diversity of hybrid glycophorins in the Chinese population. Besides, the successful analysis of GYPB transcripts indicates that the cultured erythroblast is a good source for RNA transcript analysis for the protein only expressed on the red blood cells.
Assuntos
Glicoforinas/genética , Sistema do Grupo Sanguíneo MNSs/genética , Alelos , Células Cultivadas , Eritroblastos/metabolismo , Éxons , Variação Genética , Genótipo , Homozigoto , HumanosRESUMO
BACKGROUND: The pathogenic mechanisms of venous thromboembolism (VT) remain to be defined. This study aimed to identify differentially expressed genes (DEGs) that could serve as potential therapeutic targets for VT. METHODS: Two human datasets (GSE19151 and GSE48000) were analyzed by the robust rank aggregation method. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were conducted for the DEGs. To explore potential correlations between gene sets and clinical features and to identify hub genes, we utilized weighted gene coexpression network analysis (WGCNA) to build gene coexpression networks incorporating the DEGs. Then, the levels of the hub genes were analyzed in the GSE datasets. Based on the expression of the hub genes, the possible pathways were explored by gene set enrichment analysis and gene set variation analysis. Finally, the diagnostic value of the hub genes was assessed by receiver operating characteristic (ROC) analysis in the GEO database. RESULTS: In this study, we identified 54 upregulated and 10 downregulated genes that overlapped between normal and VT samples. After performing WGCNA, the magenta module was the module with the strongest negative correlation with the clinical characteristics. From the key module, FECH, GYPA, RPIA and XK were chosen for further validation. We found that these genes were upregulated in VT samples, and high expression levels were related to recurrent VT. Additionally, the four hub genes might be highly correlated with ribosomal and metabolic pathways. The ROC curves suggested a diagnostic value of the four genes for VT. CONCLUSIONS: These results indicated that FECH, GYPA, RPIA and XK could be used as promising biomarkers for the prognosis and prediction of VT.
Assuntos
Redes Reguladoras de Genes , Marcadores Genéticos , Transcriptoma , Tromboembolia Venosa/genética , Aldose-Cetose Isomerases/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Bases de Dados Genéticas , Ferroquelatase/genética , Perfilação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Glicoforinas/genética , Humanos , Medição de Risco , Fatores de Risco , Tromboembolia Venosa/diagnósticoRESUMO
The high prevalence of sickle haemoglobin in Africa shows that malaria has been a major force for human evolutionary selection, but surprisingly few other polymorphisms have been proven to confer resistance to malaria in large epidemiological studies. To address this problem, we conducted a multi-centre genome-wide association study (GWAS) of life-threatening Plasmodium falciparum infection (severe malaria) in over 11,000 African children, with replication data in a further 14,000 individuals. Here we report a novel malaria resistance locus close to a cluster of genes encoding glycophorins that are receptors for erythrocyte invasion by P. falciparum. We identify a haplotype at this locus that provides 33% protection against severe malaria (odds ratio = 0.67, 95% confidence interval = 0.60-0.76, P value = 9.5 × 10(-11)) and is linked to polymorphisms that have previously been shown to have features of ancient balancing selection, on the basis of haplotype sharing between humans and chimpanzees. Taken together with previous observations on the malaria-protective role of blood group O, these data reveal that two of the strongest GWAS signals for severe malaria lie in or close to genes encoding the glycosylated surface coat of the erythrocyte cell membrane, both within regions of the genome where it appears that evolution has maintained diversity for millions of years. These findings provide new insights into the host-parasite interactions that are critical in determining the outcome of malaria infection.
Assuntos
Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Malária Falciparum/genética , Seleção Genética/genética , Sistema ABO de Grupos Sanguíneos , África/epidemiologia , Animais , Criança , Sequência Conservada/genética , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Evolução Molecular , Proteínas da Matriz Extracelular/genética , Feminino , Glicoforinas/genética , Haplótipos/genética , Interações Hospedeiro-Parasita/genética , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Pan troglodytes/genética , Plasmodium falciparum/fisiologia , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
BACKGROUND: Approximately 5% of the human genome shows common structural variation, which is enriched for genes involved in the immune response and cell-cell interactions. A well-established region of extensive structural variation is the glycophorin gene cluster, comprising three tandemly-repeated regions about 120 kb in length and carrying the highly homologous genes GYPA, GYPB and GYPE. Glycophorin A (encoded by GYPA) and glycophorin B (encoded by GYPB) are glycoproteins present at high levels on the surface of erythrocytes, and they have been suggested to act as decoy receptors for viral pathogens. They are receptors for the invasion of the protist parasite Plasmodium falciparum, a causative agent of malaria. A particular complex structural variant, called DUP4, creates a GYPB-GYPA fusion gene known to confer resistance to malaria. Many other structural variants exist across the glycophorin gene cluster, and they remain poorly characterised. RESULTS: Here, we analyse sequences from 3234 diploid genomes from across the world for structural variation at the glycophorin locus, confirming 15 variants in the 1000 Genomes project cohort, discovering 9 new variants, and characterising a selection of these variants using fibre-FISH and breakpoint mapping at the sequence level. We identify variants predicted to create novel fusion genes and a common inversion duplication variant at appreciable frequencies in West Africans. We show that almost all variants can be explained by non-allelic homologous recombination and by comparing the structural variant breakpoints with recombination hotspot maps, confirm the importance of a particular meiotic recombination hotspot on structural variant formation in this region. CONCLUSIONS: We identify and validate large structural variants in the human glycophorin A-B-E gene cluster which may be associated with different clinical aspects of malaria.
Assuntos
Variação Estrutural do Genoma , Glicoforinas/genética , Malária Falciparum/genética , Pontos de Quebra do Cromossomo , Mapeamento Cromossômico , Bases de Dados Genéticas , Resistência à Doença , Humanos , Hibridização in Situ Fluorescente , Alinhamento de Sequência , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Respiratory syncytial virus (RSV) is associated with childhood asthma. Nevertheless, not all children exposed to RSV develop asthma symptoms, possibly because genes modulate the effects of RSV on asthma exacerbations. OBJECTIVE: The purpose of this study was to identify genes that modulate the effect of RSV latent infection on asthma exacerbations. METHODS: We performed a meta-analysis to investigate differentially expressed genes (DEGs) of RSV infection from Gene Expression Omnibus datasets. Expression quantitative trait loci (eQTL) methods were applied to select single nucleotide polymorphisms (SNPs) that were associated with DEGs. Gene-based analysis was used to identify SNPs that were significantly associated with asthma exacerbations in the Taiwanese Consortium of Childhood Asthma Study (TCCAS), and validation was attempted in an independent cohort, the Childhood Asthma Management Program (CAMP). Gene-RSV interaction analyses were performed to investigate the association between the interaction of SNPs and RSV latent infection on asthma exacerbations. RESULTS: A total of 352 significant DEGs were found by meta-analysis of RSV-related genes. We used 38 123 SNPs related to DEGs to investigate the genetic main effects on asthma exacerbations. We found that eight RSV-related genes (GADD45A, GYPB, MS4A3, NFE2, RNASE3, EPB41L3, CEACAM6 and CEACAM3) were significantly associated with asthma exacerbations in TCCAS and also validated in CAMP. In TCCAS, rs7251960 (CEACAM3) significantly modulated the effect of RSV latent infection on asthma exacerbations (false-discovery rate <0.05). The rs7251960 variant was associated with CEACAM3 mRNA expression in lung tissue (p for trend=1.2×10-7). CEACAM3 mRNA was reduced in nasal mucosa from subjects with asthma exacerbations in two independent datasets. CONCLUSIONS: rs7251960 is an eQTL for CEACAM3, and CEACAM3 mRNA expression is reduced in subjects experiencing asthma exacerbations. CEACAM3 may be a modulator of RSV latent infection on asthma exacerbations.
Assuntos
Asma/genética , Asma/virologia , Antígeno Carcinoembrionário/genética , RNA Mensageiro/metabolismo , Infecções por Vírus Respiratório Sincicial/complicações , Adolescente , Antígenos CD/genética , Asma/fisiopatologia , Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular/genética , Criança , Progressão da Doença , Proteína Catiônica de Eosinófilo/genética , Feminino , Proteínas Ligadas por GPI/genética , Perfilação da Expressão Gênica , Genótipo , Glicoforinas/genética , Humanos , Imunoglobulina M/sangue , Infecção Latente/complicações , Infecção Latente/imunologia , Pulmão/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Subunidade p45 do Fator de Transcrição NF-E2/genética , Polimorfismo de Nucleotídeo Único , Mucosa Respiratória/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Exacerbação dos SintomasRESUMO
BACKGROUND: The MNS blood group system is defined by three homologous genes: GYPA, GYPB, and GYPE. GYPB encodes for glycophorin B (GPB) carrying S/s and the "universal" antigen U. RBCs of approximately 1% of individuals of African ancestry are U- due to absence of GPB. The U- phenotype has long been attributed to a deletion encompassing GYPB exons 2 to 5 and GYPE exon 1 (GYPB*01N). STUDY DESIGN AND METHODS: Samples from two U-individuals underwent Illumina short read whole genome sequencing (WGS) and Nanopore long read WGS. In addition, two existing WGS datasets, MedSeq (n = 110) and 1000 Genomes (1000G, n = 2535), were analyzed for GYPB deletions. Deletions were confirmed by Sanger sequencing. Twenty known U- donor samples were tested by a PCR assay to determine the specific deletion alleles present in African Americans. RESULTS: Two large GYPB deletions in U- samples of African ancestry were identified: a 110 kb deletion extending left of GYPB (DEL_B_LEFT) and a 103 kb deletion extending right (DEL_B_RIGHT). DEL_B_LEFT and DEL_B_RIGHT were the most common GYPB deletions in the 1000 Genomes Project 669 African genomes (allele frequencies 0.04 and 0.02). Seven additional deletions involving GYPB were seen in African, Admixed American, and South Asian samples. No samples analyzed had GYPB*01N. CONCLUSIONS: The U- phenotype in those of African ancestry is primarily associated with two different complete deletions of GYPB (with intact GYPE). Seven additional less common GYPB deletion backgrounds were found. GYPB*01N, long assumed to be the allele commonly encoding U- phenotypes, appears to be rare.
Assuntos
Negro ou Afro-Americano/genética , Éxons , Deleção de Genes , Glicoforinas/genética , Sistema do Grupo Sanguíneo MNSs/genética , HumanosRESUMO
BACKGROUND: MNS is one of the highly polymorphic blood groups comprising many antigens generated by genomic recombination among the GYPA, GYPB, and GYPE genes as well as by single-nucleotide changes. We report a patient with red blood cell (RBC) antibody against an unknown low-frequency antigen, tentatively named SUMI, and investigated its carrier molecule and causal gene. STUDY DESIGN AND METHODS: Standard serologic tests, including enzyme tests, were performed. Monoclonal anti-SUMI-producing cells (HIRO-305) were established by transformation and hybridization methods using lymphocytes from a donor having anti-SUMI. SUMI+ RBCs were examined by immunocomplex capture fluorescence analysis (ICFA) using HIRO-305 and murine monoclonal antibodies against RBC membrane proteins carrying blood group antigens. Genomic DNA was extracted from whole blood, and the GYPA gene was analyzed by polymerase chain reactions and Sanger sequencing. RESULTS: Serologic screening revealed that 23 of the 541,522 individuals (0.0042%) were SUMI+, whereas 1351 of the 10,392 individuals (13.0%) had alloanti-SUMI. SUMI antigen was sensitive to ficin, trypsin, pronase, and neuraminidase, but resistant to α-chymotrypsin and sulfydryl-reducing agents. ICFA revealed that the SUMI antigen was carried on glycophorin A (GPA). According to Sanger sequencing and cloning, the SUMI+ individuals had a GYPA*M allele with c.91A>C (p.Thr31Pro), which may abolish the O-glycan attachment site. CONCLUSIONS: The new low-frequency antigen SUMI is carried on GPA encoded by the GYPA*M allele with c.91A>C (p.Thr31Pro). Neuraminidase sensitivity suggests that glycophorin around Pro31 are involved in the SUMI determinant.
Assuntos
Eritrócitos/imunologia , Glicoforinas/genética , Sistema do Grupo Sanguíneo MNSs/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Feminino , Glicoforinas/imunologia , Humanos , Sistema do Grupo Sanguíneo MNSs/imunologia , MasculinoRESUMO
BACKGROUND AND OBJECTIVES: The Mi(a+) GP(B-A-B) hybrid phenotypes occur with a prevalence of 2%-23% across Southeast Asia. While the s antigen is alleged to be altered, no evidence for specific variants is known. Screening using a monoclonal IgM anti-s mistyped six S-s+ RBC units as S-s-. Further, alloanti-s was identified in an S+s+ patient. Our objective was to investigate the s antigen further. MATERIALS AND METHODS: DNA from 63 Thai blood donor samples PCR-positive for a GYP(B-A-B) hybrid was sequenced with primers spanning GYPB exons 3-4. Flow cytometry was used for semiquantitative analysis of s expression and correlated with the glycophorin genotype. RESULTS: DNA sequencing showed that GYP*Mur was carried by 56/63 samples (88·9%) of which 5/56 lacked normal GYPB: three of these were GYP*Mur homozygotes, one was a compound heterozygote carrying GYP*Mur and a GYP*Bun-like allele (designated GYP*Thai), and the fifth sample carried GYP*Mur and another GYP*Bun-like allele. Seven samples (7/63) were GYP*Thai heterozygotes. IgM monoclonal anti-s (P3BER) did not react with the s antigen carried by GP.Mur or GP.Bun, whereas two IgG anti-s showed enhanced reactivity. CONCLUSIONS: We confirmed that GYP*Mur is the most frequent variant in Thai blood donors and also identified GYP*Thai with a frequency of 1·1%. We showed that s antigen on Mi(a+) GP(B-A-B) hybrids is qualitatively altered and should be considered when selecting reagents for phenotyping where such hybrids are prevalent, endemically and in blood centres worldwide.
Assuntos
Alelos , Glicoforinas/genética , Mutação , Doadores de Sangue , Antígenos de Grupos Sanguíneos/genética , Duplicação Gênica , Humanos , Análise de Sequência de DNA , TailândiaRESUMO
BACKGROUND: The low-incidence antigen Sta of the MNS system is usually associated with the GP(B-A) hybrid molecule, which carries the 'N' antigen at the N terminus. The GP(A-A) molecule with trypsin-resistant M antigen has been found in a few St(a+) individuals. MATERIALS AND METHODS: Among Japanese blood donors, we screened 24 292 individuals for the presence of St(a+) with trypsin-resistant 'N' antigen and 193 009 individuals for the presence of St(a+) with trypsin-resistant M antigen. The breakpoints responsible for the Sta antigen were analysed by sequencing the genomic DNAs. RESULTS: A total of 1001 (4·1%) individuals were identified as St(a+) with trypsin-resistant 'N' antigen. Out of 1001 individuals, 115 were selected randomly for sequencing. Two novel GYP*Sch (GYP*401) variants with new intron 3 breakpoints of GYPA were detected in three cases. Twenty-five (0·013%) individuals were identified as St(a+) with trypsin-resistant M antigen. Five individuals had the GYP(A-ψB-A) hybrid allele; two of these five individuals were GYP*Zan (GYP*101.01), and the remaining three had a novel GYP(A-ψB-A) allele with the first breakpoint in GYPA exon A3 between c.178 and c.203. Nine individuals had a novel GYP(A-E-A) allele with GYPE exon E2 and pseudoexon E3 instead of GYPA exon A2 and A3. The 11 remaining individuals had a novel GYP(A-A) allele with a 9-bp deletion that included the donor splice site of intron 3 of GYPA. CONCLUSION: Our finding on diversity of glycophorin genes responsible for Sta antigen provides evidence for further complexity in the MNS system.