Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 105(3): 754-770, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33164279

RESUMO

Manihot esculenta (cassava) is a root crop originating from South America that is a major staple in the tropics, including in marginal environments. This study focused on South American and African germplasm and investigated the genetic architecture of hydrogen cyanide (HCN), a major component of root quality. HCN, representing total cyanogenic glucosides, is a plant defense component against herbivory but is also toxic for human consumption. We genotyped 3354 landraces and modern breeding lines originating from 26 Brazilian states and 1389 individuals were phenotypically characterized across multi-year trials for HCN. All plant material was subjected to high-density genotyping using genotyping by sequencing. We performed genome-wide association mapping to characterize the genetic architecture and gene mapping of HCN. Field experiments revealed strong broad- and narrow-sense trait heritability (0.82 and 0.41, respectively). Two major loci were identified, encoding for an ATPase and a MATE protein, and contributing up to 7 and 30% of the HCN concentration in roots, respectively. We developed diagnostic markers for breeding applications, validated trait architecture consistency in African germplasm and investigated further evidence for the domestication of sweet and bitter cassava. Fine genomic characterization revealed: (i) the major role played by vacuolar transporters in regulating HCN content; (ii) the co-domestication of sweet and bitter cassava major alleles are dependent upon geographical zone; and (iii) the major loci allele for high HCN in M. esculenta Crantz seems to originate from its ancestor, M. esculenta subsp. flabellifolia. Taken together, these findings expand our insights into cyanogenic glucosides in cassava roots and its glycosylated derivatives in plants.


Assuntos
Glicosídeos/genética , Manihot/genética , África , Alelos , Brasil , Cromossomos de Plantas , Genética Populacional , Estudo de Associação Genômica Ampla , Glicosídeos/metabolismo , Cianeto de Hidrogênio/metabolismo , América Latina , Manihot/metabolismo , Mutação , Filogenia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Paladar
2.
Glycobiology ; 31(5): 603-612, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270133

RESUMO

Alkyl glycoside surfactants with elongated carbohydrate chains are useful in different applications due to their improved biocompatibility. Cyclodextrin glucanotransferases can catalyze the elongation process through the coupling reaction. However, due to the presence of a hydrophobic tail, the interaction between an alkyl glycoside acceptor and the active site residues is weaker than the interaction with maltooligosaccharides at the corresponding site. Here we report the mutations of F197, G263 and E266 near the acceptor subsites in the CGTase CspCGT13 from Carboxydocella sp. The results showed that substitutions of both F197 and G263 were important for the binding of acceptor substrate dodecyl maltoside during coupling reaction. The double mutant F197Y/G263A showed enhanced coupling activity and displayed a 2-fold increase of the primary coupling product using γ-cyclodextrin as donor when compared to wildtype CspCGT13. Disproportionation activity was also reduced, which was also the case for another double mutant (F197Y/E266A) that however not showed the corresponding increase in coupling. A triple mutant F197Y/G263A/E266A maintained the increase in primary coupling product (1.8-fold increase) using dodecyl maltoside as acceptor, but disproportionation was approximately at the same level as in the double mutants. In addition, hydrolysis of starch was slightly increased by the F197Y and G263A substitutions, indicating that interactions at both positions influenced the selectivity between glycosyl and alkyl moieties.


Assuntos
Glucosiltransferases/metabolismo , Glicosídeos/biossíntese , Engenharia de Proteínas , Bactérias Anaeróbias/enzimologia , Biologia Computacional , Glucosiltransferases/genética , Glicosídeos/química , Glicosídeos/genética , Modelos Moleculares , Mutação
3.
Plant Mol Biol ; 102(3): 253-269, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31845304

RESUMO

Cistanche deserticola is a plant used both as food and medicine. We are interested in understanding how C. deserticola responds to environmental conditions. Samples were collected from three ecotypes grown in saline-alkali land, grassland and sandy land. Transcriptome and metabolome analysis were performed by using RNA-seq and LC-ESI-MS/MS. Among 578 metabolites identified, 218, 209 and 215 compounds were found differentially produced among the three ecotypes. Particularly, 2'-acetylacteoside, belonging to phenylethanoid glycosides (PhGs) is the most significantly differentially produced with a VIP > 0.5 and fold change > 2, representing a potential chemical marker to distinguish the three ecotypes. RNA-Seq analysis revealed 52,043 unigenes, and 947, 632 and 97 of them were found differentially expressed among the three ecotypes. Analysis of the correlation between the metabolome profiles and transcriptome profiles among three ecotypes identified that the 12 key genes related to PhGs biosynthesis were differentially expressed. Particularly, the expression of PAL, ALDH and GOT genes were significantly up-regulated in saline-alkali land compared to the other two. In summary, we found PhGs content was higher in saline-alkali land compared with other ecotypes. This is likely due to the up-regulation of the PhGs biosynthetic genes in response to the saline-alkali conditions.


Assuntos
Vias Biossintéticas/genética , Cistanche/genética , Cistanche/metabolismo , Ecótipo , Perfilação da Expressão Gênica , Metaboloma , Cromatografia Líquida , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Glucosídeos/metabolismo , Glicosídeos/biossíntese , Glicosídeos/genética , Anotação de Sequência Molecular , Álcool Feniletílico/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma
4.
Int J Mol Sci ; 21(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708651

RESUMO

Monolignols are the building blocks for lignin polymerization in the apoplastic domain. Monolignol biosynthesis, transport, storage, glycosylation, and deglycosylation are the main biological processes partaking in their homeostasis. In Arabidopsis thaliana, members of the uridine diphosphate-dependent glucosyltransferases UGT72E and UGT72B subfamilies have been demonstrated to glycosylate monolignols. Here, the poplar UGT72 family, which is clustered into four groups, was characterized: Group 1 UGT72AZ1 and UGT72AZ2, homologs of Arabidopsis UGT72E1-3, as well as group 4 UGT72B37 and UGT72B39, homologs of Arabidopsis UGT72B1-3, glycosylate monolignols. In addition, promoter-GUS analyses indicated that poplar UGT72 members are expressed within vascular tissues. At the subcellular level, poplar UGT72s belonging to group 1 and group 4 were found to be associated with the nucleus and the endoplasmic reticulum. However, UGT72A2, belonging to group 2, was localized in bodies associated with chloroplasts, as well as possibly in chloroplasts. These results show a partial conservation of substrate recognition between Arabidopsis and poplar homologs, as well as divergent functions between different groups of the UGT72 family, for which the substrates remain unknown.


Assuntos
Glucosiltransferases/genética , Proteínas de Plantas/genética , Populus/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucosiltransferases/metabolismo , Glicosídeos/genética , Glicosídeos/metabolismo , Glicosilação , Lignina/genética , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Especificidade por Substrato
5.
J Evol Biol ; 32(1): 31-48, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30317689

RESUMO

Many defended species use conspicuous visual warning signals to deter potential predators from attacking. Traditional theory holds that these signals should converge on similar forms, yet variation in visual traits and the levels of defensive chemicals is common, both within and between species. It is currently unclear how the strength of signals and potency of defences might be related: conflicting theories suggest that aposematic signals should be quantitatively honest, or, in contrast, that investment in one component should be prioritized over the other, while empirical tests have yielded contrasting results. Here, we advance this debate by examining the relationship between defensive chemicals and signal properties in a family of aposematic Lepidoptera, accounting for phylogenetic relationships and quantifying coloration from the perspective of relevant predators. We test for correlations between toxin levels and measures of wing colour across 14 species of day-flying burnet and forester moths (Lepidoptera: Zygaenidae), protected by highly aversive cyanogenic glucosides, and find no clear evidence of quantitative signal honesty. Significant relationships between toxin levels and coloration vary between sexes and sampling years, and several trends run contrary to expectations for signal honesty. Although toxin concentration is positively correlated with increasing luminance contrast in forewing pattern in 1 year, higher toxin levels are also associated with paler and less chromatically salient markings, at least in females, in another year. Our study also serves to highlight important factors, including sex-specific trends and seasonal variation, that should be accounted for in future work on signal honesty in aposematic species.


Assuntos
Mimetismo Biológico/fisiologia , Mariposas , Animais , Evolução Biológica , Mimetismo Biológico/genética , Cor , Feminino , Glicosídeos/genética , Glicosídeos/metabolismo , Modelos Biológicos , Mariposas/genética , Mariposas/fisiologia , Filogenia , Estações do Ano , Caracteres Sexuais
6.
BMC Musculoskelet Disord ; 20(1): 24, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646882

RESUMO

BACKGROUND: Rare variants of HSPG2 have recently been reported to function as a potential contributor to the susceptibility of adolescent idiopathic scoliosis (AIS) in the Caucasians. A replication study in the different population is warranted to validate the role of HSPG2 in AIS. The aim of this study was to determine the association between HSPG2 and AIS in the Chinese patients and to further investigate its influence on the phenotype of the patients. METHODS: SNVs p.Asn786Ser of HSPG2 was genotyped in 1752 patients and 1584 normal controls using multiple ligase detection reactions. The mRNA expression of HSPG2 in the paraspinal muscles was quantified for 90 patients and 26 controls. The The Student's t test was used to analyze the inter-group comparison of the HSPG2 expression. The relationship between the HSPG2 expression and the curve magnitude of the patients was analyzed by the Pearson correlation analysis. RESULTS: No case of mutation in the reported SNV p.Asn786Ser of HSPG2 was found in our cohort. The mRNA expression of HSPG2 in patients was comparable with that in the controls (0.0016 ± 0.0013 vs. 0.0019 ± 0.0012, p = 0.29). 42 patients with curve magnitude > 60 degrees were assigned to the severe curve group. The other 58 patients were assigned to the moderate curve group. These two groups were found to have comparable HSPG2 expression (0.0015 ± 0.0011 vs. 0.0017 ± 0.0014, p = 0.57). And there was no remarkable correlation between the expression level of HSPG2 and the curve severity (r = 0.131, p = 0.71). CONCLUSIONS: HSPG2 gene was not associated with the susceptibility or the phenotypes of AIS in the Chinese population. The whole HSPG2 gene can be sequenced in more AIS patients to identify potentially causative mutations.


Assuntos
Povo Asiático/genética , Predisposição Genética para Doença , Proteoglicanas de Heparan Sulfato/genética , Escoliose/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Glicosídeos/genética , Humanos , Polimorfismo de Nucleotídeo Único , Esteróis , Adulto Jovem
7.
Appl Microbiol Biotechnol ; 102(1): 9-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29022076

RESUMO

The natural products cyanogenic glycosides (CNglcs) are present in various forage plant species including Sorghum spp., Trifolium spp., and Lotus spp. The release of toxic hydrogen cyanide (HCN) from endogenous CNglcs, which is known as cyanogenesis, leads to a serious problem for animal consumption while as defensive secondary metabolites, CNglcs play multiple roles in plant development and responses to adverse environment. Therefore, it is highly important to fully uncover the molecular mechanisms of CNglc biosynthesis and regulation to manipulate the contents of CNglcs in forage plants for fine-tuning the balance between defensive responses and food safety. This review summarizes recent studies on the production, function, polymorphism, and regulation of CNglcs in forage plants, aiming to provide updated knowledge on the ways to manipulate CNglcs for further beneficial economic effects.


Assuntos
Glicosídeos/biossíntese , Glicosídeos/genética , Plantas/metabolismo , Animais , Inocuidade dos Alimentos , Regulação da Expressão Gênica de Plantas , Glicosídeos/metabolismo , Cianeto de Hidrogênio/metabolismo , Nitrilas/metabolismo , Plantas/genética , Sorghum/genética , Sorghum/metabolismo
8.
Glycobiology ; 27(3): 213-227, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28025249

RESUMO

Despite the progressive decline in tuberculosis mortality, strains resistant to our dated antibiotics remain a global threat, as are the emerging nontuberculous mycobacteria, ubiquitous in natural and human environments. This pressing situation boosted by debilitated immune systems, chronic illness and the aged population calls for efficient strategies to fight these successful organisms, and identifying pathways critical for their survival is a crucial step towards this goal. In this context, the glycoside glucosylglycerate (GG) has been implicated in the adaptation of mycobacteria to nitrogen starvation and to thermal stress, and the key gene for GG synthesis has been considered essential for Mycobacterium tuberculosis growth. The many organisms we now know to have genes for GG metabolism opened new exciting avenues of research into its functions, hinting for example at hypothetical roles as an inter-cellular messenger among bacteria and in microbe-plant interactions, or at key roles in the global nitrogen cycle beyond what cyanobacteria and mycobacteria have taught us so far. Indeed, the insights into GG biology gained over the last decade have changed the perception of GG from a rare polysaccharide constituent to a widespread molecule with multiple functions and biosynthetic origins. It is now possible to build upon this knowledge and further explore its physiological importance in both pathogenic and environmentally relevant microorganisms. In particular, the vital roles of GG and of its important derivative the mycobacterial methylglucose lipopolysaccharide (MGLP) discussed here are now evident, making their metabolic links attractive targets for the development of new urgently needed antimycobacterial therapies.


Assuntos
Glucosídeos/metabolismo , Glicosídeos/metabolismo , Lipopolissacarídeos/metabolismo , Tuberculose/metabolismo , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Glucosídeos/biossíntese , Glicosídeos/biossíntese , Glicosídeos/genética , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Nitrogênio/metabolismo , Polissacarídeos Bacterianos/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/genética , Tuberculose/microbiologia
9.
Glycobiology ; 26(7): 723-731, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26927318

RESUMO

Bacterial polysialyltransferases (PSTs) are processive enzymes involved in the synthesis of polysialic capsular polysaccharides. They can also synthesize polysialic acid in vitro from disialylated and trisialylated lactoside acceptors, which are the carbohydrate moieties of GD3 and GT3 gangliosides, respectively. Here, we engineered a non-pathogenic Escherichia coli strain that overexpresses recombinant sialyltransferases and sialic acid synthesis genes and can convert an exogenous lactoside into polysialyl lactosides. Several PSTs were assayed for their ability to synthesize polysialyl lactosides in the recombinant strains. Fed-batch cultures produced α-2,8 polysialic acid or alternate α-2,8-2,9 polysialic acid in quantities reaching several grams per liter. Bacterial culture in the presence of propargyl-ß-lactoside as the exogenous acceptor led to the production of conjugatable polysaccharides by means of copper-assisted click chemistry.


Assuntos
Glicosídeos/biossíntese , Ácidos Siálicos/biossíntese , Sialiltransferases/genética , Escherichia coli K12/genética , Gangliosídeos , Regulação Enzimológica da Expressão Gênica/genética , Glicosídeos/genética , Glicosilação , Lactosilceramidas , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , Proteínas Recombinantes/genética , Ácidos Siálicos/genética
10.
Microb Cell Fact ; 14: 138, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377568

RESUMO

BACKGROUND: Flavonoids are bio-active specialized plant metabolites which mainly occur as different glycosides. Due to the increasing market demand, various biotechnological approaches have been developed which use Escherichia coli as a microbial catalyst for the stereospecific glycosylation of flavonoids. Despite these efforts, most processes still display low production rates and titers, which render them unsuitable for large-scale applications. RESULTS: In this contribution, we expanded a previously developed in vivo glucosylation platform in E. coli W, into an efficient system for selective galactosylation and rhamnosylation. The rational of the novel metabolic engineering strategy constitutes of the introduction of an alternative sucrose metabolism in the form of a sucrose phosphorylase, which cleaves sucrose into fructose and glucose 1-phosphate as precursor for UDP-glucose. To preserve these intermediates for glycosylation purposes, metabolization reactions were knocked-out. Due to the pivotal role of UDP-glucose, overexpression of the interconverting enzymes galE and MUM4 ensured the formation of both UDP-galactose and UDP-rhamnose, respectively. By additionally supplying exogenously fed quercetin and overexpressing a flavonol galactosyltransferase (F3GT) or a rhamnosyltransferase (RhaGT), 0.94 g/L hyperoside (quercetin 3-O-galactoside) and 1.12 g/L quercitrin (quercetin 3-O-rhamnoside) could be produced, respectively. In addition, both strains showed activity towards other promising dietary flavonols like kaempferol, fisetin, morin and myricetin. CONCLUSIONS: Two E. coli W mutants were engineered that could effectively produce the bio-active flavonol glycosides hyperoside and quercitrin starting from the cheap substrates sucrose and quercetin. This novel fermentation-based glycosylation strategy will allow the economically viable production of various glycosides.


Assuntos
Escherichia coli/genética , Glicosídeos/metabolismo , Engenharia Metabólica , Reatores Biológicos , Escherichia coli/metabolismo , Fermentação , Flavonoides/metabolismo , Glicosídeos/genética , Glicosilação , Quercetina/análogos & derivados , Quercetina/metabolismo , Sacarose/metabolismo
11.
J Biol Chem ; 288(44): 31678-88, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24045947

RESUMO

Flavonoids accumulate in plant vacuoles usually as O-glycosylated derivatives, but several species can also synthesize flavonoid C-glycosides. Recently, we demonstrated that a flavanone 2-hydroxylase (ZmF2H1, CYP93G5) converts flavanones to the corresponding 2-hydroxy derivatives, which are expected to serve as substrates for C-glycosylation. Here, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT708A6), and its activity was characterized by in vitro and in vivo bioconversion assays. In vitro assays using 2-hydroxyflavanones as substrates and in vivo activity assays in yeast co-expressing ZmF2H1 and UGT708A6 show the formation of the flavones C-glycosides. UGT708A6 can also O-glycosylate flavanones in bioconversion assays in Escherichia coli as well as by in vitro assays with the purified recombinant protein. Thus, UGT708A6 is a bifunctional glycosyltransferase that can produce both C- and O-glycosidated flavonoids, a property not previously described for any other glycosyltransferase.


Assuntos
Glucosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonas/genética , Flavonas/metabolismo , Glucosiltransferases/genética , Glicosídeos/genética , Glicosídeos/metabolismo , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zea mays/genética
12.
Plant Mol Biol ; 86(1-2): 215-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25015725

RESUMO

Japanese apricot, Prunus mume Sieb. et Zucc., belonging to the Rosaceae family, produces as defensive agents the cyanogenic glycosides prunasin and amygdalin, which are presumably derived from L-phenylalanine. In this study, we identified and characterized cytochrome P450s catalyzing the conversion of L-phenylalanine into mandelonitrile via phenylacetaldoxime. Full-length cDNAs encoding CYP79D16, CYP79A68, CYP71AN24, CYP71AP13, CYP71AU50, and CYP736A117 were cloned from P. mume 'Nanko' using publicly available P. mume RNA-sequencing data, followed by 5'- and 3'-RACE. CYP79D16 was expressed in seedlings, whereas CYP71AN24 was expressed in seedlings and leaves. Enzyme activity of these cytochrome P450s expressed in Saccharomyces cerevisiae was evaluated by liquid and gas chromatography­mass spectrometry. CYP79D16, but not CYP79A68, catalyzed the conversion of L-phenylalanine into phenylacetaldoxime. CYP79D16 showed no activity toward other amino acids. CYP71AN24, but not CYP71AP13, CYP71AU50, and CYP736A117, catalyzed the conversion of phenylacetaldoxime into mandelonitrile. CYP71AN24 also showed lower conversions of various aromatic aldoximes and nitriles. The K m value and turnover rate of CYP71AN24 for phenylacetaldoxime were 3.9 µM and 46.3 min(−1), respectively. The K m value and turnover of CYP71AN24 may cause the efficient metabolism of phenylacetaldoxime, avoiding the release of the toxic intermediate to the cytosol. These results suggest that cyanogenic glycoside biosynthesis in P. mume is regulated in concert with catalysis by CYP79D16 in the parental and sequential reaction of CYP71AN24 in the seedling.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Glicosídeos/biossíntese , Prunus/enzimologia , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/fisiologia , Glicosídeos/genética , Organismos Geneticamente Modificados/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Prunus/genética , Prunus/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
13.
Appl Environ Microbiol ; 80(23): 7415-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239905

RESUMO

Clostridium botulinum subtype A4 neurotoxin (BoNT/A4) is naturally expressed in the dual-toxin-producing C. botulinum strain 657Ba at 100× lower titers than BoNT/B. In this study, we describe purification of recombinant BoNT/A4 (rBoNT/A4) expressed in a nonsporulating and nontoxigenic C. botulinum expression host strain. The rBoNT/A4 copurified with nontoxic toxin complex components provided in trans by the expression host and was proteolytically cleaved to the active dichain form. Activity of the recombinant BoNT/A4 in mice and in human neuronal cells was about 1,000-fold lower than that of BoNT/A1, and the recombinant BoNT/A4 was effectively neutralized by botulism heptavalent antitoxin. A previous report using recombinant truncated BoNT/A4 light chain (LC) expressed in Escherichia coli has indicated reduced stability and activity of BoNT/A4 LC compared to BoNT/A1 LC, which was surmounted by introduction of a single-amino-acid substitution, I264R. In order to determine whether this mutation would also affect the holotoxin activity of BoNT/A4, a recombinant full-length BoNT/A4 carrying this mutation as well as a second mutation predicted to increase solubility (L260F) was produced in the clostridial expression system. Comparative analyses of the in vitro, cellular, and in vivo activities of rBoNT/A4 and rBoNT/A4-L260F I264R showed 1,000-fold-lower activity than BoNT/A1 in both the mutated and nonmutated BoNT/A4. This indicates that these mutations do not alter the activity of BoNT/A4 holotoxin. In summary, a recombinant BoNT from a dual-toxin-producing strain was expressed and purified in an endogenous clostridial expression system, allowing analysis of this toxin.


Assuntos
Toxinas Botulínicas Tipo A/toxicidade , Clostridium botulinum/metabolismo , Expressão Gênica , Glicosídeos/toxicidade , Neurônios/efeitos dos fármacos , Triterpenos/toxicidade , Substituição de Aminoácidos , Animais , Antitoxinas/metabolismo , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/isolamento & purificação , Células Cultivadas , Clostridium botulinum/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeos/química , Glicosídeos/genética , Glicosídeos/isolamento & purificação , Humanos , Camundongos , Testes de Neutralização , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/toxicidade , Triterpenos/química , Triterpenos/isolamento & purificação
14.
J Am Chem Soc ; 135(11): 4171-4, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23458364

RESUMO

Cyanosporasides are marine bacterial natural products containing a chlorinated cyclopenta[a]indene core of suspected enediyne polyketide biosynthetic origin. Herein, we report the isolation and characterization of novel cyanosporasides C-F (3-6) from the marine actinomycetes Salinispora pacifica CNS-143 and Streptomyces sp. CNT-179, highlighted by the unprecedented C-2' N-acetylcysteamine functionalized hexose group of 6. Cloning, sequencing, and mutagenesis of homologous ~50 kb cyanosporaside biosynthetic gene clusters from both bacteria afforded the first genetic evidence supporting cyanosporaside's enediyne, and thereby p-benzyne biradical, biosynthetic origin and revealed the molecular basis for nitrile and glycosyl functionalization. This study provides new opportunities for bioengineering of enediyne derivatives and expands the structural diversity afforded by enediyne gene clusters.


Assuntos
Actinobacteria/química , Actinobacteria/genética , Glicosídeos/química , Glicosídeos/genética , Indenos/química , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Enedi-Inos/química , Genes Bacterianos , Família Multigênica , Streptomyces/química , Streptomyces/genética
15.
Metab Eng ; 16: 11-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23246521

RESUMO

C-Glycosylated flavonoids are biologically active plant natural products linked to dietary health benefits. We have used polyprotein expression technology to reconstruct part of the respective biosynthetic pathway in tobacco and yeast, such that dihydrochalcone and flavanone precursors are directly converted to C-glycosides. The polyprotein system developed facilitated the simple and efficient co-expression of pathway enzymes requiring different sub-cellular localization in both plants and yeast. The pathway to flavone-C-glucosides comprised a flavanone 2-hydroxylase (F2H), co-expressed with a C-glucosyltransferase (CGT). While pathway engineering in tobacco resulted in only minor C-glycoside formation, when fed with the flavanone naringenin, yeast transformed with the F2H-CGT polyprotein construct produced high concentrations of 2-hydroxynaringenin-C-glucoside in the medium. These fermentation products could then be readily chemically converted to the respective flavone-C-glucosides. The efficiency of the biosynthesis was optimal when both the F2H and CGT were obtained from the same species (rice). These results confirm the coupled roles of the F2H and CGT in producing C-glucosides in vivo, with the use of the polyprotein expression system in yeast offering a useful system to optimize the synthesis of these natural products in quantities suitable for dietary studies.


Assuntos
Flavonas/biossíntese , Glicosídeos/biossíntese , Glicosiltransferases/biossíntese , Nicotiana/enzimologia , Proteínas de Plantas/biossíntese , Poliproteínas/biossíntese , Saccharomyces cerevisiae/metabolismo , Flavonas/genética , Glicosídeos/genética , Glicosiltransferases/genética , Proteínas de Plantas/genética , Poliproteínas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Nicotiana/genética
16.
Insect Mol Biol ; 22(5): 532-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23834845

RESUMO

Cytochrome P450s are important both in the metabolism of xenobiotics and the production of compounds such as cyanogenic glucosides, which insects use in their defence. In the present study, we use transcriptomic and genomic information to isolate and name P450-encoding genes from the butterfly Heliconius melpomene. We classify each of the putative genes into its appropriate superfamily and compare the distribution of P450s across sequenced insects. We also identify homologues of two P450s known to be involved in cyanogenesis in the six-spot Burnet moth, Zygaena filipendulae. Classification of Heliconius P450s should be an important step in the dissection of their role in the exploitation of their host plant, the passion vine Passiflora.


Assuntos
Borboletas/genética , Sistema Enzimático do Citocromo P-450/genética , Genes de Insetos , Glicosídeos/genética , Receptores Odorantes/genética , Transcriptoma , Animais , Borboletas/enzimologia , Glicosídeos/biossíntese , Família Multigênica , Passiflora/enzimologia , Passiflora/parasitologia , Filogenia
17.
Glycobiology ; 22(6): 757-67, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22190471

RESUMO

Glycosides of hydroxyproline (Hyp) in the plant cell wall matrix were discovered by Lamport and co-workers in the 1960s. Since then, much has been learned about these Hyp-rich glycoproteins. The intent of this review was to compare and contrast some less common structural motifs, in nontraditional roles, to uncover themes. Arabinosylation of short-peptide plant hormones is essential for growth, cell differentiation and defense. In a very recent development, prolyl hydroxylase and arabinosyltransferase activity has been shown to have a direct impact on the growth of root hairs in Arabidopsis thaliana. Pollen allergens of mugwort and ragweed contain proline-rich domains that are hydroxylated and glycosylated and play a structural role. In the case of mugwort, this domain also presents a significant immunogenic epitope. Major crops, including tobacco and maize, have been used to express and produce recombinant proteins of mammalian origin. The risks of plant-imposed glycosylation are discussed. In unicellular eukaryotes, Skp1 (a subunit of the E3(SCF) ubiquitin ligase complex) harbors a key Hyp residue that is modified by a linear pentasaccharide. These modifications may be involved in sensing oxygen levels. A few studies have probed the impact of glycosylation on the structure of Hyp-containing peptides. These have necessarily looked at small, synthetic molecules, since natural peptides and proteins are often isolable in only minuscule amounts and/or are heterogeneous in nature. The characterization of native structural motifs, together with the determination of glycopeptide conformation and properties, holds the key to rationalizing nature's architectural design.


Assuntos
Glicopeptídeos/química , Glicosídeos , Hidroxiprolina , Animais , Glicopeptídeos/genética , Glicopeptídeos/metabolismo , Glicosídeos/química , Glicosídeos/genética , Glicosídeos/metabolismo , Glicosilação , Humanos , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Conformação Proteica
18.
J Am Chem Soc ; 134(30): 12402-5, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22800463

RESUMO

Two enzymes of the gilvocarcin biosynthetic pathway, GilMT and GilM, with unclear functions were investigated by in vitro studies using purified, recombinant enzymes along with synthetically prepared intermediates. The studies revealed GilMT as a typical S-adenosylmethionine (SAM) dependent O-methyltransferase, but GilM was identified as a pivotal enzyme in the pathway that exhibits dual functionality in that it catalyzes a reduction of a quinone intermediate to a hydroquinone, which goes hand-in-hand with a stabilizing O-methylation and a hemiacetal formation. GilM mediates its reductive catalysis through the aid of GilR that provides FADH(2) for the GilM reaction, through which FAD is regenerated for the next catalytic cycle. This unusual synergy eventually completes the biosynthesis of the polyketide-derived defuco-gilvocarcin chromphore.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Cumarínicos/metabolismo , Glicosídeos/metabolismo , Metiltransferases/metabolismo , Streptomyces/enzimologia , Antibióticos Antineoplásicos/química , Cumarínicos/química , Glicosídeos/química , Glicosídeos/genética , Metilação , Metiltransferases/genética , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Streptomyces/química , Streptomyces/genética , Streptomyces/metabolismo
19.
Crit Rev Food Sci Nutr ; 52(11): 988-98, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22823347

RESUMO

Stevia rebaudiana, a perennial herb from the Asteraceae family, is known to the scientific world for its sweetness and steviol glycosides (SGs). SGs are the secondary metabolites responsible for the sweetness of Stevia. They are synthesized by SG biosynthesis pathway operating in the leaves. Most of the genes encoding the enzymes of this pathway have been cloned and characterized from Stevia. Out of various SGs, stevioside and rebaudioside A are the major metabolites. SGs including stevioside have also been synthesized by enzymes and microbial agents. These are non-mutagenic, non-toxic, antimicrobial, and do not show any remarkable side-effects upon consumption. Stevioside has many medical applications and its role against diabetes is most important. SGs have made Stevia an important part of the medicinal world as well as the food and beverage industry. This article presents an overview on Stevia and the importance of SGs.


Assuntos
Diterpenos do Tipo Caurano/biossíntese , Glucosídeos/biossíntese , Glicosídeos/biossíntese , Stevia/química , Clonagem Molecular , Diterpenos do Tipo Caurano/genética , Diterpenos do Tipo Caurano/farmacologia , Glucosídeos/genética , Glucosídeos/farmacologia , Glicosídeos/genética , Glicosídeos/farmacologia , Folhas de Planta/química , Transdução de Sinais
20.
Afr J Med Med Sci ; 41 Suppl: 171-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23678653

RESUMO

Cyanogenic potential (CNp) of cassava constitutes a serious problem for over 500 million people who rely on the crop as their main source of calories. Genetic diversity is a key to successful crop improvement for breeding new improved variability for target traits. Forty-three improved genotypes of cassava developed by International Institute of Tropical Agriculture (ITA), Ibadan, were characterized for CNp trait using 35 Simple Sequence.Repeat (SSR) markers. Essential colorimetry picric test was used for evaluation of CNp on a color scale of 1 to 14. The CNp scores obtained ranged from 3 to 9, with a mean score of 5.48 (+/- 0.09) based on Statistical Analysis System (SAS) package. TMS M98/ 0068 (4.0 +/- 0.25) was identified as the best genotype with low CNp while TMS M98/0028 (7.75 +/- 0.25) was the worst. The 43 genotypes were assigned into 7 phenotypic groups based on rank-sum analysis in SAS. Dissimilarity analysis representatives for windows generated a phylogenetic tree with 5 clusters which represented hybridizing groups. Each of the clusters (except 4) contained low CNp genotypes that could be used for improving the high CNp genotypes in the same or near cluster. The scatter plot of the genotypes showed that there was little or no demarcation for phenotypic CNp groupings in the molecular groupings. The result of this study demonstrated that SSR markers are powerful tools for the assessment of genetic variability, and proper identification and selection of parents for genetic improvement of low CNp trait among the IITA cassava collection.


Assuntos
Variação Genética , Genoma de Planta , Glicosídeos , Cianeto de Hidrogênio/metabolismo , Manihot/genética , Repetições de Microssatélites , Biomarcadores , Alimentos Geneticamente Modificados , Glicosídeos/genética , Glicosídeos/metabolismo , Humanos , Hibridização Genética , Cianeto de Hidrogênio/toxicidade , Intoxicação por Plantas/prevenção & controle , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/classificação , Plantas Geneticamente Modificadas/metabolismo , Toxicogenética , Verduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA