Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Indoor Air ; 32(1): e12952, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747064

RESUMO

This study aims to develop a fast-response sulfur hexafluoride (SF6 ) measuring system, and evaluate its performance in tracer gas measurements for studying transient airborne contaminant transport. The new system is based on a quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor using a quantum cascade laser. Transient SF6 tracer gas measurements were carried out in an environmental chamber with an instantaneous source using both the QEPAS system and a traditional commercial instrument. Real-time SF6 concentrations, peak SF6 concentrations and average SF6 concentrations for one room time constant under two air change rates obtained by the two instruments were compared. The results show that the QEPAS system, which features a 0.4 s data acquisition interval, can provide detailed real-time SF6 concentrations even when the concentration is changing rapidly. The QEPAS system successfully captured the peak SF6 concentrations for all the studies cases, while commercial instrument failed in most studied cases. In most of the cases, the two instruments obtained similar average SF6 concentrations for one room time constant. However, when the concentration was in rapid change, the two systems would report significantly different results. The QEPAS system can be potentially applied in transient tracer gas measurements under complex scenarios.


Assuntos
Poluição do Ar em Ambientes Fechados , Quartzo , Poluição do Ar em Ambientes Fechados/análise , Análise Espectral/métodos , Hexafluoreto de Enxofre/análise , Hexafluoreto de Enxofre/química
2.
Thorax ; 76(4): 380-386, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33593931

RESUMO

BACKGROUND: Multiple breath washout (MBW) using sulfur hexafluoride (SF6) has the potential to reveal ventilation heterogeneity which is frequent in patients with obstructive lung disease and associated small airway dysfunction. However, reference data are scarce for this technique and mostly restricted to younger cohorts. We therefore set out to evaluate the influence of anthropometric parameters on SF6-MBW reference values in pulmonary healthy adults. METHODS: We evaluated cross-sectional data from 100 pulmonary healthy never-smokers and smokers (mean 51 (SD 20), range 20-88 years). Lung clearance index (LCI), acinar (Sacin) and conductive (Scond) ventilation heterogeneity were derived from triplicate SF6-MBW measurements. Global ventilation heterogeneity was calculated for the 2.5% (LCI2.5) and 5% (LCI5) stopping points. Upper limit of normal (ULN) was defined as the 95th percentile. RESULTS: Age was the only meaningful parameter influencing SF6-MBW parameters, explaining 47% (CI 33% to 59%) of the variance in LCI, 32% (CI 18% to 47%) in Sacin and 10% (CI 2% to 22%) in Scond. Mean LCI increases from 6.3 (ULN 7.4) to 8.8 (ULN 9.9) in subjects between 20 and 90 years. Smoking accounted for 2% (CI 0% to 8%) of the variability in LCI, 4% (CI 0% to 13%) in Sacin and 3% (CI 0% to 13%) in Scond. CONCLUSION: SF6-MBW outcome parameters showed an age-dependent increase from early adulthood to old age. The effect was most pronounced for global and acinar ventilation heterogeneity and smaller for conductive ventilation heterogeneity. No influence of height, weight and sex was seen. Reference values can now be provided for all important SF6-MBW outcome parameters over the whole age range. TRIAL REGISTRATION NUMBER: NCT04099225.


Assuntos
Antropometria , Testes Respiratórios , Pneumopatias Obstrutivas/fisiopatologia , Hexafluoreto de Enxofre/análise , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Testes de Função Respiratória , Fumantes
3.
Molecules ; 24(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018513

RESUMO

Increasing demand for an alternative insulation medium to sulphur hexafluoride (SF6) has led to the investigation of new environmentally friendly insulation gases which could be used in high voltage equipment on the electrical power network. One such alternative, which is currently being explored by researchers, is Trifluoroiodomethane (CF3I) which could potentially be used in a gas mixture with carbon dioxide (CO2) as an insulation medium. In this paper an analysis of gaseous by-products detected as a result of high voltage breakdown through pure CF3I and a CF3I-CO2 gas mixture across a sphere-sphere electrode arrangement is given. Gas chromatography and mass spectrometry (GCMS) is used to identify the gaseous by-products produced as a result of high voltage arcing which causes the gas between the electrodes to dissociate. Analysing these gas by-products helps to identify the long-term behaviour of the gas mixture in high voltage equipment.


Assuntos
Dióxido de Carbono/análise , Hidrocarbonetos Halogenados/análise , Manufaturas/análise , Hexafluoreto de Enxofre/análise , Dióxido de Carbono/química , Eletricidade , Cromatografia Gasosa-Espectrometria de Massas , Química Verde , Humanos , Hidrocarbonetos Halogenados/química , Centrais Elétricas , Hexafluoreto de Enxofre/química
4.
J Dairy Sci ; 99(7): 5461-5465, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27132101

RESUMO

The objective of this study was to compare 2 commonly used techniques for measuring methane emissions from ruminant animals: the GreenFeed (GF) system and the sulfur hexafluoride (SF6) technique. The study was part of a larger experiment in which a methane inhibitor, 3-nitrooxypropanol, fed at 4 application rates (0, 40, 60, and 80 mg/kg of feed dry matter) decreased enteric methane emission by an average of 30% (measured by both GF and SF6) in a 12-wk experiment with 48 lactating Holstein cows fed a total mixed ration. The larger experiment used a randomized block design and was conducted in 2 phases (February to May, phase 1, and June to August, phase 2), with 2 sets of 24 cows in each phase. Using both GF and SF6 techniques, methane emission data were collected simultaneously during experimental wk 2, 6, and 12 (phase 1) and 2, 9, and 12 (phase 2), which corresponded to a total of 6 sampling periods. During each sampling period, 8 spot samples of gas emissions (staggered over a 3-d period) were collected from each cow using GF, as well as 3×24-h collections using the SF6 technique. Methane emission data were averaged per cow for the statistical analysis. The mean methane emission was 373 (standard deviation=96.3) and 405 (standard deviation=156) g/cow per day for GF and SF6, respectively. Coefficients of variation for the 2 methods were 25.8 and 38.6%, respectively; correlation and concordance between the 2 methods were 0.40 and 0.34, respectively. The difference in methane emission between the 2 methods (SF6 - GF) within treatment was from 46 to 144 and 24 to 27 g/d for phases 1 and 2, respectively. In the conditions of this experiment, the SF6 technique produced larger variability in methane emissions than the GF method. The overall difference between the 2 methods was on average about 8%, but was not consistent over time, likely influenced by barn ventilation and background methane and SF6 concentrations.


Assuntos
Ração Animal , Bovinos/fisiologia , Dieta/veterinária , Metano/análise , Hexafluoreto de Enxofre , Animais , Indústria de Laticínios , Feminino , Lactação , Metano/antagonistas & inibidores , Leite/química , Propanóis/farmacologia , Hexafluoreto de Enxofre/análise
5.
J Dairy Sci ; 98(4): 2676-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25660738

RESUMO

The objective of this study was to measure enteric CH4 emissions using a new portable automated open-circuit gas quantification system (GQS) and the sulfur hexafluoride tracer technique (SF6) in midlactation Holstein cows housed in a tiestall barn. Sixteen cows averaging 176 ± 34 d in milk, 40.7 ± 6.1 kg of milk yield, and 685 ± 49 kg of body weight were randomly assigned to 1 out of 2 treatments according to a crossover design. Treatments were (1) ad libitum (adjusted daily to yield 10% orts) and (2) restricted feed intake [set to restrict feed by 10% of baseline dry matter intake (DMI)]. Each experimental period lasted 22d, with 14 d for treatment adaptation and 8d for data and sample collection. A common diet was fed to the cows as a total mixed ration and contained 40.4% corn silage, 11.2% grass-legume haylage, and 48.4% concentrate on a dry matter basis. Spot 5-min measurements using the GQS were taken twice daily with a 12-h interval between sampling and sampling times advanced 2h daily to account for diurnal variation in CH4 emissions. Canisters for the SF6 method were sampled twice daily before milking with 4 local background gas canisters inside the barn analyzed for background gas concentrations. Enteric CH4 emissions were not affected by treatments and averaged 472 and 458 g/d (standard error of the mean = 18 g/d) for ad libitum and restricted intake treatments, respectively (data not shown). The GQS appears to be a reliable method because of the relatively low coefficients of variation (ranging from 14.1 to 22.4%) for CH4 emissions and a moderate relationship (coefficient of determination = 0.42) between CH4 emissions and DMI. The SF6 resulted in large coefficients of variation (ranging from 16.0 to 111%) for CH4 emissions and a poor relationship (coefficient of determination = 0.17) between CH4 emissions and DMI, likely because of limited barn ventilation and high background gas concentration. Research with improved barn ventilation systems or outdoors is warranted to further assess the GQS and SF6 methodologies.


Assuntos
Poluentes Atmosféricos/análise , Bovinos/metabolismo , Indústria de Laticínios , Monitoramento Ambiental/métodos , Metano/análise , Animais , Feminino , Hexafluoreto de Enxofre/análise
6.
J Occup Environ Hyg ; 12(4): 235-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25436893

RESUMO

The flow and spillage characteristics of an inclined quad-vortex (IQV) range hood subject to the influence of drafts from various directions were studied. The laser-assisted smoke flow visualization technique was used to reveal the flow characteristics, and the tracer-gas (sulfur hexafluoride) concentration detection method was used to indicate the quantitative values of the capture efficiency of the hood. It was found that the leakage mechanisms of the IQV range hood are closely related to the flow characteristics. A critical draft velocity of about 0.5 m/s and a critical face velocity of about 0.25 m/s for the IQV range hood were found. When the IQV range hood was influenced by a draft with a velocity larger than the critical draft velocity, the spillage of pollutants became significant and the pollutant spillage rate increased with increasing draft velocity. At draft velocities less than or equal to the critical value, no containment leakages induced by the turbulence diffusion, reverse flow, or boundary-layer separation were observed, and the capture efficiency was about 100%. The IQV range hood exhibited a high ability to resist the influences of lateral and frontal drafts. The capture efficiency of the IQV range hood operated at the suction flow rate 5 to 9 m(3)/min is higher than that of the conventional range hood operated at 11 to 15 m(3)/min.


Assuntos
Movimentos do Ar , Poluição do Ar em Ambientes Fechados/análise , Ventilação/instrumentação , Poluentes Ocupacionais do Ar/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Culinária/instrumentação , Difusão , Desenho de Equipamento , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Hexafluoreto de Enxofre/análise , Ventilação/métodos
7.
J Theor Biol ; 353: 1-8, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24625680

RESUMO

A dynamic, mechanistic model of the sulfur hexafluoride (SF6) tracer technique, used for estimating methane (CH4) emission rates from ruminants, was constructed to evaluate the accuracy of the technique. The model consists of six state variables and six zero-pools representing the quantities of SF6 and CH4 in rumen and hindgut fluid, in rumen and hindgut headspace, and in blood and collection canister. The model simulates flows of CH4 and SF6 through the body, subsequent eructation and exhalation and accumulation in a collection canister. The model predicts CH4 emission by multiplying the SF6 release rate of a permeation device in the rumen by the ratio of CH4:SF6 in collected air. This prediction is compared with the actual CH4 production rate, assumed to be continuous and used as a driving variable in the model. A sensitivity analysis was conducted to evaluate the effect of changes in several parameters. The predicted CH4 emission appeared sensitive to parameters affected by the difference in CH4:SF6 ratio in exhaled and eructed air respectively, viz., hindgut fractional passage rate and hindgut CH4 production. This is caused by the difference in solubility of CH4 and SF6 and by hindgut CH4 production. In addition, the predicted CH4 emission rate appeared sensitive to factors that affect proportions of exhaled and eructed air sampled, i.e., eructation time fraction, exhalation time fraction, and distance from sampling point to mouth/nostrils. Changes in rumen fractional passage rate, eructation rate, SF6 release rate, background values and air sampling rate did not noticeably affect the predicted CH4 emission. Simulations with (13)CH4 as an alternative tracer show that the differences and sensitivity to parameters greatly disappear. The model is considered a useful tool to evaluate critical points in the SF6 technique. Data from in vivo experiments are needed to further evaluate model simulations.


Assuntos
Bovinos/metabolismo , Indústria de Laticínios , Metano/análise , Metano/metabolismo , Modelos Teóricos , Hexafluoreto de Enxofre/análise , Animais , Bovinos/sangue , Rúmen/metabolismo , Hexafluoreto de Enxofre/química
8.
J Environ Sci (China) ; 26(12): 2451-8, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25499493

RESUMO

We present in-situ measurements of atmospheric sulfur hexafluoride (SF6) conducted by an automated gas chromatograph-electron capture detector system and a gas chromatography/mass spectrometry system at a regional background site, Shangdianzi, in China, from June 2009 to May 2011, using the System for Observation of Greenhouse gases in Europe and Asia and Advanced Global Atmospheric Gases Experiment (AGAGE) techniques. The mean background and polluted mixing ratios for SF6 during the study period were 7.22 × 10⁻¹² (mol/mol, hereinafter) and 8.66 × 10⁻¹², respectively. The averaged SF6 background mixing ratios at Shangdianzi were consistent with those obtained at other AGAGE stations located at similar latitudes (Trinidad Head and Mace Head), but larger than AGAGE stations in the Southern Hemisphere (Cape Grim and Cape Matatula). SF6 background mixing ratios increased rapidly during our study period, with a positive growth rate at 0.30 × 10⁻¹² year⁻¹. The peak to peak amplitude of the seasonal cycle for SF6 background conditions was 0.07 × 10⁻¹², while the seasonal fluctuation of polluted conditions was 2.16 × 10⁻¹². During the study period, peak values of SF6 mixing ratios occurred in autumn when local surface horizontal winds originated from W/WSW/SW/SWS/S sectors, while lower levels of SF6 mixing ratios appeared as winds originated from N/NNE/NE/ENE/E sectors.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/análise , Hexafluoreto de Enxofre/análise , Cromatografia Gasosa-Espectrometria de Massas , Vento
9.
Ann Work Expo Health ; 68(1): 86-96, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38037180

RESUMO

Sulfur hexafluoride (SF6) is the reference tracer gas in many international standards for characterizing respiratory protective devices (RPD), fume cupboards, building ventilations, and other installations. However, due to its significant impact on global warming, its use is becoming increasingly restrictive. Krypton 84 (Kr) was chosen to be a possible replacement based on theoretical and practical criteria for the properties that a substitute gas should possess. While compliance with these criteria is generally sufficient to guarantee the reliability of the choice, it is essential in the case of widespread use such as a standard to validate experimentally that this tracer has the same behavior as SF6. In this regard, numerous tests have been carried out to characterize the face leakage of RPD and the rupture of containment of fume cupboards performance tests under different operating conditions. The results obtained are identical with both tracers and lead us to propose the use of Kr as a new reference gas in standards for which SF6 was used.


Assuntos
Exposição Ocupacional , Humanos , Exposição Ocupacional/prevenção & controle , Criptônio , Reprodutibilidade dos Testes , Gases/análise , Hexafluoreto de Enxofre/análise , Padrões de Referência
10.
Environ Sci Technol ; 47(15): 8599-608, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23826704

RESUMO

We developed an analytical method for the simultaneous measurement of dissolved He, Ne, Ar, Kr, Xe, SF6, N2, and O2 concentrations in a single water sample. The gases are extracted from the water using a head space technique and are transferred into a vacuum system for purification and separation into different fractions using a series of cold traps. Helium is analyzed using a quadrupole mass spectrometer (QMS). The remaining gas species are analyzed using a gas chromatograph equipped with a mass spectrometer (GC-MS) for analysis of Ne, Ar, Kr, Xe, N2, and O2 and an electron capture detector (GC-ECD) for SF6 analysis. Standard errors of the gas concentrations are approximately 8% for He and 2-5% for the remaining gas species. The method can be extended to also measure concentrations of chlorofluorocarbons (CFCs). Tests of the method in Lake Lucerne (Switzerland) showed that dissolved gas concentrations agree with measurements from other methods and concentrations of air saturated water. In a small artificial pond, we observed systematic gas supersaturations, which seem to be linked to adsorption of solar irradiation in the pond and to water circulation through a gravel bed.


Assuntos
Gases/análise , Hexafluoreto de Enxofre/análise , Poluentes Químicos da Água/análise , Calibragem , Cromatografia Gasosa-Espectrometria de Massas , Solubilidade
11.
Environ Sci Technol ; 47(8): 3848-55, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23506443

RESUMO

Sulfur hexafluoride (SF6) is the most potent greenhouse gas regulated under the Kyoto Protocol, with a high global warming potential. In this study, SF6 emissions from China were inventoried for 1990-2010 and projected to 2020. Results reveal that the highest SF6 emission contribution originates from the electrical equipment sector (about 70%), followed by the magnesium production sector, the semiconductor manufacture sector and the SF6 production sector (each about 10%). Both agreements and discrepancies were found in comparisons of our estimates with previously published data. An accelerated growth rate was found for Chinese SF6 emissions during 1990-2010. Because the relative growth rate of SF6 emissions is estimated to be much higher than those of CO2, CH4, and N2O, SF6 will play an increasing role in greenhouse gas emissions in China. Global contributions from China increased rapidly from 0.9 ± 0.3% in 1990 to 22.8 ± 6.3% in 2008, making China one of the crucial contributors to the recent growth in global emissions. Under the examined Business-as-usual (BAU) Scenario, projected emissions will reach 4270 ± 1020 t in 2020, but a reduction of about 90% of the projected BAU emissions would be obtained under the Alternative Scenario.


Assuntos
Poluentes Atmosféricos/análise , Hexafluoreto de Enxofre/análise , Poluentes Atmosféricos/história , China , Intervalos de Confiança , Efeito Estufa , História do Século XX , História do Século XXI , Internacionalidade , Hexafluoreto de Enxofre/história , Fatores de Tempo
12.
Sensors (Basel) ; 13(11): 14764-76, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24177728

RESUMO

The detection of partial discharge and analysis of SF6 gas components in gas-insulated switchgear (GIS) is important for the diagnosis and operating state assessment of power equipment. The use of a Pt-doped TiO2 nanotube arrays sensor for detecting sulfur hexafluoride (SF6) decomposition products is proposed in this paper. The electrochemical pulse deposition method is employed to prepare the sensor array. The sensor's response to the main characteristic gaseous decomposition products of SF6 is evaluated. The gas sensing characteristic curves of the Pt-doped TiO2 nanotube sensor and intrinsic TiO2 nanotube arrays sensor are compared. The mechanism of the sensitive response is discussed. Test results showed that the Pt-doped nanoparticles not only change the gas sensing selectivity of the TiO2 nanotube arrays sensor with respect to the main characteristic SF6 decomposition products, but also reduce the operating temperature of the sensor.


Assuntos
Análise em Microsséries/instrumentação , Nanotecnologia/instrumentação , Nanotubos/química , Platina/química , Hexafluoreto de Enxofre/análise , Titânio/química , Nanotecnologia/métodos , Hexafluoreto de Enxofre/química
13.
Environ Pollut ; 335: 122266, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499965

RESUMO

Sulfur hexafluoride (SF6) is a powerful greenhouse gas with a high global warming potential. While SF6 emissions from urban areas have been extensively studied, our knowledge about SF6 concentrations in the oceanic atmosphere and its air-sea exchange remains limited. Herein, the concentrations of SF6 in the atmosphere and surface seawater of the WPO (Western Pacific Ocean) and EIO (Eastern Indian Ocean) were comprehensively characterized from 2019 to 2022 in the first long-term study. The mean mixing ratios of SF6 over the WPO and EIO during 2019-2020 (2021-2022) were 10.9 (11.2) and 10.9 (11.1) ppt, respectively. The atmospheric SF6 concentration over the WPO and EIO increased at rates of 0.40 ± 0.06 and 0.58 ± 0.28 ppt yr-1, respectively, surpassing previously reported annual growth rates. The faster growth was primarily attributed to the influence of polluted air masses originating from eastern Asian countries, particularly Japan, Northeast China, and India. This might explain why the radiative forcing caused by SF6 in the study region was higher than the global average. The concentrations of SF6 in the surface seawater of the WPO and EIO ranged from 0.33 to 2.54 fmol kg-1, and the distribution was affected by atmospheric concentrations and ocean currents. Estimated air-sea fluxes revealed that the ocean acted as a significant sink of atmospheric SF6, and the preliminary estimation suggested oceanic uptake accounts for about 7% of annual global SF6 emissions. Based on these findings, we tentatively suggest that the strength of the ocean as a sink of SF6 may warrant reassessment. The global oceanic uptake of SF6 has the potential to reduce its global abundance and environmental impacts.


Assuntos
Monitoramento Ambiental , Hexafluoreto de Enxofre , Hexafluoreto de Enxofre/análise , Oceano Índico , Água do Mar , Oceano Pacífico , Atmosfera
14.
Pract Radiat Oncol ; 13(6): e471-e474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37414248

RESUMO

Sulfur hexafluoride (SF6) is a widely used insulating gas in medical linear accelerators (LINACs) due to its high dielectric strength, heat transfer capabilities, and chemical stability. However, its long lifespan and high Global Warming Potential (GWP) make it a significant contributor to the environmental impact of radiation oncology. SF6 has an atmospheric lifespan of 3200 years and a GWP 23,000 times that of carbon dioxide. The amount of SF6 that can be emitted through leakage from machines is also concerning. It is estimated that the approximate 15,042 LINACs globally may leak up to 64,884,185.9 carbon dioxide equivalent per year, which is the equivalent greenhouse gas emissions of 13,981 gasoline-powered passenger vehicles driven for 1 year. Despite being regulated as a greenhouse gas under the United Nations Framework Convention on Climate Change, SF6 use within health care is often exempt from regulation, and only a few states in the United States have specific SF6 management regulations. This article highlights the need for radiation oncology centers and LINAC manufacturers to take responsibility for minimizing SF6 emissions. Programs that track usage and disposal, conduct life-cycle assessments, and implement leakage detection can help identify SF6 sources and promote recovery and recycling. Manufacturers are investing in research and development to identify alternative gases, improve leak detection, and minimize SF6 gas leakage during operation and maintenance. Alternative gases with lower GWP, such as nitrogen, compressed air, and perfluoropropane, may be considered as replacements for SF6; however, more research is needed to evaluate their feasibility and performance in radiation oncology. The article emphasizes the need for all sectors, including health care, to reduce their emissions to meet the goals of the Paris Agreement and ensure the sustainability of health care and our patients. Although SF6 is practical in radiation oncology, its environmental impact and contribution to the climate crisis cannot be ignored. Radiation oncology centers and manufacturers must take responsibility for reducing SF6 emissions by implementing best practices and promoting research and development around alternatives. To meet global emissions reduction goals and protect both planetary and patient health, the reduction of SF6 emissions will be essential.


Assuntos
Gases de Efeito Estufa , Radioterapia (Especialidade) , Humanos , Estados Unidos , Dióxido de Carbono/análise , Gases/análise , Hexafluoreto de Enxofre/análise
16.
Environ Sci Technol ; 46(10): 5344-52, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22509995

RESUMO

Natural and constructed wetlands have gained attention as potential tools for remediation of shallow sediments and groundwater contaminated with volatile organic compounds (VOCs). Wetland macrophytes are known to enhance rates of contaminant removal via volatilization, but the magnitude of different volatilization mechanisms, and the relationship between volatilization rates and contaminant physiochemical properties, remain poorly understood. Greenhouse mesocosm experiments using the volatile tracer sulfur hexafluoride were conducted to determine the relative magnitudes of gas-phase and transpiration-driven volatilization mechanisms. A numerical model for vegetation-mediated volatilization was developed, calibrated with tracer measurements, and used to predict plant-mediated volatilization of common VOCs as well as quantify the contribution of different volatilization pathways. Model simulations agree with conclusions from previous work that transpiration is the main driver for volatilization of VOCs, but also demonstrate that vapor-phase transport in wetland plants is significant, and can represent up to 50% of the total flux for compounds with greater volatility like vinyl chloride.


Assuntos
Gases/análise , Transpiração Vegetal/fisiologia , Plantas/metabolismo , Áreas Alagadas , Biodegradação Ambiental , Cinética , Conceitos Meteorológicos , Modelos Biológicos , Rizoma/metabolismo , Rizosfera , Hexafluoreto de Enxofre/análise , Temperatura , Typhaceae/metabolismo , Volatilização , Poluentes Químicos da Água/análise
17.
Inhal Toxicol ; 24(2): 99-108, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22229735

RESUMO

Exposures to air contaminants, such as chemical vapors and particulate matter, pose important health hazards at workplaces. Short-term experimental exposures to chemical vapors and particles in humans are a promising attempt to investigate acute effects of such hazards. However, a significant challenge in this field is the determination of effects of co-exposures to more than one chemical or mixtures of chemical vapors and/or particles. To overcome such a challenge, studies have to be conducted under standardized exposure characterization and real time measurements, if possible. A new exposure laboratory (ExpoLab) was installed at IPA, combining sophisticated engineering designs with new analytical techniques, to fulfill these requirements. Low-dose as well as high-dose exposure scenarios are achieved by means of a calibration-gas-generator. Exposure monitoring can be carried out with a high performance real time mass spectrometer and other suitable analyzers (e.g. gas chromatograph). Numerous automated security facilities guarantee the physical integrity of the volunteers, and the waste atmosphere is removed using either charcoal filtration or catalytic post-combustion. Measurements of sulfur hexafluoride, carbon dioxide, aniline and carbon black are presented to demonstrate the performance of the exposure unit with respect to the temporal and spatial stability of generated atmospheres. The variations of generated contents in the atmospheres at steady state are slightly higher than the measurement precision of the analyzers (the typical standard deviation of generated atmospheres is < 2%). The technical components of ExpoLab and its monitoring systems ensure high quality standards in validity and reliability of generating and measuring exposure atmospheres.


Assuntos
Poluentes Ocupacionais do Ar , Experimentação Humana , Exposição por Inalação , Movimentos do Ar , Poluentes Ocupacionais do Ar/análise , Compostos de Anilina/análise , Dióxido de Carbono/análise , Desenho de Equipamento , Humanos , Umidade , Exposição Ocupacional , Tamanho da Partícula , Material Particulado/análise , Fuligem/análise , Hexafluoreto de Enxofre/análise , Ventilação
18.
Int J Biometeorol ; 55(1): 1-16, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20809221

RESUMO

The greenhouse gas (GHG) emissions from the agricultural sector account for about 25.5% of total global anthropogenic emission. While CO(2) receives the most attention as a factor relative to global warming, CH(4), N(2)O and chlorofluorocarbons (CFCs) also cause significant radiative forcing. With the relative global warming potential of 25 compared with CO(2), CH(4) is one of the most important GHGs. This article reviews the prediction models, estimation methodology and strategies for reducing enteric CH(4) emissions. Emission of CH(4) in ruminants differs among developed and developing countries, depending on factors like animal species, breed, pH of rumen fluid, ratio of acetate:propionate, methanogen population, composition of diet and amount of concentrate fed. Among the ruminant animals, cattle contribute the most towards the greenhouse effect through methane emission followed by sheep, goats and buffalos, respectively. The estimated CH(4) emission rate per cattle, buffaloe, sheep and goat in developed countries are 150.7, 137, 21.9 and 13.7 (g/animal/day) respectively. However, the estimated rates in developing countries are significantly lower at 95.9 and 13.7 (g/animal/day) per cattle and sheep, respectively. There exists a strong interest in developing new and improving the existing CH(4) prediction models to identify mitigation strategies for reducing the overall CH(4) emissions. A synthesis of the available literature suggests that the mechanistic models are superior to empirical models in accurately predicting the CH(4) emission from dairy farms. The latest development in prediction model is the integrated farm system model which is a process-based whole-farm simulation technique. Several techniques are used to quantify enteric CH(4) emissions starting from whole animal chambers to sulfur hexafluoride (SF6) tracer techniques. The latest technology developed to estimate CH(4) more accurately is the micrometeorological mass difference technique. Because the conditions under which animals are managed vary greatly by country, CH(4) emissions reduction strategies must be tailored to country-specific circumstances. Strategies that are cost effective, improve productivity, and have limited potential negative effects on livestock production hold a greater chance of being adopted by producers. It is also important to evaluate CH(4) mitigation strategies in terms of the total GHG budget and to consider the economics of various strategies. Although reductions in GHG emissions from livestock industries are seen as high priorities, strategies for reducing emissions should not reduce the economic viability of enterprises.


Assuntos
Criação de Animais Domésticos/métodos , Aquecimento Global , Gado/fisiologia , Metano/análise , Criação de Animais Domésticos/economia , Animais , Metano/metabolismo , Modelos Biológicos , Hexafluoreto de Enxofre/análise , Hexafluoreto de Enxofre/metabolismo
19.
Ann Occup Hyg ; 54(6): 625-39, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20385660

RESUMO

Laser-assisted flow-visualization experiments and tracer gas concentration tests were conducted for the wall-mounted and jet-isolated range hoods to examine the physical mechanisms and relative magnitudes of hood spillages. The effects of a mannequin standing in front of the test rig and walk-by motions (which are situations always encountered in kitchens) were emphasized. The results showed that a mannequin (or a cook) standing in front of the counter would attract oil fumes toward the mannequin's body, induce large turbulent flows, and cause a significant dispersion of oil fumes into the environment through the front edge of the hood. Very high tracer gas concentrations were detected around the breathing zone of the mannequin. Increasing the suction flow rate did not reduce the spillage levels of the wall-mounted range hood but could moderately lower those of the jet-isolated hood. Serious spillages from both the wall-mounted and jet-isolated range hoods were detected as the simulated walk-by motion was performed. The jet-isolated range hood presented a much lower robustness in resisting the influence of people's walk-bys than did the wall-mounted range hood. In summary, both the wall-mounted and jet-isolated range hoods were vulnerable to the influences of a cook's presence and a cook's walk-by motions. Increasing the suction flow rate might not obtain satisfactorily low spillages of pollutants but might increase noise level and energy consumption.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Culinária/instrumentação , Manequins , Exposição Ocupacional/estatística & dados numéricos , Ventilação/instrumentação , Aerossóis , Movimentos do Ar , Poluentes Ocupacionais do Ar/química , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Desenho de Equipamento , Temperatura Alta , Humanos , Lasers , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Hexafluoreto de Enxofre/análise , Fatores de Tempo , Ventilação/métodos , Caminhada
20.
Sensors (Basel) ; 10(10): 9359-68, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163412

RESUMO

The increase in greenhouse gas emissions is a serious environmental problem and has stimulated the scientific community to pay attention to the need for detection and monitoring of gases released into the atmosphere. In this regard, the development of sensitive and selective gas sensors has been the subject of several research programs. An important greenhouse gas is sulphur hexafluoride, an almost non-reactive gas widely employed in industrial processes worldwide. Indeed it is estimated that it has a radiative forcing of 0.52 W/m(2). This work compares two photoacoustic spectrometers, one coupled to a CO(2) laser and another one coupled to a Quantum Cascade (QC) laser, for the detection of SF(6). The laser photoacoustic spectrometers described in this work have been developed for gas detection at small concentrations. Detection limits of 20 ppbv for CO(2) laser and 50 ppbv for quantum cascade laser were obtained.


Assuntos
Atmosfera/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Lasers de Gás , Análise Espectral/instrumentação , Análise Espectral/métodos , Hexafluoreto de Enxofre/análise , Efeito Estufa , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA