Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.219
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(9): 2209-2223.e16, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670073

RESUMO

Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.


Assuntos
Sistemas CRISPR-Cas , Hexosiltransferases , Lipopolissacarídeos , Proteínas de Membrana , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , NF-kappa B/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Receptor 4 Toll-Like/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Células HEK293 , Inflamação/metabolismo , Inflamação/genética , Glicosilação , Microscopia Crioeletrônica , Domínio Catalítico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
2.
Annu Rev Biochem ; 89: 637-666, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569522

RESUMO

The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.


Assuntos
Retículo Endoplasmático/metabolismo , Evolução Molecular , Duplicação Gênica , Saccharomyces cerevisiae/metabolismo , Seleção Genética , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Antiporters/genética , Antiporters/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Cell ; 162(3): 675-86, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26189680

RESUMO

Finding the components of cellular circuits and determining their functions systematically remains a major challenge in mammalian cells. Here, we introduced genome-wide pooled CRISPR-Cas9 libraries into dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (Tnf) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the Tlr4 pathway. We found many of the known regulators of Tlr4 signaling, as well as dozens of previously unknown candidates that we validated. By measuring protein markers and mRNA profiles in DCs that are deficient in known or candidate genes, we classified the genes into three functional modules with distinct effects on the canonical responses to LPS and highlighted functions for the PAF complex and oligosaccharyltransferase (OST) complex. Our findings uncover new facets of innate immune circuits in primary cells and provide a genetic approach for dissection of mammalian cell circuits.


Assuntos
Sistemas CRISPR-Cas , Técnicas Genéticas , Imunidade Inata , Animais , Células da Medula Óssea/imunologia , Diferenciação Celular , Sobrevivência Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
4.
FASEB J ; 38(13): e23782, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934375

RESUMO

N-glycosylation is the most common protein modification in the eukaryotic secretory pathway. It involves the attachment a high mannose glycan to Asn residues in the context of Asn-X-Ser/Thr/Cys, a motif known as N-glycosylation sequon. This process is mediated by STT3A and STT3B, the catalytic subunits of the oligosaccharyltransferase complexes. STT3A forms part of complexes associated with the SEC61 translocon and functions co-translationally. Vacant sequons have another opportunity for glycosylation by complexes carrying STT3B. Local sequence information plays an important role in determining N-glycosylation efficiency, but non-local factors can also have a significant impact. For instance, certain proteins associated with human genetic diseases exhibit abnormal N-glycosylation levels despite having wild-type acceptor sites. Here, we investigated the effect of protein stability on this process. To this end, we generated a family of 40 N-glycan acceptors based on superfolder GFP, and we measured their efficiency in HEK293 cells and in two derived cell lines lacking STT3B or STT3A. Sequon occupancy was highly dependent on protein stability, improving as the thermodynamic stability of the acceptor proteins decreases. This effect is mainly due to the activity of the STT3B-based OST complex. These findings can be integrated into a simple kinetic model that distinguishes local information within sequons from global information of the acceptor proteins.


Assuntos
Hexosiltransferases , Proteínas de Membrana , Processamento de Proteína Pós-Traducional , Humanos , Glicosilação , Células HEK293 , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Estabilidade Proteica , Polissacarídeos/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(43): e2202992119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251991

RESUMO

N-glycosylation is a common posttranslational modification of secreted proteins in eukaryotes. This modification targets asparagine residues within the consensus sequence, N-X-S/T. While this sequence is required for glycosylation, the initial transfer of a high-mannose glycan by oligosaccharyl transferases A or B (OST-A or OST-B) can lead to incomplete occupancy at a given site. Factors that determine the extent of transfer are not well understood, and understanding them may provide insight into the function of these important enzymes. Here, we use mass spectrometry (MS) to simultaneously measure relative occupancies for three N-glycosylation sites on the N-terminal IgV domain of the recombinant glycoprotein, hCEACAM1. We demonstrate that addition is primarily by the OST-B enzyme and propose a kinetic model of OST-B N-glycosylation. Fitting the kinetic model to the MS data yields distinct rates for glycan addition at most sites and suggests a largely stochastic initial order of glycan addition. The model also suggests that glycosylation at one site influences the efficiency of subsequent modifications at the other sites, and glycosylation at the central or N-terminal site leads to dead-end products that seldom lead to full glycosylation of all three sites. Only one path of progressive glycosylation, one initiated by glycosylation at the C-terminal site, can efficiently lead to full occupancy for all three sites. Thus, the hCEACAM1 domain provides an effective model system to study site-specific recognition of glycosylation sequons by OST-B and suggests that the order and efficiency of posttranslational glycosylation is influenced by steric cross-talk between adjoining acceptor sites.


Assuntos
Asparagina , Hexosiltransferases , Asparagina/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Manose , Polissacarídeos , Transferases/metabolismo
6.
Proteomics ; 24(14): e2300496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38361220

RESUMO

Protein glycosylation is increasingly recognized as a common protein modification across bacterial species. Within the Neisseria genus O-linked protein glycosylation is conserved yet closely related Neisseria species express O-oligosaccharyltransferases (PglOs) with distinct targeting activities. Within this work, we explore the targeting capacity of different PglOs using Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) fractionation and Data-Independent Acquisition (DIA) to allow the characterization of the impact of changes in glycosylation on the proteome of Neisseria gonorrhoeae. We demonstrate FAIMS expands the known glycoproteome of wild type N. gonorrhoeae MS11 and enables differences in glycosylation to be assessed across strains expressing different pglO allelic chimeras with unique substrate targeting activities. Combining glycoproteomic insights with DIA proteomics, we demonstrate that alterations within pglO alleles have widespread impacts on the proteome of N. gonorrhoeae. Examination of peptides known to be targeted by glycosylation using DIA analysis supports alterations in glycosylation occupancy occurs independently of changes in protein levels and that the occupancy of glycosylation is generally low on most glycoproteins. This work thus expands our understanding of the N. gonorrhoeae glycoproteome and the roles that pglO allelic variation may play in governing genus-level protein glycosylation.


Assuntos
Proteínas de Bactérias , Neisseria gonorrhoeae , Proteoma , Proteômica , Neisseria gonorrhoeae/metabolismo , Neisseria gonorrhoeae/genética , Glicosilação , Proteômica/métodos , Proteoma/metabolismo , Proteoma/análise , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Espectrometria de Mobilidade Iônica/métodos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
7.
J Lipid Res ; 65(8): 100584, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925252

RESUMO

Measurements of sphingolipid metabolism are most accurately performed by LC-MS. However, this technique is expensive, not widely accessible, and without the use of specific probes, it does not provide insight into metabolic flux through the pathway. Employing the fluorescent ceramide analogue NBD-C6-ceramide as a tracer in intact cells, we developed a comprehensive HPLC-based method that simultaneously measures the main nodes of ceramide metabolism in the Golgi. Hence, by quantifying the conversion of NBD-C6-ceramide to NBD-C6-sphingomyelin, NBD-C6-hexosylceramides, and NBD-C6-ceramide-1-phosphate (NBD-C1P), the activities of Golgi resident enzymes sphingomyelin synthase 1, glucosylceramide synthase, and ceramide kinase (CERK) could be measured simultaneously. Importantly, the detection of NBD-C1P allowed us to quantify CERK activity in cells, a usually difficult task. By applying this method, we evaluated the specificity of commonly used sphingolipid inhibitors and discovered that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, which targets glucosylceramide synthase, and fenretinide (4HPR), an inhibitor for dihydroceramide desaturase, also suppress CERK activity. This study demonstrates the benefit of an expanded analysis of ceramide metabolism in the Golgi, and it provides a qualitative and easy-to-implement method.


Assuntos
Ceramidas , Glucosiltransferases , Complexo de Golgi , Fosfotransferases (Aceptor do Grupo Álcool) , Esfingolipídeos , Complexo de Golgi/metabolismo , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Humanos , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Cromatografia Líquida de Alta Pressão , Células HeLa , Hexosiltransferases/metabolismo , Hexosiltransferases/antagonistas & inibidores , Esfingomielinas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)
8.
Am J Hum Genet ; 108(11): 2130-2144, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34653363

RESUMO

Congenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation. Affected individuals presented with variable skeletal anomalies, short stature, macrocephaly, and dysmorphic features; half had intellectual disability. Additional features included increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Indeed, expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal. In S. cerevisiae, expression of STT3 containing variants homologous to those in affected individuals induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect. These data support a dominant pathomechanism underlying the glycosylation defect. Recessive mutations in STT3A have previously been described to lead to a CDG. We present here a dominant form of STT3A-CDG that, because of the presence of abnormal transferrin glycoforms, is unusual among dominant type I CDGs.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Genes Dominantes , Hexosiltransferases/genética , Proteínas de Membrana/genética , Doenças Musculoesqueléticas/genética , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Pré-Escolar , Feminino , Heterozigoto , Hexosiltransferases/química , Humanos , Masculino , Proteínas de Membrana/química , Pessoa de Meia-Idade , Linhagem , Homologia de Sequência de Aminoácidos
9.
J Biomol NMR ; 78(2): 109-117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421550

RESUMO

N-linked glycosylation is an essential and highly conserved co- and post-translational protein modification in all domains of life. In humans, genetic defects in N-linked glycosylation pathways result in metabolic diseases collectively called Congenital Disorders of Glycosylation. In this modification reaction, a mannose rich oligosaccharide is transferred from a lipid-linked donor substrate to a specific asparagine side-chain within the -N-X-T/S- sequence (where X ≠ Proline) of the nascent protein. Oligosaccharyltransferase (OST), a multi-subunit membrane embedded enzyme catalyzes this glycosylation reaction in eukaryotes. In yeast, Ost4 is the smallest of nine subunits and bridges the interaction of the catalytic subunit, Stt3, with Ost3 (or its homolog, Ost6). Mutations of any C-terminal hydrophobic residues in Ost4 to a charged residue destabilizes the enzyme and negatively impacts its function. Specifically, the V23D mutation results in a temperature-sensitive phenotype in yeast. Here, we report the reconstitution of both purified recombinant Ost4 and Ost4V23D each in a POPC/POPE lipid bilayer and their resonance assignments using heteronuclear 2D and 3D solid-state NMR with magic-angle spinning. The chemical shifts of Ost4 changed significantly upon the V23D mutation, suggesting a dramatic change in its chemical environment.


Assuntos
Hexosiltransferases , Lipossomos , Proteínas de Membrana , Ressonância Magnética Nuclear Biomolecular , Hexosiltransferases/genética , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lipossomos/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação , Glicosilação , Subunidades Proteicas/química , Subunidades Proteicas/genética
10.
BMC Plant Biol ; 24(1): 352, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689209

RESUMO

BACKGROUND: Fructans are water-soluble carbohydrates that accumulate in wheat and are thought to contribute to a pool of stored carbon reserves used in grain filling and tolerance to abiotic stress. RESULTS: In this study, transgenic wheat plants were engineered to overexpress a fusion of two fructan biosynthesis pathway genes, wheat sucrose: sucrose 1-fructosyltransferase (Ta1SST) and wheat sucrose: fructan 6-fructosyltransferase (Ta6SFT), regulated by a wheat ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (TaRbcS) gene promoter. We have shown that T4 generation transgene-homozygous single-copy events accumulated more fructan polymers in leaf, stem and grain when compared in the same tissues from transgene null lines. Under water-deficit (WD) conditions, transgenic wheat plants showed an increased accumulation of fructan polymers with a high degree of polymerisation (DP) when compared to non-transgenic plants. In wheat grain of a transgenic event, increased deposition of particular fructan polymers such as, DP4 was observed. CONCLUSIONS: This study demonstrated that the tissue-regulated expression of a gene fusion between Ta1SST and Ta6SFT resulted in modified fructan accumulation in transgenic wheat plants and was influenced by water-deficit stress conditions.


Assuntos
Proteínas de Bactérias , Frutanos , Hexosiltransferases , Plantas Geneticamente Modificadas , Triticum , Triticum/genética , Triticum/metabolismo , Plantas Geneticamente Modificadas/genética , Frutanos/metabolismo , Frutanos/biossíntese , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fusão Gênica
11.
Chembiochem ; 25(10): e202400107, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38536122

RESUMO

This study characterizes the acceptor specificity of levansucrases (LSs) from Gluconobacter oxydans (LS1), Vibrio natriegens (LS2), Novosphingobium aromaticivorans (LS3), and Paraburkholderia graminis (LS4) using sucrose as fructosyl donor and selected phenolic compounds and carbohydrates as acceptors. Overall, V. natriegens LS2 proved to be the best biocatalyst for the transfructosylation of phenolic compounds. More than one fructosyl unit could be attached to fructosylated phenolic compounds. The transfructosylation of epicatechin by P. graminis LS4 resulted in the most diversified products, with up to five fructosyl units transferred. In addition to the LS source, the acceptor specificity of LS towards phenolic compounds and their transfructosylation products were found to greatly depend on their chemical structure: the number of phenolic rings, the reactivity of hydroxyl groups and the presence of aliphatic chains or methoxy groups. Similarly, for carbohydrates, the transfructosylation yield was dependent on both the LS source and the acceptor type. The highest yield of fructosylated-trisaccharides was Erlose from the transfructosylation of maltose catalyzed by LS2, with production reaching 200 g/L. LS2 was more selective towards the transfructosylation of phenolic compounds and carbohydrates, while reactions catalyzed by LS1, LS3 and LS4 also produced fructooligosaccharides. This study shows the high potential for the application of LSs in the glycosylation of phenolic compounds and carbohydrates.


Assuntos
Biocatálise , Hexosiltransferases , Fenóis , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Fenóis/metabolismo , Fenóis/química , Glicosilação , Especificidade por Substrato , Vibrio/enzimologia , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/metabolismo , Carboidratos/química
12.
Immunity ; 43(3): 411-3, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26377892

RESUMO

TREX1 regulates innate immune responses by counteracting DNA accumulation in the cytosol. In this issue of Immunity, Hasan et al. (2015) show that TREX1 also safeguards the cell against free glycan build-up in the endoplasmic reticulum, thereby preventing glycan-induced inflammation.


Assuntos
Citosol/enzimologia , Exodesoxirribonucleases/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Animais , Humanos
13.
Immunity ; 43(3): 463-74, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26320659

RESUMO

TREX1 is an endoplasmic reticulum (ER)-associated negative regulator of innate immunity. TREX1 mutations are associated with autoimmune and autoinflammatory diseases. Biallelic mutations abrogating DNase activity cause autoimmunity by allowing immunogenic self-DNA to accumulate, but it is unknown how dominant frameshift (fs) mutations that encode DNase-active but mislocalized proteins cause disease. We found that the TREX1 C terminus suppressed immune activation by interacting with the ER oligosaccharyltransferase (OST) complex and stabilizing its catalytic integrity. C-terminal truncation of TREX1 by fs mutations dysregulated the OST complex, leading to free glycan release from dolichol carriers, as well as immune activation and autoantibody production. A connection between OST dysregulation and immune disorders was demonstrated in Trex1(-/-) mice, TREX1-V235fs patient lymphoblasts, and TREX1-V235fs knock-in mice. Inhibiting OST with aclacinomycin corrects the glycan and immune defects associated with Trex1 deficiency or fs mutation. This function of the TREX1 C terminus suggests a potential therapeutic option for TREX1-fs mutant-associated diseases.


Assuntos
Citosol/enzimologia , Exodesoxirribonucleases/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Aclarubicina/análogos & derivados , Aclarubicina/farmacologia , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Exodesoxirribonucleases/antagonistas & inibidores , Exodesoxirribonucleases/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Mutação da Fase de Leitura , Células HEK293 , Células HeLa , Hexosiltransferases/genética , Humanos , Imunidade Inata/genética , Immunoblotting , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Polissacarídeos/metabolismo , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Cell ; 136(2): 272-83, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19167329

RESUMO

Asparagine-linked glycosylation of polypeptides in the lumen of the endoplasmic reticulum is catalyzed by the hetero-oligomeric oligosaccharyltransferase (OST). OST isoforms with different catalytic subunits (STT3A versus STT3B) and distinct enzymatic properties are coexpressed in mammalian cells. Using siRNA to achieve isoform-specific knockdowns, we show that the OST isoforms cooperate and act sequentially to mediate protein N-glycosylation. The STT3A OST isoform is primarily responsible for cotranslational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The STT3B isoform is required for efficient cotranslational glycosylation of an acceptor site adjacent to the N-terminal signal sequence of a secreted protein. Unlike STT3A, STT3B efficiently mediates posttranslational glycosylation of a carboxyl-terminal glycosylation site in an unfolded protein. These distinct and complementary roles for the OST isoforms allow sequential scanning of polypeptides for acceptor sites to insure the maximal efficiency of N-glycosylation.


Assuntos
Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas/metabolismo , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Glicoproteínas/metabolismo , Glicosilação , Células HeLa , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/genética , Modelos Moleculares , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/química
15.
Nature ; 555(7696): 328-333, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29466327

RESUMO

N-glycosylation is a ubiquitous modification of eukaryotic secretory and membrane-bound proteins; about 90% of glycoproteins are N-glycosylated. The reaction is catalysed by an eight-protein oligosaccharyltransferase (OST) complex that is embedded in the endoplasmic reticulum membrane. Our understanding of eukaryotic protein N-glycosylation has been limited owing to the lack of high-resolution structures. Here we report a 3.5 Å resolution cryo-electron microscopy structure of the Saccharomyces cerevisiae OST complex, revealing the structures of subunits Ost1-Ost5, Stt3, Wbp1 and Swp1. We found that seven phospholipids mediate many of the inter-subunit interactions, and an Stt3 N-glycan mediates interactions with Wbp1 and Swp1 in the lumen. Ost3 was found to mediate the OST-Sec61 translocon interface, funnelling the acceptor peptide towards the OST catalytic site as the nascent peptide emerges from the translocon. The structure provides insights into co-translational protein N-glycosylation, and may facilitate the development of small-molecule inhibitors that target this process.


Assuntos
Microscopia Crioeletrônica , Hexosiltransferases/química , Hexosiltransferases/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Regulação Alostérica , Biocatálise , Domínio Catalítico , Glicosilação , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfolipídeos/metabolismo , Subunidades Proteicas/química
16.
Bioprocess Biosyst Eng ; 47(9): 1499-1514, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38904715

RESUMO

The trisaccharide 1-kestose, a major constituent of commercial fructooligosaccharide (FOS) formulations, shows a superior prebiotic effect compared to higher-chain FOS. The plant sucrose:sucrose 1-fructosyltransferases (1-SST) are extensively used for selective synthesis of lower chain FOS. In this study, enhanced recombinant (r) 1-SST production was achieved in Komagataella phaffii (formerly Pichia pastoris) containing three copies of a codon-optimized Festuca arundinacea 1-SST gene. R1-SST production reached 47 U/mL at the shake-flask level after a 96-h methanol induction phase. A chemostat-based strain characterization methodology was adopted to assess the influence of specific growth rate (µ) on cell-specific r1-SST productivity (Qp) and cell-specific oxygen uptake rate (Qo) under two different feeding strategies across dilution rates from 0.02 to 0.05 h-1. The methanol-sorbitol co-feeding strategy significantly reduced Qo by 46 ± 2.4% compared to methanol-only feeding without compromising r1-SST productivity. Based on the data, a dilution rate of 0.025 h-1 was applied for continuous cultivation of recombinant cells to achieve a sustained r1-SST productivity of 5000 ± 64.4 U/L/h for 15 days.


Assuntos
Hexosiltransferases , Proteínas Recombinantes , Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/enzimologia , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Hexosiltransferases/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Carbono/metabolismo , Sacarose/metabolismo , Reatores Biológicos , Metanol/metabolismo , Proteínas de Bactérias
17.
J Sci Food Agric ; 104(11): 6563-6572, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38520271

RESUMO

BACKGROUND: Fructo-oligosaccharide (FOS) belongs to the group of short inulin-type fructans and is one of the most important non-digestible bifid-oligosaccharides capable of biotransforming sucrose using fructosyltransferase (FTase). However, there are no immobilized FTase products that can be successfully used industrially. In this study, diatomite was subjected to extrusion, sintering and granulation to form diatomaceous earth particles that were further modified via chitosan aminomethylation for modification. FTase derived from Aspergillus oryzae was successfully immobilized on the modified support via covalent binding. RESULTS: The immobilized enzyme activity was 503 IU g-1 at an enzyme concentration of 0.6 mg mL-1, immobilization pH of 7.0 and contact time of 3 h. Additionally, the immobilization yield was 56.91%. Notably, the immobilized enzyme was more stable under acidic conditions. Moreover, the half-life of the immobilized enzyme was 20.80 and 10.96 times as long as that of the free enzyme at 45 and 60 °C, respectively. The results show good reusability, as evidenced by the 84.77% retention of original enzyme activity after eight cycles. Additionally, the column transit time of the substrate was 35.56 min when the immobilized enzyme was applied in a packed-bed reactor. Furthermore, a consistently high FOS production yield of 60.68% was achieved and maintained over the 15-day monitoring period. CONCLUSIONS: Our results suggest that immobilized FTase is a viable candidate for continuous FOS production on an industrial scale. © 2024 Society of Chemical Industry.


Assuntos
Quitosana , Terra de Diatomáceas , Estabilidade Enzimática , Enzimas Imobilizadas , Hexosiltransferases , Oligossacarídeos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Quitosana/química , Quitosana/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Terra de Diatomáceas/química , Concentração de Íons de Hidrogênio , Aspergillus oryzae/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Proteínas de Bactérias
18.
World J Microbiol Biotechnol ; 40(7): 214, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789837

RESUMO

Levan, a ß-(2,6)-linked fructose polymer, exhibits diverse properties that impart versatility, rendering it a highly sought-after biopolymer with various industrial applications. Levan can be produced by various microorganisms using sucrose, food industry byproducts and agricultural wastes. Microbial levan represents the most potent cost-effective process for commercial-scale levan production. This study reviews the optimization of levan production by understanding its biosynthesis, physicochemical properties and the fermentation process. In addition, genetic and protein engineering for its increased production and emerging methods for its detection are introduced and discussed. All of these comprehensive studies could serve as powerful tools to optimize levan production and broaden its applications across various industries.


Assuntos
Fermentação , Frutanos , Frutanos/biossíntese , Frutanos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Engenharia de Proteínas/métodos , Sacarose/metabolismo , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Microbiologia Industrial/métodos
19.
J Biol Chem ; 298(11): 102522, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162499

RESUMO

Many pathogens synthesize inositol phosphorylceramide (IPC) as the major sphingolipid (SL), differing from the mammalian host where sphingomyelin (SM) or more complex SLs predominate. The divergence between IPC synthase and mammalian SL synthases has prompted interest as a potential drug target. However, in the trypanosomatid protozoan Leishmania, cultured insect stage promastigotes lack de novo SL synthesis (Δspt2-) and SLs survive and remain virulent, as infective amastigotes salvage host SLs and continue to produce IPC. To further understand the role of IPC, we generated null IPCS mutants in Leishmania major (Δipcs-). Unexpectedly and unlike fungi where IPCS is essential, Δipcs- was remarkably normal in culture and highly virulent in mouse infections. Both IPCS activity and IPC were absent in Δipcs- promastigotes and amastigotes, arguing against an alternative route of IPC synthesis. Notably, salvaged mammalian SM was highly abundant in purified amastigotes from both WT and Δipcs-, and salvaged SLs could be further metabolized into IPC. SM was about 7-fold more abundant than IPC in WT amastigotes, establishing that SM is the dominant amastigote SL, thereby rendering IPC partially redundant. These data suggest that SM salvage likely plays key roles in the survival and virulence of both WT and Δipcs- parasites in the infected host, confirmation of which will require the development of methods or mutants deficient in host SL/SM uptake in the future. Our findings call into question the suitability of IPCS as a target for chemotherapy, instead suggesting that approaches targeting SM/SL uptake or catabolism may warrant further emphasis.


Assuntos
Hexosiltransferases , Leishmania major , Leishmaniose Cutânea , Esfingomielinas , Animais , Camundongos , Leishmania major/enzimologia , Leishmania major/genética , Esfingomielinas/metabolismo , Virulência , Glicoesfingolipídeos/metabolismo , Proteínas de Protozoários/genética , Hexosiltransferases/genética , Leishmaniose Cutânea/parasitologia , Deleção de Sequência
20.
Glycobiology ; 33(11): 861-872, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37399117

RESUMO

N-linked protein glycosylation is a post-translational modification that exists in all domains of life. It involves two consecutive steps: (i) biosynthesis of a lipid-linked oligosaccharide (LLO), and (ii) glycan transfer from the LLO to asparagine residues in secretory proteins, which is catalyzed by the integral membrane enzyme oligosaccharyltransferase (OST). In the last decade, structural and functional studies of the N-glycosylation machinery have increased our mechanistic understanding of the pathway. The structures of bacterial and eukaryotic glycosyltransferases involved in LLO elongation provided an insight into the mechanism of LLO biosynthesis, whereas structures of OST enzymes revealed the molecular basis of sequon recognition and catalysis. In this review, we will discuss approaches used and insight obtained from these studies with a special emphasis on the design and preparation of substrate analogs.


Assuntos
Hexosiltransferases , Glicosilação , Hexosiltransferases/metabolismo , Lipopolissacarídeos/metabolismo , Polissacarídeos , Glicosiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA