Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.217
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(23): 5775-5790.e30, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34739832

RESUMO

RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.


Assuntos
Núcleo Celular/metabolismo , RNA/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Homólogo 5 da Proteína Cromobox/metabolismo , Cromossomos/metabolismo , DNA/metabolismo , DNA Satélite/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dactinomicina/farmacologia , Feminino , Genoma , Células HEK293 , Heterocromatina/metabolismo , Humanos , Camundongos , Modelos Biológicos , Família Multigênica , RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos
2.
Cell ; 178(6): 1437-1451.e14, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491387

RESUMO

CCCTC-binding factor (CTCF) and cohesin are key players in three-dimensional chromatin organization. The topologically associating domains (TADs) demarcated by CTCF are remarkably well conserved between species, although genome-wide CTCF binding has diverged substantially following transposon-mediated motif expansions. Therefore, the CTCF consensus motif poorly predicts TADs, and additional factors must modulate CTCF binding and subsequent TAD formation. Here, we demonstrate that the ChAHP complex (CHD4, ADNP, HP1) competes with CTCF for a common set of binding motifs. In Adnp knockout cells, novel insulated regions are formed at sites normally bound by ChAHP, whereas proximal canonical boundaries are weakened. These data reveal that CTCF-mediated loop formation is modulated by a distinct zinc-finger protein complex. Strikingly, ChAHP-bound loci are mainly situated within less diverged SINE B2 transposable elements. This implicates ChAHP in maintenance of evolutionarily conserved spatial chromatin organization by buffering novel CTCF binding sites that emerged through SINE expansions.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retroelementos , Animais , Sítios de Ligação , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Células-Tronco Embrionárias/citologia , Camundongos , Ligação Proteica , Domínios Proteicos
3.
Mol Cell ; 84(11): 2017-2035.e6, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38795706

RESUMO

Whether and how histone post-translational modifications and the proteins that bind them drive 3D genome organization remains unanswered. Here, we evaluate the contribution of H3K9-methylated constitutive heterochromatin to 3D genome organization in Drosophila tissues. We find that the predominant organizational feature of wild-type tissues is the segregation of euchromatic chromosome arms from heterochromatic pericentromeres. Reciprocal perturbation of HP1a⋅H3K9me binding, using a point mutation in the HP1a chromodomain or replacement of the replication-dependent histone H3 with H3K9R mutant histones, revealed that HP1a binding to methylated H3K9 in constitutive heterochromatin is required to limit contact frequency between pericentromeres and chromosome arms and regulate the distance between arm and pericentromeric regions. Surprisingly, the self-association of pericentromeric regions is largely preserved despite the loss of H3K9 methylation and HP1a occupancy. Thus, the HP1a⋅H3K9 interaction contributes to but does not solely drive the segregation of euchromatin and heterochromatin inside the nucleus.


Assuntos
Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona , Proteínas de Drosophila , Drosophila melanogaster , Heterocromatina , Histonas , Heterocromatina/metabolismo , Heterocromatina/genética , Animais , Histonas/metabolismo , Histonas/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metilação , Eucromatina/metabolismo , Eucromatina/genética , Centrômero/metabolismo , Centrômero/genética , Ligação Proteica , Genoma de Inseto , Segregação de Cromossomos , Processamento de Proteína Pós-Traducional
4.
Genes Dev ; 38(11-12): 554-568, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38960717

RESUMO

Retrotransposon control in mammals is an intricate process that is effectuated by a broad network of chromatin regulatory pathways. We previously discovered ChAHP, a protein complex with repressive activity against short interspersed element (SINE) retrotransposons that is composed of the transcription factor ADNP, chromatin remodeler CHD4, and HP1 proteins. Here we identify ChAHP2, a protein complex homologous to ChAHP, in which ADNP is replaced by ADNP2. ChAHP2 is predominantly targeted to endogenous retroviruses (ERVs) and long interspersed elements (LINEs) via HP1ß-mediated binding of H3K9 trimethylated histones. We further demonstrate that ChAHP also binds these elements in a manner mechanistically equivalent to that of ChAHP2 and distinct from DNA sequence-specific recruitment at SINEs. Genetic ablation of ADNP2 alleviates ERV and LINE1 repression, which is synthetically exacerbated by additional depletion of ADNP. Together, our results reveal that the ChAHP and ChAHP2 complexes function to control both nonautonomous and autonomous retrotransposons by complementary activities, further adding to the complexity of mammalian transposon control.


Assuntos
Retroelementos , Animais , Humanos , Camundongos , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Retrovirus Endógenos/genética , Regulação da Expressão Gênica/genética , Histonas/metabolismo , Histonas/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Ligação Proteica , Retroelementos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Complexos Multiproteicos/metabolismo
5.
Nature ; 631(8021): 678-685, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961301

RESUMO

Pericentric heterochromatin is a critical component of chromosomes marked by histone H3 K9 (H3K9) methylation1-3. However, what recruits H3K9-specific histone methyltransferases to pericentric regions in vertebrates remains unclear4, as does why pericentric regions in different species share the same H3K9 methylation mark despite lacking highly conserved DNA sequences2,5. Here we show that zinc-finger proteins ZNF512 and ZNF512B specifically localize at pericentric regions through direct DNA binding. Notably, both ZNF512 and ZNF512B are sufficient to initiate de novo heterochromatin formation at ectopically targeted repetitive regions and pericentric regions, as they directly recruit SUV39H1 and SUV39H2 (SUV39H) to catalyse H3K9 methylation. SUV39H2 makes a greater contribution to H3K9 trimethylation, whereas SUV39H1 seems to contribute more to silencing, probably owing to its preferential association with HP1 proteins. ZNF512 and ZNF512B from different species can specifically target pericentric regions of other vertebrates, because the atypical long linker residues between the zinc-fingers of ZNF512 and ZNF512B offer flexibility in recognition of non-consecutively organized three-nucleotide triplets targeted by each zinc-finger. This study addresses two long-standing questions: how constitutive heterochromatin is initiated and how seemingly variable pericentric sequences are targeted by the same set of conserved machinery in vertebrates.


Assuntos
Centrômero , Evolução Molecular , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Motivos de Nucleotídeos , Animais , Humanos , Camundongos , Centrômero/genética , Centrômero/metabolismo , Galinhas , Homólogo 5 da Proteína Cromobox , Inativação Gênica , Heterocromatina/metabolismo , Heterocromatina/química , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Histonas/química , Anfioxos , Metilação , Petromyzon , Proteínas Repressoras/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Serpentes , Xenopus laevis , Peixe-Zebra , Dedos de Zinco
6.
Mol Cell ; 81(20): 4287-4299.e5, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34428454

RESUMO

Eukaryotic chromosomes feature large regions of compact, repressed heterochromatin hallmarked by Heterochromatin Protein 1 (HP1). HP1 proteins play multi-faceted roles in shaping heterochromatin, and in cells, HP1 tethering to individual gene promoters leads to epigenetic modifications and silencing. However, emergent properties of HP1 at supranucleosomal scales remain difficult to study in cells because of a lack of appropriate tools. Here, we develop CRISPR-engineered chromatin organization (EChO), combining live-cell CRISPR imaging with inducible large-scale recruitment of chromatin proteins to native genomic targets. We demonstrate that human HP1α tiled across kilobase-scale genomic DNA form novel contacts with natural heterochromatin, integrates two distantly targeted regions, and reversibly changes chromatin from a diffuse to compact state. The compact state exhibits delayed disassembly kinetics and represses transcription across over 600 kb. These findings support a polymer model of HP1α-mediated chromatin regulation and highlight the utility of CRISPR-EChO in studying supranucleosomal chromatin organization in living cells.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Montagem e Desmontagem da Cromatina , Homólogo 5 da Proteína Cromobox/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Heterocromatina/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Homólogo 5 da Proteína Cromobox/genética , Células HEK293 , Heterocromatina/genética , Humanos , Conformação de Ácido Nucleico , Conformação Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo
7.
Mol Cell ; 81(10): 2148-2165.e9, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743195

RESUMO

Developing strategies to activate tumor-cell-intrinsic immune response is critical for improving tumor immunotherapy by exploiting tumor vulnerability. KDM4A, as a histone H3 lysine 9 trimethylation (H3K9me3) demethylase, has been found to play a critical role in squamous cell carcinoma (SCC) growth and metastasis. Here we report that KDM4A inhibition promoted heterochromatin compaction and induced DNA replication stress, which elicited antitumor immunity in SCC. Mechanistically, KDM4A inhibition promoted the formation of liquid-like HP1γ puncta on heterochromatin and stall DNA replication, which activated tumor-cell-intrinsic cGAS-STING signaling through replication-stress-induced cytosolic DNA accumulation. Moreover, KDM4A inhibition collaborated with PD1 blockade to inhibit SCC growth and metastasis by recruiting and activating CD8+ T cells. In vivo lineage tracing demonstrated that KDM4A inhibition plus PD1 blockade efficiently eliminated cancer stem cells. Altogether, our results demonstrate that targeting KDM4A can activate anti-tumor immunity and enable PD1 blockade immunotherapy by aggravating replication stress in SCC cells.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Replicação do DNA/genética , Epigênese Genética , Histona Desmetilases/metabolismo , Imunidade/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Estresse Fisiológico/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA/genética , Células Epiteliais/metabolismo , Deleção de Genes , Humanos , Metástase Linfática , Camundongos Transgênicos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR3/metabolismo , Células Th1/imunologia
8.
EMBO J ; 43(20): 4542-4577, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39192031

RESUMO

Heterochromatin, a key component of the eukaryotic nucleus, is fundamental to the regulation of genome stability, gene expression and cellular functions. However, the factors and mechanisms involved in heterochromatin formation and maintenance still remain largely unknown. Here, we show that insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein, is indispensable for constitutive heterochromatin formation via liquid‒liquid phase separation (LLPS). In particular, IRTKS droplets can infiltrate heterochromatin condensates composed of HP1α and diverse DNA-bound nucleosomes. IRTKS can stabilize HP1α by recruiting the E2 ligase Ubc9 to SUMOylate HP1α, which enables it to form larger phase-separated droplets than unmodified HP1α. Furthermore, IRTKS deficiency leads to loss of heterochromatin, resulting in genome-wide changes in chromatin accessibility and aberrant transcription of repetitive DNA elements. This leads to activation of cGAS-STING pathway and type-I interferon (IFN-I) signaling, as well as to the induction of cellular senescence and senescence-associated secretory phenotype (SASP) responses. Collectively, our findings establish a mechanism by which IRTKS condensates consolidate constitutive heterochromatin, revealing an unexpected role of IRTKS as an epigenetic mediator of cellular senescence.


Assuntos
Senescência Celular , Homólogo 5 da Proteína Cromobox , Heterocromatina , Animais , Humanos , Camundongos , Montagem e Desmontagem da Cromatina , Homólogo 5 da Proteína Cromobox/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Transdução de Sinais
9.
EMBO J ; 43(13): 2685-2714, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831123

RESUMO

Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.


Assuntos
Proteínas Cromossômicas não Histona , Heterocromatina , Histonas , Animais , Histonas/metabolismo , Histonas/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Metilação , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Homólogo 5 da Proteína Cromobox , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Genoma de Inseto , Desenvolvimento Embrionário/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética
10.
Mol Cell ; 78(2): 193-194, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302539

RESUMO

Heterochromatin protein 1 (HP1) has been proposed to drive heterochromatin formation by liquid-liquid phase separation. In this issue of Molecular Cell, however, Erdel et al. establish that heterochromatin can adopt digital compaction states that are independent of HP1 phase separation.


Assuntos
Proteínas Cromossômicas não Histona , Heterocromatina , Animais , Montagem e Desmontagem da Cromatina , Homólogo 5 da Proteína Cromobox , DNA , Camundongos
11.
Mol Cell ; 78(2): 236-249.e7, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32101700

RESUMO

The formation of silenced and condensed heterochromatin foci involves enrichment of heterochromatin protein 1 (HP1). HP1 can bridge chromatin segments and form liquid droplets, but the biophysical principles underlying heterochromatin compartmentalization in the cell nucleus are elusive. Here, we assess mechanistically relevant features of pericentric heterochromatin compaction in mouse fibroblasts. We find that (1) HP1 has only a weak capacity to form liquid droplets in living cells; (2) the size, global accessibility, and compaction of heterochromatin foci are independent of HP1; (3) heterochromatin foci lack a separated liquid HP1 pool; and (4) heterochromatin compaction can toggle between two "digital" states depending on the presence of a strong transcriptional activator. These findings indicate that heterochromatin foci resemble collapsed polymer globules that are percolated with the same nucleoplasmic liquid as the surrounding euchromatin, which has implications for our understanding of chromatin compartmentalization and its functional consequences.


Assuntos
Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Eucromatina/genética , Heterocromatina/genética , Animais , Homólogo 5 da Proteína Cromobox , Fibroblastos , Camundongos
12.
Cell ; 149(7): 1447-60, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22704655

RESUMO

Posttranslational histone modifications are important for gene regulation, yet the mode of propagation and the contribution to heritable gene expression states remains controversial. To address these questions, we developed a chromatin in vivo assay (CiA) system employing chemically induced proximity to initiate and terminate chromatin modifications in living cells. We selectively recruited HP1α to induce H3K9me3-dependent gene silencing and describe the kinetics and extent of chromatin modifications at the Oct4 locus in fibroblasts and pluripotent cells. H3K9me3 propagated symmetrically and continuously at average rates of ~0.18 nucleosomes/hr to produce domains of up to 10 kb. After removal of the HP1α stimulus, heterochromatic domains were heritably transmitted, undiminished through multiple cell generations. Our data enabled quantitative modeling of reaction kinetics, which revealed that dynamic competition between histone marking and turnover, determines the boundaries and stability of H3K9me3 domains. This framework predicts the steady-state dynamics and spatial features of the majority of euchromatic H3K9me3 domains over the genome.


Assuntos
Epigenômica , Heterocromatina/metabolismo , Código das Histonas , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias , Fibroblastos/metabolismo , Histonas/metabolismo , Cinética , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo
13.
Cell ; 149(6): 1327-38, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682252

RESUMO

The Drosophila fruitless (fru) gene encodes a set of putative transcription factors that promote male sexual behavior by controlling the development of sexually dimorphic neuronal circuitry. However, the mechanism whereby fru establishes the sexual fate of neurons remains enigmatic. Here, we show that Fru forms a complex with the transcriptional cofactor Bonus (Bon), which, in turn, recruits either of two chromatin regulators, Histone deacetylase 1 (HDAC1), which masculinizes individual sexually dimorphic neurons, or Heterochromatin protein 1a (HP1a), which demasculinizes them. Manipulations of HDAC1 or HP1a expression change the proportion of male-typical neurons and female-typical neurons rather than producing neurons with intersexual characteristics, indicating that on a single neuron level, this sexual switch operates in an all-or-none manner.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Histona Desacetilase 1/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Caracteres Sexuais , Fatores de Transcrição/metabolismo , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Histona Desacetilase 1/genética , Masculino , Comportamento Sexual Animal , Transcrição Gênica
14.
Nature ; 595(7867): 444-449, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194047

RESUMO

The size of the transcriptional program of long non-coding RNAs in the mammalian genome has engendered discussions about their biological roles1, particularly the promoter antisense (PAS) transcripts2,3. Here we report the development of an assay-referred to as chromatin isolation by RNA-Cas13a complex-to quantitatively detect the distribution of RNA in the genome. The assay revealed that PAS RNAs serve as a key gatekeeper of a broad transcriptional pause release program, based on decommissioning the 7SK small nuclear RNA-dependent inhibitory P-TEFb complex. Induction of PAS RNAs by liganded ERα led to a significant loss of H3K9me3 and the release of basally recruited HP1α and KAP1 on activated target gene promoters. This release was due to PAS RNA-dependent recruitment of H3K9me3 demethylases, which required interactions with a compact stem-loop structure in the PAS RNAs, an apparent feature of similarly regulated PAS RNAs. Activation of the ERα-bound MegaTrans enhancer, which is essential for robust pause release, required the recruitment of phosphorylated KAP1, with its transfer to the cognate promoters permitting 17ß-oestradiol-induced pause release and activation of the target gene. This study reveals a mechanism, based on RNA structure, that mediates the function of PAS RNAs in gene regulation.


Assuntos
Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , RNA Antissenso/química , RNA Antissenso/genética , Ativação Transcricional/genética , Linhagem Celular , Homólogo 5 da Proteína Cromobox/metabolismo , Proteína Substrato Associada a Crk , Receptor alfa de Estrogênio/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ligantes , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo , Estabilidade de RNA , Proteína 28 com Motivo Tripartido/metabolismo
15.
Mol Cell ; 76(4): 646-659.e6, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31543422

RESUMO

Eukaryotic chromosomes contain compartments of various functions, which are marked by and enriched with specific histone modifications. However, the molecular mechanisms by which these histone marks function in chromosome compartmentalization are poorly understood. Constitutive heterochromatin is a largely silent chromosome compartment characterized in part by H3K9me2 and 3. Here, we show that heterochromatin protein 1 (HP1), an H3K9me2 and 3 "reader," interacts with SUV39H1, an H3K9me2 and 3 "writer," and with TRIM28, an abundant HP1 scaffolding protein, to form complexes with increased multivalent engagement of H3K9me2 and 3-modified chromatin. H3K9me2 and 3-marked nucleosomal arrays and associated complexes undergo phase separation to form macromolecule-enriched liquid droplets. The droplets are reminiscent of heterochromatin as they are highly dense chromatin-containing structures that are resistant to DNase and exclude the general transcription factor TFIIB. Our data suggest a general mechanism by which histone marks regulate chromosome compartmentalization by promoting phase separation.


Assuntos
Montagem e Desmontagem da Cromatina , Heterocromatina/metabolismo , Histonas/metabolismo , Gotículas Lipídicas/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células HEK293 , Heterocromatina/genética , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Complexos Multiproteicos , Nucleossomos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Tempo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
16.
Cell ; 144(5): 732-44, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21353298

RESUMO

Double-strand breaks (DSBs) in heterochromatic repetitive DNAs pose significant threats to genome integrity, but information about how such lesions are processed and repaired is sparse. We observe dramatic expansion and dynamic protrusions of the heterochromatin domain in response to ionizing radiation (IR) in Drosophila cells. We also find that heterochromatic DSBs are repaired by homologous recombination (HR) but with striking differences from euchromatin. Proteins involved in early HR events (resection) are rapidly recruited to DSBs within heterochromatin. In contrast, Rad51, which mediates strand invasion, only associates with DSBs that relocalize outside of the domain. Heterochromatin expansion and relocalization of foci require checkpoint and resection proteins. Finally, the Smc5/6 complex is enriched in heterochromatin and is required to exclude Rad51 from the domain and prevent abnormal recombination. We propose that the spatial and temporal control of DSB repair in heterochromatin safeguards genome stability by preventing aberrant exchanges between repeats.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA , Proteínas de Drosophila/metabolismo , Recombinação Genética , Animais , Proteínas de Ciclo Celular/metabolismo , Homólogo 5 da Proteína Cromobox , Quebras de DNA de Cadeia Dupla , Drosophila melanogaster/metabolismo , Heterocromatina , Rad51 Recombinase/metabolismo
17.
Mol Cell ; 69(3): 385-397.e8, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29336876

RESUMO

Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1ß, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Microscopia Crioeletrônica/métodos , DNA/metabolismo , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação , Nucleossomos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
18.
Nucleic Acids Res ; 52(18): 10731-10746, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39142658

RESUMO

Visualizing and measuring molecular-scale interactions in living cells represents a major challenge, but recent advances in single-molecule super-resolution microscopy are bringing us closer to achieving this goal. Single-molecule super-resolution microscopy enables high-resolution and sensitive imaging of the positions and movement of molecules in living cells. HP1 proteins are important regulators of gene expression because they selectively bind and recognize H3K9 methylated (H3K9me) histones to form heterochromatin-associated protein complexes that silence gene expression, but several important mechanistic details of this process remain unexplored. Here, we extended live-cell single-molecule tracking studies in fission yeast to determine how HP1 proteins interact with their binding partners in the nucleus. We measured how genetic perturbations that affect H3K9me alter the diffusive properties of HP1 proteins and their binding partners, and we inferred their most likely interaction sites. Our results demonstrate that H3K9 methylation spatially restricts HP1 proteins and their interactors, thereby promoting ternary complex formation on chromatin while simultaneously suppressing off-chromatin binding. As opposed to being an inert platform to direct HP1 binding, our studies propose a novel function for H3K9me in promoting ternary complex formation by enhancing the specificity and stimulating the assembly of HP1-protein complexes in living cells.


Visualizing molecular-scale interactions in living cells is challenging, but advances in single-molecule super-resolution microscopy enable high-resolution imaging of molecular positions of proteins and their motions within cells. HP1 proteins bind to H3K9 methylated histones to form complexes that silence gene expression. Here, we tracked single HP1 proteins and their binding partners to measure when and where they form complexes in live fission yeast cells. Genetic perturbations enabled us to connect their motions to specific changes in their cellular properties. Surprisingly, we noted that HP1 proteins preferentially form ternary complexes with their binding partners at sites of H3K9me. This work proposes a novel function for chromatin and shows how H3K9 methylation spatially restricts HP1-associated complex formation while suppressing off-chromatin binding.


Assuntos
Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona , Heterocromatina , Histonas , Ligação Proteica , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Imagem Individual de Molécula , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Histonas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Imagem Individual de Molécula/métodos , Homólogo 5 da Proteína Cromobox/metabolismo , Metilação , Cromatina/metabolismo , Núcleo Celular/metabolismo
19.
Nucleic Acids Res ; 52(18): 10918-10933, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39193905

RESUMO

Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state. Specifically, we found HP1α monomers to impart a previously undescribed global nucleosome spacing throughout genome architecture that is mediated by trimethylation on lysine 9 of histone H3 (H3K9me3) and locally reduced upon HP1α dimerisation. Collectively, these results demonstrate HP1α to impart a dual action on chromatin that increases the dynamic range of nucleosome proximity. We anticipate that this finding will have important implications for our understanding of how live cell heterochromatin structure regulates genome function.


Assuntos
Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona , Heterocromatina , Histonas , Nucleossomos , Multimerização Proteica , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Humanos , Nucleossomos/metabolismo , Nucleossomos/química , Nucleossomos/genética , Histonas/metabolismo , Histonas/química , Histonas/genética , Heterocromatina/metabolismo , Heterocromatina/química , Heterocromatina/genética , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Cromatina/metabolismo , Cromatina/química , Cromatina/genética , Metilação
20.
Nucleic Acids Res ; 52(19): 11481-11499, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39258545

RESUMO

Dysfunction of the ribosome manifests during cellular senescence and contributes to tissue aging, functional decline, and development of aging-related disorders in ways that have remained enigmatic. Here, we conducted a comprehensive CRISPR-based loss-of-function (LOF) screen of ribosome-associated genes (RAGs) in human mesenchymal progenitor cells (hMPCs). Through this approach, we identified ribosomal protein L22 (RPL22) as the foremost RAG whose deficiency mitigates the effects of cellular senescence. Consequently, absence of RPL22 delays hMPCs from becoming senescent, while an excess of RPL22 accelerates the senescence process. Mechanistically, we found in senescent hMPCs, RPL22 accumulates within the nucleolus. This accumulation triggers a cascade of events, including heterochromatin decompaction with concomitant degradation of key heterochromatin proteins, specifically heterochromatin protein 1γ (HP1γ) and heterochromatin protein KRAB-associated protein 1 (KAP1). Subsequently, RPL22-dependent breakdown of heterochromatin stimulates the transcription of ribosomal RNAs (rRNAs), triggering cellular senescence. In summary, our findings unveil a novel role for nucleolar RPL22 as a destabilizer of heterochromatin and a driver of cellular senescence, shedding new light on the intricate mechanisms underlying the aging process.


Assuntos
Sistemas CRISPR-Cas , Nucléolo Celular , Senescência Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona , Heterocromatina , Proteínas Ribossômicas , Heterocromatina/metabolismo , Heterocromatina/genética , Humanos , Senescência Celular/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Células-Tronco Mesenquimais/metabolismo , RNA Ribossômico/metabolismo , RNA Ribossômico/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA