Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 898
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Parasitol Res ; 122(4): 973-978, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36856822

RESUMO

Hymenolepis diminuta is a tapeworm commonly found worldwide in small rodents such as rats with occasional reports in other definitive hosts such as primates including chimpanzees and humans. It has not been reported in African green monkey (AGM, Chlorocebus sabaeus), and the parasite's molecular phenotype and phylogeny remain primitively sketchy. The aims of the current study were to determine if H. diminuta infected AGMs, to molecularly characterize H. diminuta and to review its infection in non-human primates. Feces of AGMs were examined visually for adult helminths and microscopically for eggs using centrifugation flotation. Total DNA extracted from eggs was amplified by PCR followed by DNA sequencing of targeted sequences of nuclear rRNA + internal transcribed spacers (ITS) and mitochondrial cox1. Phylogenetic analyses were performed. The DNA sequences of both nuclear rRNA + ITS and mitochondrial cox1 showed more than 98% and 99% identity to the known sequences respectively. Hymenolepis diminuta has been reported in various non-human primates with the highest prevalence of 38.5% in the white-headed capuchin monkey. The study presented here confirms that this tapeworm is capable of infecting various species of non-human primates with the first report of infections in AGM. Phylogenetic analyses of rRNA + ITS and mitochondrial cox1 demonstrated three separated clades I, II and III with the newly described AGM1 isolate belonging to the clade I. Whether these differences are at species level remains to be confirmed.


Assuntos
Himenolepíase , Hymenolepis diminuta , Hymenolepis , Ratos , Animais , Humanos , Chlorocebus aethiops , Filogenia , RNA Ribossômico/genética , Himenolepíase/epidemiologia , Primatas , Roedores/genética , Hymenolepis/genética
2.
Parasitol Res ; 122(10): 2287-2299, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37507540

RESUMO

Tapeworm infections cause insidious and irreversible effects in the infected individuals and some of them have already shown resistance to available drugs. A search for alternative treatment is urgently required. Phenolic compounds are amongst the most researched natural substances for their medicinal use. The present study aims to determine anthelmintic efficacy of two polyphenols Gallic acid and Catechin against the zoonotic rat tapeworm Hymenolepis diminuta. Both compounds are potent anti-oxidants and play major roles in combating pathogens, while their anthelmintic property according to our knowledge is yet to be explored. The parasite model H. diminuta was procured from intestine of infected rats raised in our laboratory. Two sets of parasites were treated in vitro with 5, 10, 20 and 40 mg/ml concentrations of each Gallic Acid and Catechin separately, another set of parasites were treated with standard dose of Praziquantel in RPMI 1640, while still another set of worms were kept in RPMI 1640 at 37 ± 10C with 1% Dimethyl sulfoxide as control. Motility and structural alterations were the parameters assessed for anthelmintic efficacy of the compounds. After paralysis the worms were processed for morphological, histological, and ultrastructural study and observed under light and electron microscope. Dose-dependent efficacy was observed in both compounds. Shrinkage of suckers, deformed proglottids and architectural alteration of the tegument were observed throughout the body of treated parasites compared to control. Although in terms of time taken for paralysis and mortality Gallic acid was more effective than Catechin, the degree of morphological aberrations caused were almost similar, except histological alteration was more in Catechin treated worms than in Gallic acid. Nevertheless, both Gallic acid and Catechin are suggested to possess anthelmintic efficacy besides other health benefits but extended studies are required to compare their efficacy.


Assuntos
Anti-Helmínticos , Catequina , Himenolepíase , Hymenolepis diminuta , Hymenolepis , Parasitos , Ratos , Animais , Catequina/farmacologia , Catequina/uso terapêutico , Ácido Gálico/farmacologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Himenolepíase/parasitologia
3.
Genomics ; 113(2): 620-632, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33485950

RESUMO

Most parasitic flatworms go through different life stages with important physiological and morphological changes. In this work, we used a transcriptomic approach to analyze the main life-stages of the model tapeworm Hymenolepis microstoma (eggs, cysticercoids, and adults). Our results showed massive transcriptomic changes in this life cycle, including key gene families that contribute substantially to the expression load in each stage. In particular, different members of the cestode-specific hydrophobic ligand-binding protein (HLBP) family are among the most highly expressed genes in each life stage. We also found the transcriptomic signature of major metabolic changes during the transition from cysticercoids to adult worms. Thus, this work contributes to uncovering the gene expression changes that accompany the development of this important cestode model species, and to the best of our knowledge represents the first transcriptomic study with robust replicates spanning all of the main life stages of a tapeworm.


Assuntos
Hymenolepis/genética , Estágios do Ciclo de Vida , Transcriptoma , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Hymenolepis/crescimento & desenvolvimento , Hymenolepis/metabolismo , Família Multigênica
4.
BMC Biol ; 18(1): 165, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33167983

RESUMO

BACKGROUND: Chromosome-level assemblies are indispensable for accurate gene prediction, synteny assessment, and understanding higher-order genome architecture. Reference and draft genomes of key helminth species have been published, but little is yet known about the biology of their chromosomes. Here, we present the complete genome of the tapeworm Hymenolepis microstoma, providing a reference quality, end-to-end assembly that represents the first fully assembled genome of a spiralian/lophotrochozoan, revealing new insights into chromosome evolution. RESULTS: Long-read sequencing and optical mapping data were added to previous short-read data enabling complete re-assembly into six chromosomes, consistent with karyology. Small genome size (169 Mb) and lack of haploid variation (1 SNP/3.2 Mb) contributed to exceptionally high contiguity with only 85 gaps remaining in regions of low complexity sequence. Resolution of repeat regions reveals novel gene expansions, micro-exon genes, and spliced leader trans-splicing, and illuminates the landscape of transposable elements, explaining observed length differences in sister chromatids. Syntenic comparison with other parasitic flatworms shows conserved ancestral linkage groups indicating that the H. microstoma karyotype evolved through fusion events. Strikingly, the assembly reveals that the chromosomes terminate in centromeric arrays, indicating that these motifs play a role not only in segregation, but also in protecting the linear integrity and full lengths of chromosomes. CONCLUSIONS: Despite strong conservation of canonical telomeres, our results show that they can be substituted by more complex, species-specific sequences, as represented by centromeres. The assembly provides a robust platform for investigations that require complete genome representation.


Assuntos
Cromossomos/metabolismo , Elementos de DNA Transponíveis/genética , Genoma Helmíntico , Hymenolepis/genética , Sintenia , Animais , Centrômero/metabolismo , Segregação de Cromossomos
5.
BMC Genomics ; 21(1): 346, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380953

RESUMO

BACKGROUND: Reference genome and transcriptome assemblies of helminths have reached a level of completion whereby secondary analyses that rely on accurate gene estimation or syntenic relationships can be now conducted with a high level of confidence. Recent public release of the v.3 assembly of the mouse bile-duct tapeworm, Hymenolepis microstoma, provides chromosome-level characterisation of the genome and a stabilised set of protein coding gene models underpinned by bioinformatic and empirical data. However, interactome data have not been produced. Conserved protein-protein interactions in other organisms, termed interologs, can be used to transfer interactions between species, allowing systems-level analysis in non-model organisms. RESULTS: Here, we describe a probabilistic, integrated network of interologs for the H. microstoma proteome, based on conserved protein interactions found in eukaryote model species. Almost a third of the 10,139 gene models in the v.3 assembly could be assigned interaction data and assessment of the resulting network indicates that topologically-important proteins are related to essential cellular pathways, and that the network clusters into biologically meaningful components. Moreover, network parameters are similar to those of single-species interaction networks that we constructed in the same way for S. cerevisiae, C. elegans and H. sapiens, demonstrating that information-rich, system-level analyses can be conducted even on species separated by a large phylogenetic distance from the major model organisms from which most protein interaction evidence is based. Using the interolog network, we then focused on sub-networks of interactions assigned to discrete suites of genes of interest, including signalling components and transcription factors, germline multipotency genes, and genes differentially-expressed between larval and adult worms. Results show not only an expected bias toward highly-conserved proteins, such as components of intracellular signal transduction, but in some cases predicted interactions with transcription factors that aid in identifying their target genes. CONCLUSIONS: With key helminth genomes now complete, systems-level analyses can provide an important predictive framework to guide basic and applied research on helminths and will become increasingly informative as new protein-protein interaction data accumulate.


Assuntos
Hymenolepis/genética , Mapeamento de Interação de Proteínas , Proteoma/genética , Animais , Bases de Dados Genéticas , Eucariotos/classificação , Eucariotos/genética , Eucariotos/metabolismo , Redes Reguladoras de Genes , Genoma Helmíntico/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Hymenolepis/classificação , Hymenolepis/metabolismo , Probabilidade
6.
Dev Genes Evol ; 229(4): 89-102, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31041506

RESUMO

The Wnt/beta-catenin pathway has many key roles in the development of animals, including a conserved and central role in the specification of the primary (antero-posterior) body axis. The posterior expression of Wnt ligands and the anterior expression of secreted Wnt inhibitors are known to be conserved during the larval metamorphosis of tapeworms. However, their downstream signaling components for Wnt/beta-catenin signaling have not been characterized. In this work, we have studied the core components of the beta-catenin destruction complex of the human pathogen Echinococcus multilocularis, the causative agent of alveolar echinococcosis. We focused on two Axin paralogs that are conserved in tapeworms and other flatworm parasites. Despite their divergent sequences, both Axins could robustly interact with one E. multilocularis beta-catenin paralog and limited its accumulation in a heterologous mammalian expression system. Similarly to what has been described in planarians (free-living flatworms), other beta-catenin paralogs showed limited or no interaction with either Axin and are unlikely to function as effectors in Wnt signaling. Additionally, both Axins interacted with three divergent GSK-3 paralogs that are conserved in free-living and parasitic flatworms. Axin paralogs have highly segregated expression patterns along the antero-posterior axis in the tapeworms E. multilocularis and Hymenolepis microstoma, indicating that different beta-catenin destruction complexes may operate in different regions during their larval metamorphosis.


Assuntos
Proteína Axina/genética , Complexo de Sinalização da Axina/genética , Echinococcus multilocularis/genética , Quinase 3 da Glicogênio Sintase/genética , Proteínas de Helminto/genética , Hymenolepis/genética , beta Catenina/genética , Sequência de Aminoácidos , Animais , Proteína Axina/química , Proteína Axina/metabolismo , Complexo de Sinalização da Axina/química , Echinococcus multilocularis/crescimento & desenvolvimento , Echinococcus multilocularis/metabolismo , Perfilação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Helminto/química , Humanos , Hymenolepis/crescimento & desenvolvimento , Hymenolepis/metabolismo , Larva/metabolismo , Filogenia , Alinhamento de Sequência , beta Catenina/metabolismo
7.
Nature ; 496(7443): 57-63, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23485966

RESUMO

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Assuntos
Adaptação Fisiológica/genética , Cestoides/genética , Genoma Helmíntico/genética , Parasitos/genética , Animais , Evolução Biológica , Cestoides/efeitos dos fármacos , Cestoides/fisiologia , Infecções por Cestoides/tratamento farmacológico , Infecções por Cestoides/metabolismo , Sequência Conservada/genética , Echinococcus granulosus/genética , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Genes de Helmintos/genética , Genes Homeobox/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Hymenolepis/genética , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular , Parasitos/efeitos dos fármacos , Parasitos/fisiologia , Proteoma/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Taenia solium/genética
8.
J Helminthol ; 93(2): 195-202, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29386083

RESUMO

The cestode Hymenolepis erinacei is regarded as a widely distributed parasite in European hedgehogs of the genus Erinaceus, although the taxonomic position of this hymenolepidid has been debated for a considerable period of time. We present the first molecular data for this cestode, including partial DNA sequences of mitochondrial 16S and nuclear 28S ribosomal genes. Molecular phylogenetic analysis clusters H. erinacei in one clade together with representatives of the genus Hymenolepis from rodents. Characteristic morphological features, including the oval embryophore without filaments and shape of the embryonic hooks of H. erinacei are described. Features of these cestode eggs are proposed as a basis for non-invasive detection of parasitic infections in small mammal populations. The present study explores phylogenetic relationships within the genus Hymenolepis and the host switching related to H. erinacei. Cases of host switching in other genera of the family Hymenolepididae are reviewed. A short critical review of cestodes parasitizing hedgehogs in the Palaearctic is presented.


Assuntos
Cestoides/classificação , Ouriços/parasitologia , Hymenolepis/classificação , Filogenia , Animais , Himenolepíase , RNA Ribossômico 16S/genética , RNA Ribossômico 28S/genética
9.
J Helminthol ; 92(1): 49-55, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28260532

RESUMO

The cestode Hymenolepis microps is an intestinal parasite of tetraonid birds, including the willow ptarmigan (Lagopus lagopus). This parasite is able to maintain a high prevalence and intensity throughout the year, even in a subarctic environment in bird populations with relatively low host densities, indicating effective transmission routes. Willow ptarmigan consume mainly vegetal material and active consumption of invertebrates is confined to the first two or three weeks of life. Ptarmigan are infected by different species of ectoparasites, of which two species of feather lice, Lagopoecus affinis and Goniodes lagopi, are the most abundant. In this study, we explored the hypothesis that feather lice may be suitable intermediate hosts for H. microps. We applied histological techniques and light microscopy to investigate lice for the presence of larval cestode stages (cysticercoids). We found 12 cysticercoid-like structures inside chewing lice collected on L. lagopus hosts harbouring H. microps. In addition, a polymerase chain reaction (PCR) screening of Ischnocera lice DNA, targeting the 18S rRNA gene of the cestode, showed positive results for two different short fragments of the 18S rRNA gene of H. microps which were sequenced from lice collected on birds. Both independent lines of evidence support the hypothesis that Ischnocera lice might be suitable intermediate hosts in the life cycle of H. microps in L. lagopus.


Assuntos
Doenças das Aves/parasitologia , Galliformes/parasitologia , Himenolepíase/veterinária , Hymenolepis/fisiologia , Infestações por Piolhos/veterinária , Ftirápteros/fisiologia , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/transmissão , Interações Hospedeiro-Parasita , Himenolepíase/epidemiologia , Himenolepíase/parasitologia , Himenolepíase/transmissão , Insetos Vetores/parasitologia , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/parasitologia , Noruega/epidemiologia , Ftirápteros/parasitologia , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
10.
J Helminthol ; 92(2): 142-153, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28382873

RESUMO

The potential therapeutic value of Moringa oleifera extract (MOE), due to its anti-inflammatory and anti-oxidant effects, has been reported previously. In this study, Hymenolepis nana antigen (HNA) in combination with MOE was used in immunization against H. nana infection. Adult worm and egg counts were taken, while histological changes in the intestine were observed. Mucosal mast (MMCs) and goblet cells (GCs) were stained with specific stains, while serum and intestinal IgA were assayed using enzyme-linked immunosorbent assay (ELISA). Reduced glutathione (GSH) and lipid peroxidation (thiobarbituric acid reactive substances, TBARS) were assayed. Real-time polymerase chain reaction (PCR) was used for detection of mRNA expression in ileum tissue. The results demonstrated an improvement in the architecture of intestinal villi, decreased inducible nitric oxide synthase (iNOs) and TBARS, and increased GSH in HNA, MOE and MOE + HNA groups. In the same groups, an increase in GCs, mucin 2 (MUC2), interleukins (IL)-4, -5 and -9, and stem cell factor (SCF) versus a decrease in both interferon-gamma (IFN-γ) and transforming growth factor (TGF-ß) expression appeared. HNA and MOE + HNA increased serum and intestinal IgA, respectively. MOE decreased MMCs and achieved the highest reductions in both adult worms and eggs. In conclusion, MOE could achieve protection against H. nana infections through decreased TGF-ß, IFN-γ and MMC counts versus increased GC counts, T-helper cell type 2 (Th2) cytokines and IgA level.


Assuntos
Himenolepíase/tratamento farmacológico , Hymenolepis/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Moringa oleifera/química , Extratos Vegetais/uso terapêutico , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/química , Anti-Helmínticos/uso terapêutico , Citocinas/efeitos dos fármacos , Citocinas/imunologia , Glutationa/análise , Himenolepíase/imunologia , Himenolepíase/parasitologia , Imunoglobulina A/análise , Imunoglobulina A/imunologia , Interferon gama/efeitos dos fármacos , Interferon gama/genética , Interferon gama/imunologia , Intestinos/parasitologia , Peroxidação de Lipídeos , Camundongos , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase/genética , Contagem de Ovos de Parasitas , Extratos Vegetais/administração & dosagem , Células Th2/efeitos dos fármacos , Células Th2/imunologia
11.
BMC Biol ; 14: 10, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26941070

RESUMO

BACKGROUND: Early developmental patterns of flatworms are extremely diverse and difficult to compare between distant groups. In parasitic flatworms, such as tapeworms, this is confounded by highly derived life cycles involving indirect development, and even the true orientation of the tapeworm antero-posterior (AP) axis has been a matter of controversy. In planarians, and metazoans generally, the AP axis is specified by the canonical Wnt pathway, and we hypothesized that it could also underpin axial formation during larval metamorphosis in tapeworms. RESULTS: By comparative gene expression analysis of Wnt components and conserved AP markers in the tapeworms Echinococcus multilocularis and Hymenolepis microstoma, we found remarkable similarities between the early stages of larval metamorphosis in tapeworms and late embryonic and adult development in planarians. We demonstrate posterior expression of specific Wnt factors during larval metamorphosis and show that scolex formation is preceded by localized expression of Wnt inhibitors. In the highly derived larval form of E. multilocularis, which proliferates asexually within the mammalian host, we found ubiquitous expression of posterior Wnt factors combined with localized expression of Wnt inhibitors that correlates with the asexual budding of scoleces. As in planarians, muscle cells are shown to be a source of secreted Wnt ligands, providing an explanation for the retention of a muscle layer in the immotile E. multilocularis larva. CONCLUSIONS: The strong conservation of gene expression between larval metamorphosis in tapeworms and late embryonic development in planarians suggests, for the first time, a homologous developmental period across this diverse phylum. We postulate these to represent the phylotypic stages of these flatworm groups. Our results support the classical notion that the scolex is the true anterior end of tapeworms. Furthermore, the up-regulation of Wnt inhibitors during the specification of multiple anterior poles suggests a mechanism for the unique asexual reproduction of E. multilocularis larvae.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/genética , Hymenolepis/crescimento & desenvolvimento , Proteínas Wnt/genética , Animais , Echinococcus multilocularis/genética , Echinococcus multilocularis/ultraestrutura , Hymenolepis/genética , Hymenolepis/ultraestrutura , Metamorfose Biológica
12.
Parasitol Res ; 115(12): 4627-4638, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27630100

RESUMO

Synoptic data and an understanding of helminth parasite diversity among diverse rodent assemblages across temperate latitudes of North America remain remarkably incomplete. Renewed attention to comprehensive survey and inventory to establish the structure of biodiverse faunas is essential in providing indicators and proxies for identifying the outcomes of accelerating change linked to climate warming and anthropogenic forcing. Subsequent to the description of Hymenolepis folkertsi in the oldfield mouse, Peromyscus polionotus, additional specimens of hymenolepidids were collected or discovered in archived museum repositories from multiple species of deer mice (Peromyscus maniculatus, Peromyscus leucopus), the golden mouse (Ochrotomys nuttalli), chipmunks (Tamias striatus, Tamias amoenus), the 13-lined ground squirrel (Ictidomys tridecemlineatus), and tree squirrels (Sciurus carolinensis, Sciurus niger) from disjunct localities in the USA spanning southern Georgia, Virginia, Pennsylvania, Connecticut, the Upper Peninsula of Michigan, Wisconsin, and central Idaho. Specimens were largely consistent morphologically with the original description of H. folkertsi. Initial DNA sequence data, from a portion of the mitochondrial NADH dehydrogenase subunit 1, demonstrated intraspecific variation among three apparently geographically isolated populations attributed to H. folkertsi (uncorrected genetic distances of 2.7 % (Idaho and Michigan), 2.4 % (Virginia + Pennsylvania and Michigan), and 1.89 % (VA + PA and ID). Geography rather than host association explains the distribution and occurrence of H. folkertsi, and host colonization among deer mice, chipmunks, and other sciurids within regional sites is indicated. Genetic divergence revealed across localities for H. folkertsi suggests historically isolated populations, consistent with extended evolutionary and biogeographic trajectories among hymenolepidids and species of Peromyscus and Tamias in North America. Field inventory, that revealed these parasite populations, substantially alters our understanding of the distribution of diversity and provides insights about the nature of the complex relationships that serve to determine cestode faunas in rodents.


Assuntos
Himenolepíase/veterinária , Hymenolepis/isolamento & purificação , Peromyscus/parasitologia , Doenças dos Roedores/parasitologia , Sciuridae/parasitologia , Distribuição Animal , Animais , Sequência de Bases , Biodiversidade , Evolução Biológica , Clima , Geografia , Especificidade de Hospedeiro , Himenolepíase/parasitologia , Hymenolepis/genética , Hymenolepis/fisiologia , Camundongos , América do Norte
13.
Parasite Immunol ; 37(2): 53-69, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25521516

RESUMO

Differentiation and development of parasites, including longevity in host animals, are thought to be governed by host-parasite interactions. In this review, several topics on the developmental biology of cestode infections are discussed from immunobiological perspective with a focus on Hymenolepis, Taenia and Echinococcus infections. The basic premise of this review is that 'differentiation and development of cestodes' are somehow affected by host immune responses with an evolutionary history.


Assuntos
Infecções por Cestoides/imunologia , Infecções por Cestoides/parasitologia , Echinococcus/crescimento & desenvolvimento , Hymenolepis/crescimento & desenvolvimento , Taenia/crescimento & desenvolvimento , Animais , Echinococcus/fisiologia , Interações Hospedeiro-Parasita , Humanos , Hymenolepis/fisiologia , Taenia/fisiologia
14.
Parasitol Res ; 114(6): 2107-17, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25762188

RESUMO

A previously unrecognized species of hymenolepidid cestode attributable to Hymenolepis is described based on specimens in Peromyscus polionotus, oldfield mouse, from Georgia near the southeastern coast of continental North America. Specimens of Hymenolepis folkertsi n. sp. differ from those attributed to most other species in the genus by having testes arranged in a triangle and a scolex with a prominent rostrum-like protrusion. The newly recognized species is further distinguished by the relative position and length of the cirrus sac, shape of seminal receptacle, and relative size of external seminal vesicle and seminal receptacle. Hymenolepidid cestodes have sporadically been reported among the highly diverse assemblage of Peromyscus which includes 56 distinct species in the Nearctic. Although the host genus has a great temporal duration and is endemic to the Nearctic, current evidence suggests that tapeworm faunal diversity reflects relatively recent assembly through bouts of host switching among other cricetid, murid, and geomyid rodents in sympatry.


Assuntos
Himenolepíase/epidemiologia , Hymenolepis/isolamento & purificação , Muridae/parasitologia , Peromyscus/parasitologia , Cavidade Abdominal , Animais , Feminino , Georgia/epidemiologia , Hymenolepis/anatomia & histologia , Hymenolepis/genética , Masculino , Camundongos , Testículo/parasitologia
15.
Parasitol Res ; 114(12): 4381-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26290218

RESUMO

We carried out the first survey of Hymenolepis spp. infection in pet rodents in Italy. Fresh fecal samples were collected from 172 pet rodents as follows: guinea pigs (Cavia porcellus; n = 60), squirrels (Callosciurus finlaysonii, Callosciurus prevosti, Tamias striatus, Tamias sibiricus, Sciurus calorinensis; n = 52), hamsters (Phodopus campbelli, Mesocricetus auratus; n = 30), chinchillas (Chinchilla lanigera; n = 13), rats (Rattus norvegicus; n = 10), and mice (Mus minutoides; n = 7). These animals were housed either in pet shops or in private houses. All fecal samples were processed using the FLOTAC pellet technique to assess the number of eggs per gram (EPG) of feces. Eggs of Hymenolepis nana were found in 24 out of 172 (13.9 %; 95 % confidence interval = 9.3-20.2 %) pet rodents. Of those rodents, 41.6 % (10/24) were rats (mean EPG = 55.7; range = 2-200), 29.2 % (7/24) mice (mean EPG = 64.5; range = 32-120), 25.0 % (6/24) were chinchillas (mean EPG = 25.5; range = 10-50), and 4.2 % (1/24) hamsters (P. campbelli) (EPG = 86.0). In addition, Hymenolepis diminuta eggs were found in 2 out of 172 (1.2 %; 95 % confidence interval = 0.2-4.6 %) rodents examined, both of which (100 %; 2/2) were pet squirrels (C. prevosti) (mean EPG = 10; range = 4-16). To the authors' knowledge, this is the first report of a natural infection of H. diminuta in pet squirrels.


Assuntos
Himenolepíase/veterinária , Hymenolepis/isolamento & purificação , Animais de Estimação/parasitologia , Animais , Cricetinae/parasitologia , Fezes/parasitologia , Cobaias/parasitologia , Himenolepíase/parasitologia , Hymenolepis/classificação , Hymenolepis/genética , Itália , Camundongos/parasitologia , Ratos/parasitologia , Sciuridae/parasitologia , Inquéritos e Questionários
16.
J Helminthol ; 89(5): 601-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25226116

RESUMO

Little is known about the efficacy of cysteine proteinases (CP) as anthelmintics for cestode infections in vivo. Hymenolepis microstoma is a natural parasite of house mice, and provides a convenient model system for the assessment of novel drugs for anthelmintic activity against cestodes. The experiments described in this paper indicate that treatment of H. microstoma infections in mice with the supernatant of papaya latex (PLS), containing active cysteine proteinases, is only minimally efficacious. The statistically significant effects seen on worm burden and biomass showed little evidence of dose dependency, were temporary and the role of cysteine proteinases as the active principles in PLS was not confirmed by specific inhibition with E-64. Worm fecundity was not affected by treatment at the doses used. We conclude also that this in vivo host-parasite system is not sensitive enough to be used reliably for the detection of cestocidal activity of compounds being screened as potential, novel anthelmintics.


Assuntos
Anti-Helmínticos/administração & dosagem , Carica/química , Cisteína Proteases/administração & dosagem , Himenolepíase/tratamento farmacológico , Hymenolepis/efeitos dos fármacos , Látex/química , Animais , Humanos , Himenolepíase/parasitologia , Hymenolepis/fisiologia , Leucina/administração & dosagem , Leucina/análogos & derivados , Masculino , Camundongos , Camundongos Endogâmicos C3H
17.
J Helminthol ; 89(4): 487-95, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25007150

RESUMO

Ethiopian wolves, Canis simensis, are an endangered carnivore endemic to the Ethiopian highlands. Although previous studies have focused on aspects of Ethiopian wolf biology, including diet, territoriality, reproduction and infectious diseases such as rabies, little is known of their helminth parasites. In the current study, faecal samples were collected from 94 wild Ethiopian wolves in the Bale Mountains of southern Ethiopia, between August 2008 and February 2010, and were screened for the presence of helminth eggs using a semi-quantitative volumetric dilution method with microscopy. We found that 66 of the 94 faecal samples (70.2%) contained eggs from at least one group of helminths, including Capillaria, Toxocara, Trichuris, ancylostomatids, Hymenolepis and taeniids. Eggs of Capillaria sp. were found most commonly, followed by Trichuris sp., ancylostomatid species and Toxocara species. Three samples contained Hymenolepis sp. eggs, which were likely artefacts from ingested prey species. Four samples contained taeniid eggs, one of which was copro-polymerase chain reaction (copro-PCR) and sequence positive for Echinococcus granulosus, suggesting a spillover from a domestic parasite cycle into this wildlife species. Associations between presence/absence of Capillaria, Toxocara and Trichuris eggs were found; and egg burdens of Toxocara and ancylostomatids were found to be associated with geographical location and sampling season.


Assuntos
Infecções por Cestoides/veterinária , Espécies em Perigo de Extinção , Infecções por Nematoides/veterinária , Lobos , Animais , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/parasitologia , Ecossistema , Etiópia/epidemiologia , Fezes/parasitologia , Hymenolepis/isolamento & purificação , Nematoides/classificação , Nematoides/isolamento & purificação , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/parasitologia , Contagem de Ovos de Parasitas , Taenia/isolamento & purificação
18.
Syst Parasitol ; 90(1): 27-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25557745

RESUMO

Our helminthological examination of murid rodents on Luzon Island, Philippines, revealed a remarkable diversity of Hymenolepis Weinland, 1858. Here we describe two new species based on specimens from murid rodents Rattus everetti (Günther) and Apomys datae (Meyer) collected from Luzon Island. Hymenolepis alterna n. sp. differs from all known species of Hymenolepis in having irregularly alternating genital pores. This feature has not been reported from any previously known member of Hymenolepis. Additionally, Hymenolepis alterna n. sp. also differs from other Hymenolepis spp. in the relative position of both poral and antiporal dorsal osmoregulatory canals which are shifted towards the middle of the proglottis in relation to the ventral canals on both sides of the proglottides, and in having curved or twisted external seminal vesicle, covered externally by a dense layer of intensely stained cells. Hymenolepis bilaterala n. sp. differs from all known species of Hymenolepis in the relative position of both poral and antiporal dorsal osmoregulatory canals, which are shifted bilaterally towards the margins of proglottides in relation to the ventral canals, and in possession of testes situated in a triangle and eggs with very thin outer coat. A total of seven species of Hymenolepis are known from the Philippine archipelago. This total includes the cosmopolitan species Hymenolepis diminuta (Rudolphi, 1819), which was likely introduced to the island with invasive rats. Strikingly, all seven known species occur on the island of Luzon alone. By comparison, only six Hymenolepis spp. are known from the whole Palaearctic and seven from the Nearctic despite a much better level of knowledge of rodent helminths in these zoogeographical regions, as well as vast territories, diverse landscapes and very rich rodent fauna. This suggests that Hymenolepis spp. may have undergone an unusually active radiation in the Philippines. Possible explanations of this phenomenon are discussed.


Assuntos
Hymenolepis/anatomia & histologia , Hymenolepis/classificação , Animais , Hymenolepis/isolamento & purificação , Hymenolepis/fisiologia , Filipinas , Roedores/parasitologia , Especificidade da Espécie
19.
Front Cell Infect Microbiol ; 13: 1286190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908761

RESUMO

Background: Tapeworm larvae cause important diseases in humans and domestic animals. During infection, the first larval stage undergoes a metamorphosis where tissues are formed de novo from a population of stem cells called germinative cells. This process is difficult to study for human pathogens, as these larvae are infectious and difficult to obtain in the laboratory. Methods: In this work, we analyzed cell proliferation and differentiation during larval metamorphosis in the model tapeworm Hymenolepis microstoma, by in vivo labelling of proliferating cells with the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU), tracing their differentiation with a suite of specific molecular markers for different cell types. Results: Proliferating cells are very abundant and fast-cycling during early metamorphosis: the total number of cells duplicates every ten hours, and the length of G2 is only 75 minutes. New tegumental, muscle and nerve cells differentiate from this pool of proliferating germinative cells, and these processes are very fast, as differentiation markers for neurons and muscle cells appear within 24 hours after exiting the cell cycle, and fusion of new cells to the tegumental syncytium can be detected after only 4 hours. Tegumental and muscle cells appear from early stages of metamorphosis (24 to 48 hours post-infection); in contrast, most markers for differentiating neurons appear later, and the detection of synapsin and neuropeptides correlates with scolex retraction. Finally, we identified populations of proliferating cells that express conserved genes associated with neuronal progenitors and precursors, suggesting the existence of tissue-specific lineages among germinative cells. Discussion: These results provide for the first time a comprehensive view of the development of new tissues during tapeworm larval metamorphosis, providing a framework for similar studies in human and veterinary pathogens.


Assuntos
Hymenolepis , Animais , Humanos , Hymenolepis/genética , Metamorfose Biológica/genética , Diferenciação Celular , Músculos , Proliferação de Células , Larva
20.
Int J Parasitol ; 53(2): 103-117, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621599

RESUMO

Spliced leader (SL) trans-splicing is a key process during mRNA maturation of many eukaryotes, in which a short sequence (SL) is transferred from a precursor SL-RNA into the 5' region of an immature mRNA. This mechanism is present in flatworms, in which it is known to participate in the resolution of polycistronic transcripts. However, most trans-spliced transcripts are not part of operons, and it is not clear if this process may participate in additional regulatory mechanisms in this group. In this work, we present a comprehensive analysis of SL trans-splicing in the model cestode Hymenolepis microstoma. We identified four different SL-RNAs which are indiscriminately trans-spliced to 622 gene models. SL trans-splicing is enriched in constitutively expressed genes and does not appear to be regulated throughout the life cycle. Operons represented at least 20% of all detected trans-spliced gene models, showed conservation to those of the cestode Echinococcus multilocularis, and included complex loci such as an alternative operon (processed as either a single gene through cis-splicing or as two genes of a polycistron). Most insertion sites were identified in the 5' untranslated region (UTR) of monocistronic genes. These genes frequently contained introns in the 5' UTR, in which trans-splicing used the same acceptor sites as cis-splicing. These results suggest that, unlike other eukaryotes, trans-splicing is associated with internal intronic promoters in the 5' UTR, resulting in transcripts with strong splicing acceptor sites without competing cis-donor sites, pointing towards a simple mechanism driving the evolution of novel SL insertion sites.


Assuntos
Cestoides , Hymenolepis , Animais , Trans-Splicing , Hymenolepis/genética , Regiões 5' não Traduzidas , Splicing de RNA , RNA Mensageiro/metabolismo , Cestoides/genética , RNA Líder para Processamento/genética , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA