Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.048
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(6): 1650-1664.e15, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33125898

RESUMO

Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.


Assuntos
Alelos , Proteína 9 Associada à CRISPR/metabolismo , Cromossomos Humanos/genética , Embrião de Mamíferos/metabolismo , Animais , Sequência de Bases , Blastocisto/metabolismo , Ciclo Celular/genética , Linhagem Celular , Deleção Cromossômica , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Implantação do Embrião/genética , Proteínas do Olho/genética , Fertilização , Edição de Genes , Rearranjo Gênico/genética , Loci Gênicos , Genoma Humano , Genótipo , Heterozigoto , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mutação INDEL/genética , Camundongos , Mitose , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética
2.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38752427

RESUMO

Bone morphogenic protein (BMP) signaling plays an essential and highly conserved role in embryo axial patterning in animal species. However, in mammalian embryos, which develop inside the mother, early development includes a preimplantation stage, which does not occur in externally developing embryos. During preimplantation, the epiblast is segregated from extra-embryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling is imprecisely defined in mouse early embryos. Here, we show that, in contrast to previous reports, BMP signaling (SMAD1/5/9 phosphorylation) is not detectable until implantation when it is detected in the primitive endoderm - an extra-embryonic lineage. Moreover, preimplantation development appears to be normal following deletion of maternal and zygotic Smad4, an essential effector of canonical BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extra-embryonic cell types drives epiblast morphogenesis postimplantation.


Assuntos
Implantação do Embrião , Camadas Germinativas , Morfogênese , Transdução de Sinais , Proteína Smad4 , Animais , Proteína Smad4/metabolismo , Proteína Smad4/genética , Camadas Germinativas/metabolismo , Implantação do Embrião/genética , Camundongos , Morfogênese/genética , Feminino , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Embrionário/genética , Camundongos Knockout , Embrião de Mamíferos/metabolismo , Endoderma/metabolismo , Endoderma/embriologia , Blastocisto/metabolismo , Blastocisto/citologia
3.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883062

RESUMO

Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.


Assuntos
Diapausa , Animais , Diapausa/fisiologia , Implantação do Embrião/genética , Transdução de Sinais , Metabolismo Energético
4.
Proc Natl Acad Sci U S A ; 120(5): e2214684120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693099

RESUMO

Embryo implantation, a crucial step in human reproduction, is tightly controlled by estrogen and progesterone (P4) via estrogen receptor alpha and progesterone receptor (PGR), respectively. Here, we report that N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an essential role in embryo implantation through the maintenance of P4 signaling. Conditional deletion of methyltransferase-like 3 (Mettl3), encoding the m6A writer METTL3, in the female reproductive tract using a Cre mouse line with Pgr promoter (Pgr-Cre) resulted in complete implantation failure due to pre-implantation embryo loss and defective uterine receptivity. Moreover, the uterus of Mettl3 null mice failed to respond to artificial decidualization. We further found that Mettl3 deletion was accompanied by a marked decrease in PGR protein expression. Mechanistically, we found that Pgr mRNA is a direct target for METTL3-mediated m6A modification. A luciferase assay revealed that the m6A modification in the 5' untranslated region (5'-UTR) of Pgr mRNA enhances PGR protein translation efficiency in a YTHDF1-dependent manner. Finally, we demonstrated that METTL3 is required for human endometrial stromal cell decidualization in vitro and that the METTL3-PGR axis is conserved between mice and humans. In summary, this study provides evidence that METTL3 is essential for normal P4 signaling during embryo implantation via m6A-mediated translation control of Pgr mRNA.


Assuntos
Progesterona , Receptores de Progesterona , Feminino , Camundongos , Humanos , Animais , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Implantação do Embrião/genética , Útero/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Knockout , RNA Mensageiro/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(23): e2216799120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252988

RESUMO

ZC3H11A (zinc finger CCCH domain-containing protein 11A) is a stress-induced mRNA-binding protein required for efficient growth of nuclear-replicating viruses. The cellular functions of ZC3H11A during embryonic development are unknown. Here, we report the generation and phenotypic characterization of Zc3h11a knockout (KO) mice. Heterozygous null Zc3h11a mice were born at the expected frequency without distinguishable phenotypic differences compared with wild-type mice. In contrast, homozygous null Zc3h11a mice were missing, indicating that Zc3h11a is crucial for embryonic viability and survival. Zc3h11a -/- embryos were detected at the expected Mendelian ratios up to late preimplantation stage (E4.5). However, phenotypic characterization at E6.5 revealed degeneration of Zc3h11a -/- embryos, indicating developmental defects around the time of implantation. Transcriptomic analyses documented a dysregulation of glycolysis and fatty acid metabolic pathways in Zc3h11a-/- embryos at E4.5. Proteomic analysis indicated a tight interaction between ZC3H11A and mRNA-export proteins in embryonic stem cells. CLIP-seq analysis demonstrated that ZC3H11A binds a subset of mRNA transcripts that are critical for metabolic regulation of embryonic cells. Furthermore, embryonic stem cells with an induced deletion of Zc3h11a display an impaired differentiation toward epiblast-like cells and impaired mitochondrial membrane potential. Altogether, the results show that ZC3H11A is participating in export and posttranscriptional regulation of selected mRNA transcripts required to maintain metabolic processes in embryonic cells. While ZC3H11A is essential for the viability of the early mouse embryo, inactivation of Zc3h11a expression in adult tissues using a conditional KO did not lead to obvious phenotypic defects.


Assuntos
Implantação do Embrião , Proteínas Nucleares , Proteômica , Proteínas de Ligação a RNA , Animais , Feminino , Camundongos , Gravidez , Implantação do Embrião/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Nucleares/genética
6.
Genes Dev ; 32(23-24): 1525-1536, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463900

RESUMO

Genomic imprinting is essential for mammalian development. Recent studies have revealed that maternal histone H3 Lys27 trimethylation (H3K27me3) can mediate DNA methylation-independent genomic imprinting. However, the regulatory mechanisms and functions of this new imprinting mechanism are largely unknown. Here we demonstrate that maternal Eed, an essential component of the Polycomb group complex 2 (PRC2), is required for establishing H3K27me3 imprinting. We found that all H3K27me3-imprinted genes, including Xist, lose their imprinted expression in Eed maternal knockout (matKO) embryos, resulting in male-biased lethality. Surprisingly, although maternal X-chromosome inactivation (XmCI) occurs in Eed matKO embryos at preimplantation due to loss of Xist imprinting, it is resolved at peri-implantation. Ultimately, both X chromosomes are reactivated in the embryonic cell lineage prior to random XCI, and only a single X chromosome undergoes random XCI in the extraembryonic cell lineage. Thus, our study not only demonstrates an essential role of Eed in H3K27me3 imprinting establishment but also reveals a unique XCI dynamic in the absence of Xist imprinting.


Assuntos
Impressão Genômica/genética , Histonas/metabolismo , Complexo Repressor Polycomb 2/genética , Inativação do Cromossomo X/genética , Animais , Linhagem da Célula , Implantação do Embrião/genética , Embrião de Mamíferos , Feminino , Técnicas de Inativação de Genes , Histonas/genética , Masculino , Metilação , Camundongos , Camundongos Knockout
7.
Proc Natl Acad Sci U S A ; 119(30): e2201168119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858425

RESUMO

Mitochondrial remodeling during the peri-implantation stage is the hallmark event essential for normal embryogenesis. Among the changes, enhanced oxidative phosphorylation is critical for supporting high energy demands of postimplantation embryos, but increases mitochondrial oxidative stress, which in turn threatens mitochondrial DNA (mtDNA) stability. However, how mitochondria protect their own histone-lacking mtDNA, during this stage remains unclear. Concurrently, the mitochondrial genome gain DNA methylation by this stage. Its spatiotemporal coincidence with enhanced mitochondrial stress led us to ask if mtDNA methylation has a role in maintaining mitochondrial genome stability. Herein, we report that mitochondrial genome undergoes de novo mtDNA methylation that can protect mtDNA against enhanced oxidative damage during the peri-implantation window. Mitochondrial genome gains extensive mtDNA methylation during transition from blastocysts to postimplantation embryos, thus establishing relatively hypermethylated mtDNA from hypomethylated state in blastocysts. Mechanistic study revealed that DNA methyltransferase 3A (DNMT3A) and DNMT3B enter mitochondria during this process and bind to mtDNA, via their unique mitochondrial targeting sequences. Importantly, loss- and gain-of-function analyses indicated that DNMT3A and DNMT3B are responsible for catalyzing de novo mtDNA methylation, in a synergistic manner. Finally, we proved, in vivo and in vitro, that increased mtDNA methylation functions to protect mitochondrial genome against mtDNA damage induced by increased mitochondrial oxidative stress. Together, we reveal mtDNA methylation dynamics and its underlying mechanism during the critical developmental window. We also provide the functional link between mitochondrial epigenetic remodeling and metabolic changes, which reveals a role for nuclear-mitochondrial crosstalk in establishing mitoepigenetics and maintaining mitochondrial homeostasis.


Assuntos
Metilação de DNA , DNA Mitocondrial , Implantação do Embrião , Genoma Mitocondrial , Estresse Oxidativo , Animais , Blastocisto/enzimologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Implantação do Embrião/genética , Mutação com Ganho de Função , Mutação com Perda de Função , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , DNA Metiltransferase 3B
8.
Genes Dev ; 31(1): 12-17, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115466

RESUMO

Global DNA demethylation is a hallmark of embryonic epigenetic reprogramming. However, embryos engage noncanonical DNA methylation maintenance mechanisms to ensure inheritance of exceptional epigenetic germline features to the soma. Besides the paradigmatic genomic imprints, these exceptions remain ill-defined, and the mechanisms ensuring demethylation resistance in the light of global reprogramming remain poorly understood. Here we show that the Y-linked gene Rbmy1a1 is highly methylated in mature sperm and resists DNA demethylation post-fertilization. Aberrant hypomethylation of the Rbmy1a1 promoter results in its ectopic activation, causing male-specific peri-implantation lethality. Rbmy1a1 is a novel target of the TRIM28 complex, which is required to protect its repressive epigenetic state during embryonic epigenetic reprogramming.


Assuntos
Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Epigênese Genética/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Animais , Células Cultivadas , Reprogramação Celular/genética , Implantação do Embrião/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica/genética , Masculino , Mutação , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a RNA/genética , Espermatozoides/metabolismo , Proteína 28 com Motivo Tripartido
9.
BMC Genomics ; 25(1): 501, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773369

RESUMO

BACKGROUND: The peri-implantation period is a critical time during pregnancy that mostly defines the overall litter size. Most authors agree that the highest percentage of embryo mortality occurs during this time. Despite the brevity of the peri-implantation period, it is the most dynamic part of pregnancy in which the sequential and uninterrupted course of several processes is essential to the animal's reproductive success. Also then, the maternal uterine tissues undergo an intensive remodelling process, and their energy demand dramatically increases. It is believed that apelin, a member of the adipokine family, is involved in the control of female reproductive functions in response to the current metabolic state. The verified herein hypothesis assumed the modulatory effect of apelin on the endometrial tissue transcriptome on days 15 to 16 of gestation (beginning of implantation). RESULTS: The analysis of data obtained during RNA-seq (Illumina HiSeq2500) of endometrial slices treated and untreated with apelin (n = 4 per group) revealed changes in the expression of 68 genes (39 up-regulated and 29 down-regulated in the presence of apelin), assigned to 240 gene ontology terms. We also revealed changes in the frequency of alternative splicing events (397 cases), as well as single nucleotide variants (1,818 cases) in the presence of the adipokine. The identified genes were associated, among others, with the composition of the extracellular matrix, apoptosis, and angiogenesis. CONCLUSIONS: The obtained results indicate a potential role of apelin in the regulation of uterine tissue remodelling during the peri-implantation period.


Assuntos
Implantação do Embrião , Endométrio , Transcriptoma , Animais , Feminino , Endométrio/metabolismo , Implantação do Embrião/genética , Gravidez , Suínos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Perfilação da Expressão Gênica , Apelina/genética , Apelina/metabolismo , Processamento Alternativo
10.
Lab Invest ; 104(4): 100327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237738

RESUMO

Impaired endometrial decidualization is the primary cause of recurrent implantation failure (RIF). RNA methylation modification, especially NSUN family mediated m5C, is crucial for various physiological events, such as maternal-to-zygotic transition, gametogenesis, embryonic development, organismal lifespan, and cell cycle. However, the regulatory mechanisms between NSUN family mediated m5C modification and RIF remain unknown. We acquired NSUN2 expression data of 15 human endometrium samples at proliferative and secretory stages from reproductive cell atlas. The overall pattern of m5C sites and genes was elucidated through m5C-BS-seq, whereas the overall m5C levels in different groups were revealed by dot blot assay. BrdU and western blotting assays were carried out to evaluate the role of NSUN2 in proliferation and autophagy. The effects of NSUN2-mediated m5C modification on embryo attachment were evaluated by an in vitro model of a confluent monolayer of Ishikawa cells cocultured with BeWo spheroids, and its downstream targets were evaluated by real-time reverse-transcription PCR and western blotting in Ishikawa cells. The molecular mechanism for NSUN2 regulating its downstream targets' expression was determined by Cut&Tag and coimmunoprecipitation assays. NSUN2 was increased in SOX9+ cells and widespread in epithelial cell type at the proliferative stage by previous single-cell RNA sequencing data. NSUN2 overexpression (NSUN2OE) in the Ishikawa cell line elevated m5C levels and promoted cell proliferation and autophagy. NSUN2OE reduced attachment efficiency of BeWo cell spheres. Overexpressed NSUN2 was found to increase STAT1 and MMP14 mRNA expressions by inducing exon skipping. NSUN2 interacted with CLDN4 through m5C modification, and NSUN2OE or NSUN2 knockdown resulted in a similar variation tendency of CLDN4. Overexpression of NSUN2 increased CLDN4 H3K9ac modification by downregulating SIRT4 expression at the protein level, leading to the upregulation of CLDN4 mRNA expression. Our results uncovered a novel intricate regulatory mechanism between NSUN2-mediated m5C and RIF and suggested a potential new therapeutic strategy for RIF.


Assuntos
Implantação do Embrião , Endométrio , Gravidez , Feminino , Humanos , Implantação do Embrião/genética , Metilação , Linhagem Celular , RNA Mensageiro/metabolismo , Metiltransferases/metabolismo
11.
Mol Hum Reprod ; 30(5)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38733619

RESUMO

Studies in humans and animals suggest that seminal plasma, the acellular seminal fluid component, stimulates the endometrium to promote immune tolerance and facilitate implantation. We designed a randomized, double-blinded, placebo-controlled trial to investigate changes in the endometrial transcriptomic profile after vaginal application of seminal plasma. The study participants were randomized into two groups. Five women received a vaginal application of seminal plasma, and four received a placebo application with saline solution. The application was performed 2 days after HCG-triggered ovulation in an unstimulated cycle. After 5-8 days, an endometrial biopsy was collected to analyze differences in the endometrial transcriptomic profile using microarray analyses. A differential gene expression analysis and a gene set analysis were performed. The gene set enrichment analysis showed a positive enrichment of pathways associated with the immune response, cell viability, proliferation, and cellular movement. Moreover, pathways involved in implantation, embryo development, oocyte maturation, and angiogenesis were positively enriched. The differential gene expression analysis, after adjusting for multiple testing, showed no significantly differentially expressed genes between the two groups. A comparative analysis was also performed with similar studies conducted in other animals or in vitro using human endometrial cells. The comparative analysis showed that the effect of seminal plasma effect on the endometrium is similar in pigs, mice, and in vitro human endometrial cells. The present study provides evidence that seminal plasma might impact the endometrium during the implantation window, with potential to affect endometrial receptivity and embryo development.


Assuntos
Endométrio , Sêmen , Transcriptoma , Humanos , Endométrio/metabolismo , Sêmen/metabolismo , Feminino , Adulto , Animais , Implantação do Embrião/genética , Implantação do Embrião/fisiologia , Método Duplo-Cego , Masculino , Administração Intravaginal , Camundongos , Perfilação da Expressão Gênica , Suínos
12.
Cell Tissue Res ; 396(2): 231-243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438567

RESUMO

C-C motif chemokine ligand 2 (CCL2) has been reported to be expressed in the bovine endometrium during pregnancy. However, the details of its functions involved in the implantation mechanism are still not clear. The purpose of this study is to analyze the functional properties of CCL2 in the bovine endometrium and embryos. The expression of CCR2 was not different between the luteal phase and implantation phase of their endometrial tissues, but was significantly high in IFNa treated bovine endometrial stromal (BES) cells in vitro. The expressions of PGES1, PGES2, AKR1C4, and AKR1C4 were high at the implantation stage compared with the luteal stage. On the other hand, PGES2 and AKR1B1 in BEE and PGES3 and AKR1A1 in BES were significantly increased by CCL2 treatment, respectively. The expressions of PCNA and IFNt were found significantly high in the bovine trophoblastic cells (BT) treated with CCL2 compared to the control. CCL2 significantly increased the attachment rate of BT vesicles to BEE in in vitro co-culture system. The expression of OPN and ICAM-1 increased in BEE, and ICAM-1 increased in BT by CCL2 treatment, respectively. The present results indicate that CCL2 has the potential to regulate the synthesis of PGs in the endometrium and the embryo growth. In addition, CCL2 has the possibility to regulate the process of bovine embryo attachment to the endometrium by modulation of binding molecules expression.


Assuntos
Quimiocina CCL2 , Implantação do Embrião , Endométrio , Prostaglandinas , Animais , Bovinos , Feminino , Gravidez , Quimiocina CCL2/metabolismo , Implantação do Embrião/genética , Endométrio/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interferon Tipo I , Proteínas da Gravidez , Prostaglandinas/metabolismo , Receptores CCR2/metabolismo , Células Estromais/metabolismo , Trofoblastos/metabolismo , Trofoblastos/citologia
13.
Reprod Biol Endocrinol ; 22(1): 16, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297297

RESUMO

During embryo implantation, blastocyst interacts with the receptivity endometrium and the endometrial epithelium secretes nurturing fluid to support embryonic development. Interferon-λ (IFN-λ) is a novel, non-redundant regulator that participates in the fetal-maternal interaction; however, the precise molecular mechanism underlying its impact on uterine receptivity remains elusive. Here, microarray profiling revealed that 149 specific miRNAs were differentially expressed in the human endometrial cells following IFN-λ treatment. In particular, miR-124-3p expression was significantly reduced after IFN-λ treatment (p < 0.05). An in vivo mouse pregnancy model showed that miR-124-3p overexpression notably decreased embryo implantation rate and led to an aberrant epithelial phenotype. Furthermore, miR-124-3p negatively impacted the migration and proliferation of endometrial cells, and hindered embryonic developmental competence in terms of blastocyst formation and global DNA re-methylation. Downstream analysis showed that LIF, MUC1 and BCL2 are potential target genes for miR-124-3p, which was confirmed using western blotting and immunofluorescence assays. In conclusion, IFN-λ-driven downregulation of miR-124-3p during embryo implantation modulates uterine receptivity. The dual functional role of miR-124-3p suggests a cross-talk model wherein, maternal endometrial miRNA acts as a transcriptomic modifier of the peri-implantation endometrium and embryo development.


Assuntos
Interferon lambda , MicroRNAs , Gravidez , Feminino , Humanos , Camundongos , Animais , Implantação do Embrião/genética , Útero/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Endométrio/metabolismo , Desenvolvimento Embrionário/genética
14.
FASEB J ; 37(12): e23313, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962238

RESUMO

Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.


Assuntos
Implantação do Embrião , Útero , Animais , Feminino , Humanos , Camundongos , Gravidez , Implantação do Embrião/genética , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Camundongos Knockout , Coativador 2 de Receptor Nuclear/genética , Útero/metabolismo
15.
Mol Cell Probes ; 74: 101955, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479679

RESUMO

Recurrent implantation failure (RIF) is a condition with a multifactorial basis. Recent research has focused on the role of genetic factors in the pathophysiology of RIF. Of particular note, miRNAs have been found to contribute to the pathogenesis of RIF. Several miRNA polymorphisms have been investigated in this context. Moreover, dysregulation of expression of a number of miRNAs, including miR-374a-5p, miR-145-5p, miR-30b-5p, miR-196b-5p, miR-22, miR-181 and miR-145 has been found in RIF. This review concentrates on the role of miRNAs in RIF to help in identification of the molecular basis for this condition and design of more effective methods for management of RIF, especially in a personalized manner that relies on the expression profiles of miRNAs in the peripheral blood or endometrium.


Assuntos
MicroRNAs , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Implantação do Embrião/genética
16.
J Assist Reprod Genet ; 41(5): 1329-1339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38386119

RESUMO

PURPOSE: In a preimplantation genetic testing for aneuploidy (PGT-A) cycle, does the blastocyst quality before biopsy, or the day of biopsy, or the embryo hatching status have an impact on either euploidy or the rate of embryo survival after freezing? METHODS: This was a retrospective study including 6130 biopsied blastocysts coming from 1849 PGT-A cycles performed in our center (2016-2022). Embryos were categorized according to the inner cell mass and trophectoderm quality, using Gardner's scoring (excellent: AA; good: AB, BA, BB; poor: AC, CA, BC, CB, CC); the day of biopsy (5 or 6); and their hatching status (fully hatched blastocysts [FHB] or non-fully hatched blastocysts [nFHB]). The independent relationship between each group and both euploidy and survival rate was assessed. RESULTS: Excellent-quality embryos were more euploid than both good- and poor-quality embryos (52.69%, 39.69%, and 26.21%; p < 0.001), and day 5-biopsied embryos were more euploid than day 6-biopsied embryos (39.98% and 34.80%; p < 0.001). Survival rates of excellent-quality (92.26%) and good-quality (92.47%) embryos were higher than survival rates in the poor-quality group (84.61%) (p = 0.011 and p = 0.002). Day 5-biopsied embryos survived better than day 6-biopsied embryos (93.71% vs. 83.69%; p < 0.001) and FHB had poorer survival than nFHB (78.61% vs. 93.52%; p < 0.001). CONCLUSIONS: Excellent-quality and day 5-biopsied embryos are more prone to be euploid than good and poor or day 6-biopsied embryos, respectively. Poor-quality, day 6-biopsied embryos, and FHB have significantly lower survival after biopsy and vitrification.


Assuntos
Aneuploidia , Blastocisto , Testes Genéticos , Taxa de Gravidez , Diagnóstico Pré-Implantação , Humanos , Diagnóstico Pré-Implantação/métodos , Feminino , Gravidez , Testes Genéticos/métodos , Adulto , Transferência Embrionária/métodos , Estudos Retrospectivos , Fertilização in vitro , Criopreservação , Desenvolvimento Embrionário/genética , Implantação do Embrião/genética , Biópsia
17.
J Assist Reprod Genet ; 41(5): 1417-1431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456991

RESUMO

PURPOSE: Gene expression analysis of the endometrium has been shown to be a useful approach for identifying the molecular signatures and pathways involved in recurrent implantation failure (RIF). Nevertheless, individual studies have limitations in terms of study design, methodology and analysis to detect minor changes in expression levels or identify novel gene signatures associated with RIF. METHOD: To overcome this, we conducted an in silico meta-analysis of nine studies, the systematic collection and integration of gene expression data, utilizing rigorous selection criteria and statistical techniques to ensure the robustness of our findings. RESULTS: Our meta-analysis successfully unveiled a meta-signature of 49 genes closely associated with RIF. Of these genes, 38 were upregulated and 11 downregulated in RIF patients' endometrium and believed to participate in key processes like cell differentiation, communication, and adhesion. GADD45A, IGF2, and LIF, known for their roles in implantation, were identified, along with lesser-studied genes like OPRK1, PSIP1, SMCHD1, and SOD2 related to female infertility. Many of these genes are involved in MAPK and PI3K-Akt pathways, indicating their role in inflammation. We also investigated to look for key miRNAs regulating these 49 dysregulated mRNAs as potential diagnostic biomarkers. Along with this, we went to associate protein-protein interactions of 49 genes, and we could recognize one cluster consisting of 11 genes (consisted of 22 nodes and 11 edges) with the highest score (p = 0.001). Finally, we validated some of the genes by qRT-PCR in our samples. CONCLUSION: In summary, the meta-signature genes hold promise for improving RIF patient identification and facilitating the development of personalized treatment strategies, illuminating the multifaceted nature of this complex condition.


Assuntos
Implantação do Embrião , Endométrio , Transcriptoma , Humanos , Feminino , Endométrio/metabolismo , Endométrio/patologia , Implantação do Embrião/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , MicroRNAs/genética , Regulação da Expressão Gênica/genética , Gravidez
18.
J Assist Reprod Genet ; 41(3): 781-793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270749

RESUMO

PURPOSE: Can small RNA derived from embryos in conditioned embryo culture medium (ECM) influence embryo implantation? METHODS: We employed small RNA sequencing to investigate the expression profiles of transfer RNA-derived small RNA (tsRNA) and microRNA (miRNA) in ECM from high-quality and low-quality embryos. Quantitative real-time PCR was employed to validate the findings of small RNA sequencing. Additionally, we conducted bioinformatics analysis to predict the potential functions of these small RNAs in embryo implantation. To establish the role of tiRNA-1:35-Leu-TAG-2 in embryonic trophoblast cell adhesion, we utilized co-culture systems involving JAR and Ishikawa cells. RESULTS: Our analysis revealed upregulation of nine tsRNAs and four miRNAs in ECM derived from high-quality embryos, whereas 37 tsRNAs and 12 miRNAs exhibited upregulation in ECM from low-quality embryos. The bioinformatics analysis of tsRNA, miRNA, and mRNA pathways indicated that their respective target genes may play pivotal roles in both embryo development and endometrial receptivity. Utilizing tiRNA mimics, we demonstrated that the prominently expressed tiRNA-1:35-Leu-TAG-2 in the low-quality ECM group can be internalized by Ishikawa cells. Notably, transfection of tiRNA-1:35-Leu-TAG-2 into Ishikawa cells reduced the attachment rate of JAR spheroids. CONCLUSION: Our investigation uncovers significant variation in the expression profiles of tsRNAs and miRNAs between ECM derived from high- and low-quality embryos. Intriguingly, the release of tiRNA-1:35-Leu-TAG-2 by low-quality embryos detrimentally affects embryo implantation and endometrial receptivity. These findings provide fresh insights into understanding the molecular foundations of embryo-endometrial communication.


Assuntos
MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Implantação do Embrião/genética , Embrião de Mamíferos/metabolismo , Técnicas de Cocultura , Desenvolvimento Embrionário/genética , Endométrio/metabolismo
19.
J Assist Reprod Genet ; 41(2): 493-504, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049704

RESUMO

BACKGROUND: Endometrial receptivity (ER), a pivotal event for successful embryo implantation, refers to the capacity of endometrium to allow the adhesion of the trophectoderm of the blastocyst to endometrial cells. In this paper, we set to elucidate whether the peptides encoded by lncRNAs could influence trophoblast cells' adhesion to endometrial cells. METHODS: WGCNA construction and bioinformatics were used to find out the ER-related lncRNAs with coding potential. Protein analysis was done by immunoblotting and immunofluorescence (IF) microscopy. CCK-8 and Calcein-AM/PI double staining assays were employed to evaluate cell viability. The effect of the peptide on trophoblast spheroids' adhesion to endometrial cells was evaluated. The RNA sequencing (RNA-seq) analysis was applied to identify downstream molecular processes. RESULTS: lncRNA LINC00339 was found to be related to ER development and it had been predicted to have protein-coding potential. LINC00339 had high occupancy of ribosomes and was confirmed to encode a 49-aa peptide (named LINC00339-205-49aa). LINC00339-205-49aa could promote the attachment of JAR trophoblast spheroids to Ishikawa endometrial cells in vitro. LINC00339-205-49aa also upregulated the expression of E-cadherin in Ishikawa cells. Mechanistically, MAPK and PI3K-Akt signaling pathways were involved in the modulation of LINC00339-205-49aa, which were activated by LINC00339-205-49aa in Ishikawa cells. CONCLUSION: These data demonstrate that a previously uncharacterized peptide encoded by lncRNA LINC00339 has the ability to enhance JAR trophoblast spheroids' adhesion to Ishikawa endometrial cells, highlighting a new opportunity for the development of drugs to improve ER.


Assuntos
RNA Longo não Codificante , Feminino , Humanos , RNA Longo não Codificante/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Endométrio/metabolismo , Implantação do Embrião/genética , Trofoblastos/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/genética , Adesão Celular/genética , Peptídeos
20.
J Assist Reprod Genet ; 41(5): 1213-1219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642270

RESUMO

PURPOSE: To investigate whether leukocytospermia (defined as the presence of ≥ 1 × 106 white blood cells/mL) affects clinical and embryologic outcomes in in vitro fertilization (IVF) cycles with intracytoplasmic sperm injection (ICSI) and preimplantation genetic testing for aneuploidy (PGT-A). METHODS: This was a retrospective cohort study including 5425 cycles between January 2012 to December 2021 at a single large university-affiliated fertility clinic. The primary outcome was live birth rate (LBR). RESULTS: The prevalence of leukocytospermia was 33.9% (n = 1843). Baseline characteristics including female age, BMI, AMH, Day 3 FSH, and male partner's age were similar in cycles with and without leukocytospermia. The LBR after the first euploid embryo transfer was similar in those with and without leukocytospermia (62.3% vs. 63% p = 0.625). Secondary outcomes including clinical pregnancy rate (CPR), sustained implantation rate (SIR), fertilization (2PN) rate, blastulation rate, and aneuploidy rate were also evaluated. The CPR (73.3% vs 74.9%, p = 0.213) and SIR (64.6% vs. 66%, p = 0.305) were similar in both groups. The 2PN rate was also similar in both groups (85.7% vs. 85.8%, p = 0.791), as was the blastulation rate per 2PN (56.7% vs. 57.5%, p = 0.116). The aneuploidy rate was not significantly different between groups (25.7% vs 24.4%, p = 0.053). A generalized estimation equation with logistic regression demonstrated that the presence leukocytospermia did not influence the LBR (adjusted OR 0.878; 95% CI, 0.680-1.138). CONCLUSION: Leukocytospermia diagnosed just prior to an IVF cycle with PGT-A does not negatively impact clinical or embryologic outcomes.


Assuntos
Aneuploidia , Transferência Embrionária , Fertilização in vitro , Testes Genéticos , Taxa de Gravidez , Diagnóstico Pré-Implantação , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Injeções de Esperma Intracitoplásmicas/métodos , Gravidez , Masculino , Adulto , Transferência Embrionária/métodos , Estudos Retrospectivos , Nascido Vivo/epidemiologia , Nascido Vivo/genética , Coeficiente de Natalidade , Leucócitos/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Infertilidade Masculina/terapia , Infertilidade Masculina/diagnóstico , Implantação do Embrião/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA