Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.442
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142680

RESUMO

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias/tratamento farmacológico , Proclorperazina/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Biópsia , Cetuximab/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Xenoenxertos , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Trastuzumab/farmacologia
2.
Cell ; 173(1): 166-180.e14, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502969

RESUMO

Brain-wide fluctuations in local field potential oscillations reflect emergent network-level signals that mediate behavior. Cracking the code whereby these oscillations coordinate in time and space (spatiotemporal dynamics) to represent complex behaviors would provide fundamental insights into how the brain signals emotional pathology. Using machine learning, we discover a spatiotemporal dynamic network that predicts the emergence of major depressive disorder (MDD)-related behavioral dysfunction in mice subjected to chronic social defeat stress. Activity patterns in this network originate in prefrontal cortex and ventral striatum, relay through amygdala and ventral tegmental area, and converge in ventral hippocampus. This network is increased by acute threat, and it is also enhanced in three independent models of MDD vulnerability. Finally, we demonstrate that this vulnerability network is biologically distinct from the networks that encode dysfunction after stress. Thus, these findings reveal a convergent mechanism through which MDD vulnerability is mediated in the brain.


Assuntos
Encéfalo/fisiologia , Depressão/patologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Estimulação Elétrica , Eletrodos Implantados , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Ketamina/farmacologia , Aprendizado de Máquina , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenômenos Fisiológicos/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Estresse Psicológico
3.
Cell ; 153(6): 1379-93, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23746848

RESUMO

Some species mount a robust antibody response despite having limited genome-encoded combinatorial diversity potential. Cows are unusual in having exceptionally long CDR H3 loops and few V regions, but the mechanism for creating diversity is not understood. Deep sequencing reveals that ultralong CDR H3s contain a remarkable complexity of cysteines, suggesting that disulfide-bonded minidomains may arise during repertoire development. Indeed, crystal structures of two cow antibodies reveal that these CDR H3s form a very unusual architecture composed of a ß strand "stalk" that supports a structurally diverse, disulfide-bonded "knob" domain. Diversity arises from somatic hypermutation of an ultralong DH with a severe codon bias toward mutation to cysteine. These unusual antibodies can be elicited to recognize defined antigens through the knob domain. Thus, the bovine immune system produces an antibody repertoire composed of ultralong CDR H3s that fold into a diversity of minidomains generated through combinations of somatically generated disulfides.


Assuntos
Diversidade de Anticorpos , Bovinos/imunologia , Regiões Determinantes de Complementaridade , Imunoglobulina G/genética , Imunoglobulina M/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Cisteína/análise , Cisteína/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulina G/química , Imunoglobulina M/química , Camundongos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Alinhamento de Sequência
4.
Nat Immunol ; 16(7): 755-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26006014

RESUMO

Acute systemic lupus erythematosus (SLE) courses with surges of antibody-secreting cells (ASCs) whose origin, diversity and contribution to serum autoantibodies remain unknown. Here, deep sequencing, proteomic profiling of autoantibodies and single-cell analysis demonstrated highly diversified ASCs punctuated by clones expressing the variable heavy-chain region VH4-34 that produced dominant serum autoantibodies. A fraction of ASC clones contained autoantibodies without mutation, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment was derived from a distinct subset of newly activated naive cells of considerable clonality that persisted in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation, with prolonged recruitment of recently activated naive B cells. Our findings shed light on the pathogenesis of SLE, help explain the benefit of agents that target B cells and should facilitate the design of future therapies.


Assuntos
Diversidade de Anticorpos/imunologia , Células Produtoras de Anticorpos/imunologia , Autoanticorpos/imunologia , Proliferação de Células , Lúpus Eritematoso Sistêmico/imunologia , Doença Aguda , Sequência de Aminoácidos , Diversidade de Anticorpos/genética , Células Produtoras de Anticorpos/metabolismo , Autoanticorpos/genética , Autoanticorpos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sequência de Bases , Células Clonais/imunologia , Células Clonais/metabolismo , Citometria de Fluxo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Vacinas contra Influenza/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Dados de Sequência Molecular , Proteoma/análise , Proteoma/imunologia , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Análise de Célula Única/métodos , Espectrometria de Massas em Tandem , Toxoide Tetânico/imunologia
5.
Immunity ; 48(6): 1135-1143.e4, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29884459

RESUMO

Although immune memory often lasts for life, this is not the case for certain vaccines in some individuals. We sought a mechanism for this phenomenon by studying B cell responses to phycoerythrin (PE). PE immunization of mouse strains with Ighb immunoglobulin (Ig) variable heavy chain (VH) genes elicited affinity-matured switched Ig memory B cells that declined with time, while the comparable population from an Igha strain was numerically stable. Ighb strains had larger numbers of PE-specific naive B cells and generated smaller germinal center responses and larger numbers of IgM memory cells than the Igha strain. The properties of PE-specific B cells in Ighb mice correlated with usage of a single VH that afforded high-affinity PE binding in its germline form. These results suggest that some individuals may be genetically predisposed to generate non-canonical memory B cell responses to certain antigens because of avid antigen binding via germline-encoded VH elements.


Assuntos
Linfócitos B/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Memória Imunológica/genética , Memória Imunológica/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Genes de Imunoglobulinas , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulina M/genética , Região Variável de Imunoglobulina/genética , Camundongos , Receptores de Antígenos de Linfócitos B/genética
6.
Nature ; 596(7872): 417-422, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34192737

RESUMO

Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating.


Assuntos
Envelhecimento/imunologia , Vacinas contra COVID-19/imunologia , Imunidade , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Autoanticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Vacina BNT162 , Vacinas contra COVID-19/administração & dosagem , Feminino , Pessoal de Saúde , Humanos , Imunidade/genética , Imunização Secundária , Imunoglobulina A/imunologia , Switching de Imunoglobulina , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Memória Imunológica/imunologia , Inflamação/sangue , Inflamação/imunologia , Interferon gama/imunologia , Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Hipermutação Somática de Imunoglobulina , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas de mRNA
7.
Nature ; 597(7875): 274-278, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33208941

RESUMO

Tumours often contain B cells and plasma cells but the antigen specificity of these intratumoral B cells is not well understood1-8. Here we show that human papillomavirus (HPV)-specific B cell responses are detectable in samples from patients with HPV-positive head and neck cancers, with active production of HPV-specific IgG antibodies in situ. HPV-specific antibody secreting cells (ASCs) were present in the tumour microenvironment, with minimal bystander recruitment of influenza-specific cells, suggesting a localized and antigen-specific ASC response. HPV-specific ASC responses correlated with titres of plasma IgG and were directed against the HPV proteins E2, E6 and E7, with the most dominant response against E2. Using intratumoral B cells and plasma cells, we generated several HPV-specific human monoclonal antibodies, which exhibited a high degree of somatic hypermutation, consistent with chronic antigen exposure. Single-cell RNA sequencing analyses detected activated B cells, germinal centre B cells and ASCs within the tumour microenvironment. Compared with the tumour parenchyma, B cells and ASCs were preferentially localized in the tumour stroma, with well-formed clusters of activated B cells indicating ongoing germinal centre reactions. Overall, we show that antigen-specific activated and germinal centre B cells as well as plasma cells can be found in the tumour microenvironment. Our findings provide a better understanding of humoral immune responses in human cancer and suggest that tumour-infiltrating B cells could be harnessed for the development of therapeutic agents.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/virologia , Linfócitos do Interstício Tumoral/imunologia , Papillomaviridae/imunologia , Microambiente Tumoral/imunologia , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Linfócitos B/metabolismo , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/virologia , Separação Celular , Centro Germinativo/citologia , Centro Germinativo/imunologia , Neoplasias de Cabeça e Pescoço/sangue , Humanos , Imunidade Humoral , Imunoglobulina G/sangue , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Infecções por Papillomavirus/sangue , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , RNA-Seq , Análise de Célula Única , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Transcriptoma
8.
Immunity ; 44(3): 647-658, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26944199

RESUMO

The gut microbiota is compartmentalized in the intestinal lumen and induces local immune responses, but it remains unknown whether the gut microbiota can induce systemic response and contribute to systemic immunity. We report that selective gut symbiotic gram-negative bacteria were able to disseminate systemically to induce immunoglobulin G (IgG) response, which primarily targeted gram-negative bacterial antigens and conferred protection against systemic infections by E. coli and Salmonella by directly coating bacteria to promote killing by phagocytes. T cells and Toll-like receptor 4 on B cells were important in the generation of microbiota-specific IgG. We identified murein lipoprotein (MLP), a highly conserved gram-negative outer membrane protein, as a major antigen that induced systemic IgG homeostatically in both mice and humans. Administration of anti-MLP IgG conferred crucial protection against systemic Salmonella infection. Thus, our findings reveal an important function for the gut microbiota in combating systemic infection through the induction of protective IgG.


Assuntos
Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Imunoglobulina G/metabolismo , Intestinos/imunologia , Peptidoglicano/imunologia , Animais , Carga Bacteriana/genética , Homeostase/genética , Interações Hospedeiro-Patógeno , Imunoglobulina G/genética , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
9.
Immunity ; 44(4): 769-81, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26944202

RESUMO

Somatic hypermutation (SHM) and class-switch recombination (CSR) increase the affinity and diversify the effector functions of antibodies during immune responses. Although SHM and CSR are fundamentally different, their independent roles in regulating B cell fate have been difficult to uncouple because a single enzyme, activation-induced cytidine deaminase (encoded by Aicda), initiates both reactions. Here, we used a combination of Aicda and antibody mutant alleles that separate the effects of CSR and SHM on polyclonal immune responses. We found that class-switching to IgG1 biased the fate choice made by B cells, favoring the plasma cell over memory cell fate without significantly affecting clonal expansion in the germinal center (GC). In contrast, SHM reduced the longevity of memory B cells by creating polyreactive specificities that were selected against over time. Our data define the independent contributions of SHM and CSR to the generation and persistence of memory in the antibody system.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/genética , Switching de Imunoglobulina/imunologia , Memória Imunológica/imunologia , Hipermutação Somática de Imunoglobulina/imunologia , Animais , Linfócitos B/citologia , Diferenciação Celular/imunologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Switching de Imunoglobulina/genética , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hipermutação Somática de Imunoglobulina/genética
10.
J Immunol ; 211(6): 1042-1051, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37540118

RESUMO

Gnathostome adaptive immunity is defined by the Ag receptors, Igs and TCRs, and the MHC. Cartilaginous fish are the oldest vertebrates with these adaptive hallmarks. We and others have unearthed nonrearranging Ag receptor-like genes in several vertebrates, some of which are encoded in the MHC or in MHC paralogous regions. One of these genes, named UrIg, was detected in the class III region of the shark MHC that encodes a protein with typical V and C domains such as those found in conventional Igs and TCRs. As no transmembrane region was detected in gene models or cDNAs, the protein does not appear to act as a receptor. Unlike some other shark Ig genes, the UrIg V region shows no evidence of RAG-mediated rearrangement, and thus it is likely related to other V genes that predated the invasion of the RAG transposon. The UrIg gene is present in all elasmobranchs and evolves conservatively, unlike Igs and TCRs. Also, unlike Ig/TCR, the gene is not expressed in secondary lymphoid tissues, but mainly in the liver. Recombinant forms of the molecule form disulfide-linked homodimers, which is the form also detected in many shark tissues by Western blotting. mAbs specific for UrIg identify the protein in the extracellular matrix of several shark tissues by immunohistochemistry. We propose that UrIg is related to the V gene invaded by the RAG transposon, consistent with the speculation of emergence of Ig/TCR within the MHC or proto-MHC.


Assuntos
Anticorpos , Complexo Principal de Histocompatibilidade , Tubarões , Tubarões/genética , Tubarões/metabolismo , Anticorpos/química , Anticorpos/genética , Anticorpos/metabolismo , Imunoglobulina G/genética , Filogenia , Evolução Molecular , Sequência de Aminoácidos , Alinhamento de Sequência , Fígado/metabolismo , Expressão Gênica , Mamíferos/genética , Especificidade de Órgãos
11.
PLoS Genet ; 18(12): e1010548, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574452

RESUMO

Variation in immune homeostasis, the state in which the immune system is maintained in the absence of stimulation, is highly variable across populations. This variation is attributed to both genetic and environmental factors. However, the identity and function of specific regulators have been difficult to identify in humans. We evaluated homeostatic antibody levels in the serum of the Collaborative Cross (CC) mouse genetic reference population. We found heritable variation in all antibody isotypes and subtypes measured. We identified 4 quantitative trait loci (QTL) associated with 3 IgG subtypes: IgG1, IgG2b, and IgG2c. While 3 of these QTL map to genome regions of known immunological significance (major histocompatibility and immunoglobulin heavy chain locus), Qih1 (associated with variation in IgG1) mapped to a novel locus on Chromosome 18. We further associated this locus with B cell proportions in the spleen and identify Methyl-CpG binding domain protein 1 under this locus as a novel regulator of homeostatic IgG1 levels in the serum and marginal zone B cells (MZB) in the spleen, consistent with a role in MZB differentiation to antibody secreting cells.


Assuntos
Camundongos de Cruzamento Colaborativo , Locos de Características Quantitativas , Camundongos , Humanos , Animais , Locos de Características Quantitativas/genética , Camundongos de Cruzamento Colaborativo/genética , Ativação Linfocitária , Imunoglobulina G/genética , Homeostase/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
12.
Proc Natl Acad Sci U S A ; 119(25): e2121260119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704755

RESUMO

Antibodies are produced across multiple isotypes with distinct properties that coordinate initial antigen clearance and confer long-term antigen-specific immune protection. Here, we interrogate the molecular programs of isotype-specific murine plasma cells (PC) following helper T cell-dependent immunization and within established steady-state immunity. We developed a single-cell-indexed and targeted molecular strategy to dissect conserved and divergent components of the rapid effector phase of antigen-specific IgM+ versus inflammation-modulating programs dictated by type 1 IgG2a/b+ PC differentiation. During antibody affinity maturation, the germinal center (GC) cycle imparts separable programs for post-GC type 2 inhibitory IgG1+ and type 1 inflammatory IgG2a/b+ PC to direct long-term cellular function. In the steady state, two subsets of IgM+ and separate IgG2b+ PC programs clearly segregate from splenic type 3 IgA+ PC programs that emphasize mucosal barrier protection. These diverse isotype-specific molecular pathways of PC differentiation control complementary modules of antigen clearance and immune protection that could be selectively targeted for immunotherapeutic applications and vaccine design.


Assuntos
Diferenciação Celular , Centro Germinativo , Plasmócitos , Animais , Antígenos , Imunoglobulina G/genética , Imunoglobulina M , Camundongos , Plasmócitos/citologia , Análise de Célula Única , Linfócitos T Auxiliares-Indutores
13.
Proc Natl Acad Sci U S A ; 119(10): e2123002119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235456

RESUMO

Therapeutic human IgG antibodies are routinely tested in mouse models of oncologic, infectious, and autoimmune diseases. However, assessing the efficacy and safety of long-term administration of these agents has been limited by endogenous anti-human IgG immune responses that act to clear human IgG from serum and relevant tissues, thereby reducing their efficacy and contributing to immune complex­mediated pathologies, confounding evaluation of potential toxicity. For this reason, human antibody treatment in mice is generally limited in duration and dosing, thus failing to recapitulate the potential clinical applications of these therapeutics. Here, we report the development of a mouse model that is tolerant of chronic human antibody administration. This model combines both a human IgG1 heavy chain knock-in and a full recapitulation of human Fc receptor (FcγR) expression, providing a unique platform for in vivo testing of human monoclonal antibodies with relevant receptors beyond the short term. Compared to controls, hIgG1 knock-in mice mount minimal anti-human IgG responses, allowing for the persistence of therapeutically active circulating human IgG even in the late stages of treatment in chronic models of immune thrombocytopenic purpura and metastatic melanoma.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Imunoglobulina G/imunologia , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/toxicidade , Formação de Anticorpos/genética , Doença Crônica , Humanos , Tolerância Imunológica , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Transgênicos , Modelos Animais , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/terapia
14.
J Proteome Res ; 23(3): 1088-1101, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363599

RESUMO

Fc γ-receptors (FcγRs) on leukocytes bind immunoglobulin G (IgG) immune complexes to mediate effector functions. Dysregulation of FcγR-mediated processes contributes to multiple inflammatory diseases, including rheumatoid arthritis, lupus, and immune thrombocytopenia. Critically, immunoregulatory N-glycan modifications on both FcγRs and IgGs alter FcγR-IgG binding affinity. Rapid methods for the characterization of N-glycans across multiple Fcγ receptors are needed to propel investigations into disease-specific contributions of FcγR N-glycans. Here, we utilize nanoliquid chromatography tandem mass spectrometry (nLC-MS/MS) to characterize FcγR glycosylation and report quantitative and site-specific N-glycan characterization of recombinant human FcγRI, FcγRIIIA V158, and FcγRIIIA F158 from CHO cells and murine FcγRI, FcγRIII, and FcγRIV from NS0 cells. Data are available via ProteomeXchange with identifier PXD043966. Broad glycoform distribution (≥30) was observed at mouse FcγRIV site N159 and human FcγRIIIA site N162, an evolutionarily conserved site. Further, mouse FcγRIII N-glycopeptides spanning all four predicted N-glycosylation sequons were detected. Glycoform relative abundances for hFcγRIIIA V/F158 polymorphic variants are reported, demonstrating the clinical potential of this workflow to measure differences in glycosylation between common human FcγRIIIA allelic variants with disease-associated outcomes. The multi-Fcγ receptor glycoproteomic workflow reported here will empower studies focused on the role of FcγR N-glycosylation in autoimmune diseases.


Assuntos
Receptores de IgG , Espectrometria de Massas em Tandem , Humanos , Animais , Camundongos , Cricetinae , Glicosilação , Receptores de IgG/genética , Cricetulus , Imunoglobulina G/genética , Polissacarídeos
15.
Gene Ther ; 31(1-2): 19-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37500816

RESUMO

Adeno-associated virus (AAV) vectors have been successfully used to deliver genes for treating rare diseases. However, the systemic administration of high AAV vector doses triggers several adverse effects, including immune response, the asymptomatic elevation of liver transaminase levels, and complement activation. Thus, improving AAV transduction and reducing AAV dosage for treatment is necessary. Recently, we found that a phosphodiesterase-5 inhibitor significantly promoted AAV9 transduction in vitro by regulating the caveolae and macropinocytosis pathways. When AAV9-Gaussian luciferase (AAV9-Gluc) and AAV9-green fluorescent protein (AAV9-GFP) were injected intravenously into mice pre-treated with sildenafil, the expressions of Gluc in the plasma and GFP in muscle tissues significantly increased (P < 0.05). Sildenafil also improved Evans blue permeation in tissues. Additionally, we found that sildenafil promoted Treg proliferation, inhibited B-cell activation, and decreased anti-AAV9 IgG levels (P < 0.05). Furthermore, sildenafil significantly promoted Duchenne muscular dystrophy gene therapy efficacy using AAV9 in mdx mice; it increased micro-dystrophin gene expression, forelimb grip strength, and time spent on the rotarod test, decreased serum creatine kinase levels, and ameliorated histopathology by improving muscle cell morphology and reducing fibrosis (P < 0.05). These results show that sildenafil significantly improved AAV transduction, suppressed the levels of anti-AAV9 IgG, and enhanced the efficacy of gene therapy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Camundongos Endogâmicos mdx , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Citrato de Sildenafila/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Imunoglobulina G/genética , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos/genética , Músculo Esquelético/metabolismo
16.
Hum Mol Genet ; 31(10): 1545-1559, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34791244

RESUMO

Changes in the N-glycosylation of immunoglobulin G (IgG) are often observed in pathological states, such as autoimmune, inflammatory, neurodegenerative, cardiovascular diseases and some types of cancer. However, in most cases, it is not clear if the disease onset causes these changes, or if the changes in IgG N-glycosylation are among the risk factors for the diseases. The aim of this study was to investigate the casual relationships between IgG N-glycosylation traits and 12 diseases, in which the alterations of IgG N-glycome were previously reported, using two sample Mendelian randomization (MR) approach. We have performed two sample MR using publicly available summary statistics of genome-wide association studies of IgG N-glycosylation and disease risks. Our results indicate positive causal effect of systemic lupus erythematosus (SLE) on the abundance of N-glycans with bisecting N-acetylglucosamine in the total IgG N-glycome. Therefore, we suggest regarding this IgG glycosylation trait as a biomarker of SLE. We also emphasize the need for more powerful GWAS studies of IgG N-glycosylation to further elucidate the causal effect of IgG N-glycome on the diseases.


Assuntos
Imunoglobulina G , Lúpus Eritematoso Sistêmico , Estudo de Associação Genômica Ampla , Glicosilação , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Lúpus Eritematoso Sistêmico/genética , Polissacarídeos/genética
17.
J Clin Immunol ; 44(3): 66, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363477

RESUMO

B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.


Assuntos
Citidina Desaminase , Síndrome de Imunodeficiência com Hiper-IgM , Switching de Imunoglobulina , Humanos , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Síndrome de Imunodeficiência com Hiper-IgM/genética , Imunoglobulina A/genética , Switching de Imunoglobulina/genética , Imunoglobulina G/genética , Fenótipo , Hipermutação Somática de Imunoglobulina
18.
Biochem Biophys Res Commun ; 691: 149326, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38035406

RESUMO

Sleep deprivation (SD) weakens the immune system and leads to increased susceptibility to infectious or inflammatory diseases. However, it is still unclear how SD affects humoral immunity. In the present study, sleep disturbance was conducted using an sleep deprivation instrument, and the bacterial endotoxin lipopolysaccharide (LPS) was used to activate the immune response. It was found that SD-pretreatment reduced LPS-induced IgG2b+ B cells and IgG2b isotype antibody production in lymphocytes of spleen. And, SD-pretreatment decreased the proportion of CD4+T cells, production of CD4+T cells derived TGF-ß1 and its contribution in helping IgG2b production. Additionally, BMAL1 and CLOCK were selectively up-regulated in lymphocytes after SD. Importantly, BMAL1 and CLOCK deficiency contributed to TGF-ß1 expression and production of IgG2b+ B cells. Thus, our results provide a novel insight to explain the involvement of BMAL1 and CLOCK under SD stress condition, and their roles in inhibiting TGF-ß1 expression and contributing to reduction of LPS induced IgG2b production.


Assuntos
Fatores de Transcrição ARNTL , Formação de Anticorpos , Proteínas CLOCK , Imunoglobulina G , Privação do Sono , Privação do Sono/genética , Privação do Sono/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/imunologia , Proteínas CLOCK/genética , Proteínas CLOCK/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/genética , Estresse Fisiológico/imunologia , Animais , Camundongos , Ratos , Células Cultivadas
19.
Plant Biotechnol J ; 22(5): 1224-1237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38050338

RESUMO

Immune checkpoint blocking therapy targeting the PD-1/PD-L1 inhibitory signalling pathway has produced encouraging results in the treatment of a variety of cancers. Durvalumab (Imfinzi®) targeting PD-L1 is currently used for immunotherapy of several tumour malignancies. The Fc region of this IgG1 antibody has been engineered to reduce FcγR interactions with the aim of enhancing blockade of PD-1/PD-L1 interactions without the depletion of PD-L1-expressing immune cells. Here, we used Nicotiana benthamiana to produce four variants of Durvalumab (DL): wild-type IgG1 and its 'Fc-effector-silent' variant (LALAPG) carrying further modifications to increase antibody half-life (YTE); IgG4S228P and its variant (PVA) with Fc mutations to decrease binding to FcγRI. In addition, DL variants were produced with two distinct glycosylation profiles: afucosylated and decorated with α1,6-core fucose. Plant-derived DL variants were compared to the therapeutic antibody regarding their ability to (i) bind to PD-L1, (ii) block PD-1/PD-L1 inhibitory signalling and (iii) engage with the neonatal Fc receptor (FcRn) and various Fcγ receptors. It was found that plant-derived DL variants bind to recombinant PD-L1 and to PD-L1 expressed in gastrointestinal cancer cells and are able to effectively block its interaction with PD-1 on T cells, thereby enhancing their activation. Furthermore, we show a positive impact of Fc amino acid mutations and core fucosylation on DL's therapeutic potential. Compared to Imfinzi®, DL-IgG1 (LALAPG) and DL-IgG4 (PVA)S228P show lower affinity to CD32B inhibitory receptor which can be therapeutically favourable. Importantly, DL-IgG1 (LALAPG) also shows enhanced binding to FcRn, a key determinant of serum half-life of IgGs.


Assuntos
Anticorpos Monoclonais , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/genética , Imunoglobulina G/genética
20.
J Pept Sci ; 30(7): e3592, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38447547

RESUMO

The CRISPR-Cas9 system has revolutionized the field of genetic engineering, but targeted cellular delivery remains a central problem. The delivery of the preformed ribonuclease-protein (RNP) complex has the advantages of fewer side effects and avoidance of potential permanent effects. We reasoned that an internalizing IgG antibody as a targeting device could address the delivery of Cas9-RNP. We opted for protein trans-splicing mediated by a split intein to facilitate posttranslational conjugation of the two large protein entities. We recently described the cysteine-less CL split intein that efficiently performs under oxidizing conditions and does not interfere with disulfide bonds or thiol bioconjugation chemistries. Using the CL split intein, we report for the first time the ligation of monoclonal IgG antibody precursors, expressed in mammalian cells, and a Cas9 precursor, obtained from bacterial expression. A purified IgG-Cas9 conjugate was loaded with sgRNA to form the active RNP complex and introduced a double-strand break in its target DNA in vitro. Furthermore, a synthetic peptide variant of the short N-terminal split intein precursor proved useful for chemical modification of Cas9. The split intein ligation procedure reported here for IgG-Cas9 provides the first step towards a novel CRISPR-Cas9 targeting approach involving the preformed RNP complex.


Assuntos
Sistemas CRISPR-Cas , Imunoglobulina G , Inteínas , Imunoglobulina G/química , Imunoglobulina G/genética , Humanos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA