RESUMO
The global dissemination of carbapenemase genes, particularly blaNDM-1, poses a significant threat to public health. While research has mainly focused on strains with phenotypic resistance, the impact of silent resistance genes has been largely overlooked. This study documents the first instance of silent blaNDM-1 in a cluster of clonally related carbapenem-susceptible K. pneumoniae strains from a single patient. Despite initial effectiveness of carbapenem therapy, the patient experienced four recurrent lung infections over five months, indicating persistent K. pneumoniae infection. Genomic sequencing revealed all strains harbored blaNDM-1 on the epidemic IncX3 plasmid. A deletion within the upstream promoter region (PISAba125) of blaNDM-1 hindered its expression, resulting in phenotypic susceptibility to carbapenems. However, in vitro bactericidal assays and a mouse infection model showed that K. pneumoniae strains with silent blaNDM-1 exhibited significant tolerance to carbapenem-mediated killing. These findings demonstrate that silent blaNDM-1 can mediate both phenotypic susceptibility and antibiotic tolerance. In silico analysis of 1986 blaNDM sequences showed that 1956 (98.5%) retained the original promoter PISAba125. Given that previous genomic sequencing typically targets carbapenem-resistant strains, accurately assessing the prevalence of silent blaNDM remains challenging. This study highlights the hidden threat of silent resistance genes to clinical antimicrobial therapy and calls for enhanced clinical awareness and laboratory detection.
Assuntos
Antibacterianos , Carbapenêmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , beta-Lactamases/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Humanos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Masculino , Plasmídeos/genética , Regiões Promotoras Genéticas/genéticaRESUMO
AIMS: Carbapenem-resistant Klebsiella pneumonia (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure. METHODS: We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP. RESULTS: Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China's southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (bmr3, mltC, pyrB, ppsC, and sdaC) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits in vitro. CONCLUSIONS: The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.
Assuntos
Antibacterianos , Infecções por Klebsiella , Klebsiella pneumoniae , Filogenia , Humanos , China/epidemiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/transmissão , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Polimorfismo de Nucleotídeo Único , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Epidemiologia Molecular , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Filogeografia , Sorogrupo , Genômica/métodosRESUMO
BACKGROUND: Klebsiella pneumoniae is the major cause of nosocomial infections worldwide and is related to a worsening increase in Multidrug-Resistant Bacteria (MDR) and virulence genes that seriously affect immunosuppressed patients, long-stay intensive care patients, elderly individuals, and children. Whole-Genome Sequencing (WGS) has resulted in a useful strategy for characterizing the genomic components of clinically important bacteria, such as K. pneumoniae, enabling them to monitor genetic changes and understand transmission, highlighting the risk of dissemination of resistance and virulence associated genes in hospitals. In this study, we report on WGS 14 clinical isolates of K. pneumoniae from a pediatric hospital biobank of Guayaquil, Ecuador. RESULTS: The main findings revealed pronounced genetic heterogeneity among the isolates. Multilocus sequencing type ST45 was the predominant lineage among non-KPC isolates, whereas ST629 was found more frequently among KPC isolates. Phylogenetic analysis suggested local transmission dynamics. Comparative genomic analysis revealed a core set of 3511 conserved genes and an open pangenome in neonatal isolates. The diversity of MLSTs and capsular types, and the high genetic diversity among these isolates indicate high intraspecific variability. In terms of virulence factors, we identified genes associated with adherence, biofilm formation, immune evasion, secretion systems, multidrug efflux pump transporters, and a notably high number of genes related to iron uptake. A large number of these genes were detected in the ST45 isolate, whereas iron uptake yersiniabactin genes were found exclusively in the non-KPC isolates. We observed high resistance to commonly used antibiotics and determined that these isolates exhibited multidrug resistance including ß-lactams, aminoglycosides, fluoroquinolones, quinolones, trimetropins, fosfomycin and macrolides; additionally, resistance-associated point mutations and cross-resistance genes were identified in all the isolates. We also report the first K. pneumoniae KPC-3 gene producers in Ecuador. CONCLUSIONS: Our WGS results for clinical isolates highlight the importance of MDR in neonatal K. pneumoniae infections and their genetic diversity. WGS will be an imperative strategy for the surveillance of K. pneumoniae in Ecuador, and will contribute to identifying effective treatment strategies for K. pneumoniae infections in critical units in patients at stratified risk.
Assuntos
Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Hospitais Pediátricos , Klebsiella pneumoniae , Filogenia , Sequenciamento Completo do Genoma , Humanos , Equador , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Criança , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Fatores de Virulência/genética , Tipagem de Sequências Multilocus , Pré-Escolar , Lactente , Variação GenéticaRESUMO
BACKGROUND: Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS: The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, blaNDM, and blaOXA, respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS: This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources.
Assuntos
Proteínas de Bactérias , Carbapenêmicos , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Carbapenêmicos/farmacologia , Humanos , Sequenciamento Completo do Genoma , Genoma Bacteriano , beta-Lactamases/genética , Antibacterianos/farmacologia , Filogenia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Testes de Sensibilidade MicrobianaRESUMO
Klebsiella pneumoniae is a common pathogen capable of causing a wide range of infections. Antibiotic resistance complicates treatment of these infections significantly. We are comparing resistance levels and genotypes among two collections of K. pneumoniae clinical isolates from Alexandria Main University Hospital (AMUH). We used disc diffusion and Minimum Inhibitory Concentration (MIC) by microbroth dilution to assess resistance levels and performed whole genome sequencing (WGS) to describe multilocus sequence types (MLST) and resistance gene presence. Among a collection of 56 K. pneumoniae clinical isolates (19 from 2019 to 37 from 2021), multidrug resistance (MDR) was 33% and 10%, extended drug resistance (XDR) was 24% and 46% and pan-drug resistance (PDR) was 43% and 43%, respectively. We identified 15 MLST STs including two novel types (ST-6118 and ST-6119 ). ST-101 and ST-383 were common between the two collections; ST-101 was the most common genotype in 2019 (28.6%) and ST-147 was most common in 2021 (25%). Ampicillin/sulbactam, amikacin, cefepime, ceftriaxone and ertapenem MICs were significantly higher in 2021. Prevalence of aph(3') - Ia, aph(3')-VI, mphA was significantly higher in 2021. The increasing resistance levels and the persistence of some MDR/XDR genotypes is concerning. Understanding mechanisms of resistance will inform infection control and antimicrobial stewardship plans to prevent evolution and spread of XDR and PDR strains.
Assuntos
Antibacterianos , COVID-19 , Genótipo , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Egito/epidemiologia , Humanos , COVID-19/epidemiologia , Antibacterianos/farmacologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Tipagem de Sequências Multilocus , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Sequenciamento Completo do Genoma/métodos , Pandemias , Farmacorresistência Bacteriana/genéticaRESUMO
Carbapenemase-producing Klebsiella pneumoniae (CP-Kp) isolates are a public health concern as they can cause severe hospital-acquired infections that are difficult to treat. It has recently been shown that CP-Kp can take up virulence factors from hypervirulent K. pneumoniae lineages. In this study, 109 clinical CP-Kp isolates from the University Hospital Cologne were examined for the presence of acquired virulence factors using whole-genome sequencing and phenotypic tests, and results were linked to clinical data. The virulence factor iuc was present in 18/109 of the CP-Kp isolates. Other acquired virulence factors, such as ybt, cbt, iro, rmpA/rmpA2, peg-344, and hypervirulence-associated capsule types were detected in various combinations among these isolates. The iuc-positive isolates produced OXA-232 (n = 7), OXA-48 (n = 6), OXA-48+NDM (n = 3), NDM, and KPC (each n = 1), and 7/18 isolates were resistant to ceftazidime-avibactam, colistin, and/or cefiderocol. Four isolates carried hybrid plasmids that harbored acquired virulence factors alongside the carbapenemase genes blaNDM-1/5 or blaOXA-48. In 15/18 patients, iuc-positive CP-Kp were isolated from a clinically manifest infection site. Among these, four patients had osteomyelitis, and four patients died from pneumonia with OXA-232-producing ST231 isolates, three of them as part of an outbreak. In conclusion, acquired virulence factors are frequently detected in various combinations in carbapenemase-producing K. pneumoniae isolates in Germany, warranting continuous monitoring of infections caused by these strains.
Assuntos
Antibacterianos , Proteínas de Bactérias , Hospitais Universitários , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Fatores de Virulência , Sequenciamento Completo do Genoma , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Alemanha , Ceftazidima/farmacologia , Masculino , Farmacorresistência Bacteriana Múltipla/genética , Combinação de Medicamentos , Feminino , Pessoa de Meia-Idade , Idoso , Infecção Hospitalar/microbiologia , Compostos AzabicíclicosRESUMO
Non-carbapenemase-producing carbapenem-resistant Enterobacterales (non-CP CRE) may be associated with a grave outcome. The common underlying mechanism is beta-lactamases and mutations in outer membrane porins. We report a case of a deep-seated infection caused by Klebsiella pneumoniae ST395 not amenable to source control, involving recurrent bloodstream infection, resulting in in vivo selection of carbapenem resistance under therapy. Three consecutive K. pneumoniae blood isolates were studied using short- and long-read sequencing. The genomes were subject to resistome and virulome, phylogenetic, and plasmid analyses. ompK36 porins were analyzed at the nucleotide and amino acid levels. Genomes were compared to 297 public ST395 K. pneumoniae genomes using cgMLST, resistome, and porin analyses and the EuSCAPE project. Relevant ompK36 and micF sequences were extracted and analyzed as above. The three sequential K. pneumoniae blood isolates belonged to the same clone. Subsequent CR isolates revealed a new large deletion of the ompK36 gene also involving the upstream region (deletion of micF). Comparison with public ST395 genomes revealed the study isolates belonged to clade B, representing a separate clone. N-terminal large ompK36 truncations were uncommon in both public data sets. In vivo selection of non-CP CRE K. pneumoniae could have substantial clinical implications. Such selection should be scrutinized through repeated cultures and frequent susceptibility testing during antimicrobial treatment, especially in the context of persistent or recurrent bloodstream infections and when adequate source control cannot be achieved. The occurrence of an unusually large deletion involving the ompK36 locus and upstream micF should be further studied.
Assuntos
Antibacterianos , Proteínas de Bactérias , Carbapenêmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Porinas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Porinas/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Masculino , Bacteriemia/microbiologia , Bacteriemia/tratamento farmacológico , Filogenia , Genoma Bacteriano/genética , Plasmídeos/genética , beta-Lactamases/genéticaRESUMO
Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections pose a significant threat to human health. Fast and accurate prediction of K. pneumoniae carbapenem resistance and carbapenemase genotype is critical for guiding antibiotic treatment and reducing mortality rates. In this study, we present a novel method using Al-MOF/TiO2@Au cubic heterostructures for the metabolic analysis of intact bacterial cells, enabling rapid diagnosis of CRKP and its carbapenemases genotype. The Al-MOF/TiO2@Au cubic composites display strong light absorption and high surface area, facilitating the in situ effective extraction of metabolic fingerprints from intact bacterial cells. Utilizing this method, we rapidly and sensitively extracted metabolic fingerprints from 169 clinical isolates of K. pneumoniae obtained from patients. Machine learning analysis of the metabolic fingerprint changes successfully distinguishes CRKP from the sensitive strains, achieving the high area under the curve (AUC) values of 1.00 in both training and testing sets based on the 254 m/z features, respectively. Additionally, this platform enables rapid carbapenemase genotype discrimination of CRKP for precision antibiotic therapy. Our strategy holds great potential for swift diagnosis of CRKP and carbapenemase genotype discrimination, guiding effective management of CRKP bacterial infections in both hospital and community settings.
Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Estruturas Metalorgânicas , Titânio , beta-Lactamases , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/genética , Titânio/química , Titânio/farmacologia , beta-Lactamases/metabolismo , beta-Lactamases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Ouro/química , Genótipo , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/efeitos dos fármacosRESUMO
OBJECTIVES: Comprehensive data on the genomic epidemiology of hospital-associated Klebsiella pneumoniae in Ghana are scarce. This study investigated the genomic diversity, antimicrobial resistance patterns, and clonal relationships of 103 clinical K. pneumoniae isolates from five tertiary hospitals in Southern Ghana-predominantly from paediatric patients aged under 5â years (67/103; 65%), with the majority collected from urine (32/103; 31%) and blood (25/103; 24%) cultures. METHODS: We generated hybrid Nanopore-Illumina assemblies and employed Pathogenwatch for genotyping via Kaptive [capsular (K) locus and lipopolysaccharide (O) antigens] and Kleborate (antimicrobial resistance and hypervirulence) and determined clonal relationships using core-genome MLST (cgMLST). RESULTS: Of 44 distinct STs detected, ST133 was the most common, comprising 23% of isolates (nâ=â23/103). KL116 (28/103; 27%) and O1 (66/103; 64%) were the most prevalent K-locus and O-antigen types. Single-linkage clustering highlighted the global spread of MDR clones such as ST15, ST307, ST17, ST11, ST101 and ST48, with minimal allele differences (1-5) from publicly available genomes worldwide. Conversely, 17 isolates constituted novel clonal groups and lacked close relatives among publicly available genomes, displaying unique genetic diversity within our study population. A significant proportion of isolates (88/103; 85%) carried resistance genes for ≥3 antibiotic classes, with the blaCTX-M-15 gene present in 78% (nâ=â80/103). Carbapenem resistance, predominantly due to blaOXA-181 and blaNDM-1 genes, was found in 10% (nâ=â10/103) of the isolates. CONCLUSIONS: Our findings reveal a complex genomic landscape of K. pneumoniae in Southern Ghana, underscoring the critical need for ongoing genomic surveillance to manage the substantial burden of antimicrobial resistance.
Assuntos
Antibacterianos , Variação Genética , Infecções por Klebsiella , Klebsiella pneumoniae , Tipagem de Sequências Multilocus , Centros de Atenção Terciária , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Centros de Atenção Terciária/estatística & dados numéricos , Gana/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Pré-Escolar , Lactente , Testes de Sensibilidade Microbiana , Genótipo , Feminino , Masculino , Criança , Farmacorresistência Bacteriana Múltipla/genética , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Genoma Bacteriano , Farmacorresistência Bacteriana/genética , Adulto , Epidemiologia MolecularRESUMO
OBJECTIVES: To establish the epidemiology cut-off (ECOFF) values of eravacycline against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Acinetobacter baumannii and Staphylococcus aureus, from a multi-centre study in China. METHODS: We collected 2500 clinical isolates from five hospitals in China from 2017 to 2020. The MICs of eravacycline were determined using broth microdilution. The ECOFF values of eravacycline against the five species commonly causing cIAIs were calculated using visual estimation and ECOFFinder following the EUCAST guideline. RESULTS: The MICs of eravacycline against all the strains were in the range of 0.004-16 mg/L. The ECOFF values of eravacycline were 0.5 mg/L for E. coli, 2 mg/L for K. pneumonia and E. cloacae, and 0.25 mg/L for A. baumannii and S. aureus, consistent with the newest EUCAST publication of eravacycline ECOFF values for the populations. No discrepancy was found between the visually estimated and 99.00% ECOFF values calculated using ECOFFinder. CONCLUSIONS: The determined ECOFF values of eravacycline against the five species can assist in distinguishing wild-type from non-wild-type strains. Given its promising activity, eravacycline may represent a member of the tetracycline class in treating cIAIs caused by commonly encountered Gram-negative and Gram-positive pathogens.
Assuntos
Acinetobacter baumannii , Antibacterianos , Enterobacter cloacae , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Tetraciclinas , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Tetraciclinas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , China/epidemiologiaRESUMO
OBJECTIVES: With the rise in antimicrobial resistance, there is a growing demand for rapid antimicrobial susceptibility testing (RAST). In this study, we applied the EUCAST RAST method to ESBL/carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolates without using advanced identification systems and analysed the effect of this method on mortality rates Also the clinical impact of this method on patients infected with these bacteria and its effect on mortality rates were investigated. METHODS: RAST was used for clinical blood cultures containing carbapenemase/ESBL-producing E. coli and K. pneumoniae without advanced identification systems (e.g. MALDI TOF), with preliminary identification by simple diagnostic tests (predicted RAST, or p-RAST), and its categorical agreement was investigated. The impact of the method on mortality was analysed by comparing the clinical data of patients whose blood cultures were subject to p-RAST (p-RAST group, nâ=â49) and those who were not subject to p-RAST (non-RAST group, nâ=â145). RESULTS: p-RAST results were analysed based on 539 antibiotic-bacteria combinations. Total error rates at 4, 6 and 8â h of incubation were 2.9%, 3.9% and 3.8%, respectively. In the p-RAST group, patients who did not receive appropriate antibiotics (29/45, 59.1%) were switched to appropriate treatment within 8â h at the latest. In contrast, in the non-RAST group, treatment of patients who received inappropriate antibiotics (79/145, 54.5%) could be changed after at least 24â h. Mortality rates were lower in the p-RAST group than in the non-RAST group (28.6% versus 51.7%, Pâ=â0.005). CONCLUSIONS: p-RAST can be used safely in hospital laboratories with high rates of antimicrobial resistance and can reduce mortality rates by shortening the transition time to appropriate treatment.
Assuntos
Antibacterianos , Proteínas de Bactérias , Infecções por Escherichia coli , Escherichia coli , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/mortalidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/mortalidade , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Fatores de TempoRESUMO
OBJECTIVES: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major nosocomial infectious pathogen with rapidly increasing prevalence. The genomic epidemiological characteristics of CRKP nationwide, especially the evolving trends within the predominant clones, should be evaluated clearly. METHODS: We collected 3415 K. pneumoniae strains from 28 hospitals across China. Antimicrobial susceptibility testing and WGS were performed. Subsequent genomic analyses, including sequence typing, K-locus (KL) identification, antimicrobial resistance gene screening, and virulence score assessment were performed. The phylogenetic relationship of clonal group 11 was determined based on core-genome analysis, and the presence of the pLVPK-like virulence plasmid in ST11 isolates was confirmed using plasmid core-gene analysis. Additionally, the trends of the ST11 lineage with different KL types on a global scale were investigated using Beast2. RESULTS: Of the K. pneumoniae strains, 708 were identified as CRKP isolates (20.7%), of which 97.7% were MDR. ST11 was the predominant clone, and KPC-2 was the prevalent carbapenemase in China, although the prevalence of specific clones and carbapenemases varied by geographic region. Among ST11 isolates, KL47 and KL64 were the predominant KL types, and KL64 gradually replaced KL47, with a higher percentage of KL64 isolates harbouring the pLVPK-like plasmid. Global genome data showed a significant increase in the effective population size of KL64 over the last 5 years. CONCLUSIONS: The prevalence of CRKP was very high in certain regions in China. The increasing convergence of virulence and resistance, particularly in ST11-KL64 isolates, should be given more attention and further investigation.
Assuntos
Antibacterianos , Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos , Sequenciamento Completo do Genoma , China/epidemiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/classificação , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Humanos , Plasmídeos/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , beta-Lactamases/genética , Genoma Bacteriano , Carbapenêmicos/farmacologia , Proteínas de Bactérias/genética , Tipagem de Sequências Multilocus , Virulência/genética , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Epidemiologia Molecular , Prevalência , Farmacorresistência Bacteriana Múltipla/genéticaRESUMO
BACKGROUND: A small proportion of Escherichia coli and Klebsiella pneumoniae demonstrate in vitro non-susceptibility to piperacillin/tazobactam but retain susceptibility to ceftriaxone. Uncertainty remains regarding how best to treat these isolates. OBJECTIVES: We sought to compare clinical outcomes between patients with piperacillin/tazobactam-non-susceptible but ceftriaxone-susceptible E. coli or K. pneumoniae bloodstream infection receiving definitive therapy with ceftriaxone versus an alternative effective antibiotic. METHODS: We retrospectively identified patients with a positive blood culture for piperacillin/tazobactam-non-susceptible but ceftriaxone-susceptible E. coli or K. pneumoniae between 1 January 2013 and 31 December 2022. Patients were divided into one of two definitive treatment groups: ceftriaxone or alternative effective antibiotic. Our primary outcome was a composite of 90â day all-cause mortality, hospital readmission, or recurrence of infection. We used Cox proportional hazards models to compare time with the composite outcome between groups. RESULTS: Sixty-two patients were included in our analysis. Overall, median age was 63â years (IQR 49.5-71.0), the most common source of infection was intra-abdominal (25/62; 40.3%) and the median total duration of therapy was 12.0â days (IQR 9.0-16.8). A total of 9/22 (40.9%) patients in the ceftriaxone treatment group and 18/40 (45.0%) patients in the alternative effective antibiotic group met the composite endpoint. In an adjusted time-to-event analysis, there was no difference in the composite endpoint between groups (HR 0.67, 95% CI 0.30-1.50). The adjusted Bayesian posterior probability that the HR was less than or equal to 1 (i.e. ceftriaxone is as good or better than alternative therapy) was 85%. CONCLUSIONS: These findings suggest that ceftriaxone can be used to effectively treat bloodstream infections with E. coli or K. pneumoniae that are non-susceptible to piperacillin/tazobactam but susceptible to ceftriaxone.
Assuntos
Antibacterianos , Bacteriemia , Ceftriaxona , Infecções por Escherichia coli , Escherichia coli , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Combinação Piperacilina e Tazobactam , Humanos , Ceftriaxona/uso terapêutico , Ceftriaxona/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Pessoa de Meia-Idade , Masculino , Feminino , Estudos Retrospectivos , Idoso , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Combinação Piperacilina e Tazobactam/uso terapêutico , Combinação Piperacilina e Tazobactam/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Bacteriemia/mortalidade , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/mortalidade , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Resultado do TratamentoRESUMO
BACKGROUND: Klebsiella pneumoniae is an opportunistic infection that causes production losses and death in the chicken industry. A cross-sectional study was conducted on exotic chicken breeds reared at the Jigjiga poultry farm from November 2022 to May 2023 to estimate the occurrence, associated risk factors, and antimicrobial susceptibility profiles of Klebsiella pneumoniae. The chickens were selected using systematic random sampling techniques. A total of 384 cloacal swabs were collected aseptically and transported to the laboratory for analysis. For statistical analysis, STATA® version 14.0 statistical software was used. RESULTS: From 384 examined faecal samples, 258 (67.2%) prevalences of Klebsiella pneumoniae were found. Furthermore, the association of the study's risk factors with the prevalence of Klebsiella pneumoniae was explored, and no statistically significant association was identified between sex and age. Nonetheless, relative prevalence at the age level was higher in chickens aged 12 months (67.6%) and Sasso breeds (90.0%). Similarly, male chickens and those raised for meat and egg production had a high prevalence rate of 72.5 and 75.8%, respectively. A total of 30 isolated Klebsiella pneumoniae colonies were tested in vitro for antibiotic sensitivity for six drugs, and it was shown that Klebsiella pneumoniae is moderately sensitive to Penicillin G (43.3%) while having higher resistance to Oxytetracycline (80.0%). CONCLUSIONS: The current findings revealed that the research area had the highest prevalence of Klebsiella pneumoniae, and the isolates were resistant to commonly used drugs in the study area. Thus, a long-term intervention plan, thorough research to determine a nationwide status, as well as further multi-drug resistance patterns and molecular characterization, were urged.
Assuntos
Antibacterianos , Galinhas , Infecções por Klebsiella , Klebsiella pneumoniae , Doenças das Aves Domésticas , Animais , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/genética , Etiópia/epidemiologia , Galinhas/microbiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/veterinária , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Estudos Transversais , Fatores de Risco , Masculino , Feminino , Prevalência , Fazendas , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Farmacorresistência Bacteriana , Fezes/microbiologiaRESUMO
BACKGROUND: We aimed to compare the performance of carbapenemase classification in carbapenem-resistant Klebsiella pneumoniae (CRKP) obtained using the BD Phoenix CPO Detect panel (CPO panel) and Cepheid Xpert Carba-R assays. We analyzed 55 CRKP strains from clinical specimens collected between November 2020 and November 2022. The CPO panel was used to detect both antibiotic susceptibility and phenotypic carbapenemase classes, while Xpert Carba-R was employed to identify KPC, NDM, VIM, OXA-48, and IMP genes. Due to the limited availability of molecular kits, we arbitrarily selected 55 isolates, identified as carbapenemase-producing according to the CPO panel and with meropenem minimum inhibitory concentration values > 8 mg/L. RESULTS: According to the Xpert Carba-R assay, 16 of the 55 isolates (29.1%) were categorised as Ambler Class A (11 of which matched CPO panel Class A identification); three isolates (5.5%) were identified as Class B and 27 isolates (49.1%) as Class D (in both cases consistent with CPO panel B and D classifications). A further eight isolates (14.5%) exhibited multiple carbapenemase enzymes and were designated as dual-carbapenemase producers, while one isolate (1.8%) was identified as a non-carbapenemase-producer. The CPO panel demonstrated positive and negative percent agreements of 100% and 85.7% for Ambler Class A, 100% and 100% for Class B, and 96.4% and 100% for Class D carbapenemase detection, respectively. CONCLUSION: While the CPO panel's phenotypic performance was satisfactory in detecting Class B and D carbapenemases, additional confirmatory testing may be necessary for Class A carbapenemases as part of routine laboratory procedures.
Assuntos
Proteínas de Bactérias , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Proteínas de Bactérias/genética , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/diagnóstico , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacosRESUMO
BACKGROUND: The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS: In the current study, one hundred extended spectrum ß-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS: The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several ß-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS: This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Fatores de Virulência , Sequenciamento Completo do Genoma , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/classificação , Humanos , Egito , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Fatores de Virulência/genética , Genoma Bacteriano/genética , beta-Lactamases/genética , Proteínas de Bactérias/genética , Plasmídeos/genéticaRESUMO
BACKGROUND: Antimicrobial resistance and bacterial hypermucoviscosity, associated with escalating production of capsules, constitute major challenges for the clinical management of Klebsiella pneumoniae (K. pneumoniae) infections. This study investigates the association and underlying mechanism between ceftazidime-avibactam (CAZ-AVI) resistance and bacterial hypermucoviscosity in Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp). RESULTS: The proportion of CAZ-AVI-sensitive clinical isolates exhibiting the hypermucoviscous phenotype was significantly lower than that of the resistant strains (5.6% vs. 46.7%, P < 0.001). To further verify the correlation and molecular mechanism between CAZ-AVI resistance and hypermucoviscosity, 10 CAZ-AVI-resistant isolates were generated through in vitro resistance selection from CAZ-AVI-sensitive KPC-Kp. The results showed the same association as it showed in the clinical isolates, with four out of ten induced CAZ-AVI-resistant isolates transitioning from negative to positive in the string tests. Comparative genomic analysis identified diverse mutations in the wzc gene, crucial for capsule polysaccharide (CPS) synthesis, in all four CAZ-AVI-resistant hypermucoviscous KPC-Kp strains compared to the parent strains. However, these mutations were absent in the other six KPC-Kp strains that did not exhibit induced hypermucoviscosity. Cloning of the wzc gene variants and their expression in wild-type strains confirmed that mutations in the wzc gene can induce bacterial hypermucoviscosity and heightened virulence, however, they do not confer resistance to CAZ-AVI. CONCLUSIONS: These results indicated that resistance to CAZ-AVI in KPC-Kp isolates may be accompanied by the acquisition of hypermucoviscosity, with mutations in the wzc gene often involving in this process.
Assuntos
Antibacterianos , Compostos Azabicíclicos , Proteínas de Bactérias , Ceftazidima , Combinação de Medicamentos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana Múltipla/genéticaRESUMO
BACKGROUND: The emergence of fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae is a growing concern. To investigate the mechanisms behind this resistance, we studied a total of 215 K. pneumoniae isolates from hospitals in Bushehr province, Iran, collected between 2017 and 2019. Antimicrobial susceptibility test for fluoroquinolones was determined. The presence of plasmid mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining region (QRDR) of gyrA and parC genes in ciprofloxacin-resistant K. pneumoniae isolates were identified by PCR and sequencing. RESULTS: Out of 215 K. pneumoniae isolates, 40 were resistant to ciprofloxacin as determined by E-test method. PCR analysis revealed that among these ciprofloxacin-resistant isolates, 13 (32.5%), 7 (17.5%), 40 (100%), and 25 (62.5%) isolates harbored qnrB, qnrS, oqxA and aac(6')-Ib-cr genes, respectively. Mutation analysis of gyrA and parC genes showed that 35 (87.5%) and 34 (85%) of the ciprofloxacin-resistant isolates had mutations in these genes, respectively. The most frequent mutations were observed in codon 83 of gyrA and codon 80 of parC gene. Single gyrA substitution, Ser83â Ile and Asp87âGly, and double substitutions, Ser83âPhe plus Asp87âAla, Ser83âTyr plus Asp87âAla, Ser83âIle plus Asp87âTyr, Ser83âPhe plus Asp87âAsn and Ser83âIle plus Asp87âGly were detected. In addition, Ser80âIle and Glu84âLys single substitution were found in parC gene. CONCLUSIONS: Our results indicated that 90% of isolates have at least one mutation in QRDR of gyrA orparC genes, thus the frequency of mutations was very significant and alarming in our region.
Assuntos
Antibacterianos , DNA Girase , DNA Topoisomerase IV , Farmacorresistência Bacteriana , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Mutação , Plasmídeos , Quinolonas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , DNA Girase/genética , Plasmídeos/genética , DNA Topoisomerase IV/genética , Humanos , Antibacterianos/farmacologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Farmacorresistência Bacteriana/genética , Quinolonas/farmacologia , Ciprofloxacina/farmacologia , Irã (Geográfico) , Proteínas de Bactérias/genética , Prevalência , Fluoroquinolonas/farmacologiaRESUMO
BACKGROUND: Klebsiella pneumoniae infections have become a major cause of hospital acquired infection worldwide with the increased rate of acquisition of resistance to antibiotics. Carbapenem resistance mainly among Gram negative is an ongoing problem which causes serious outbreaks dramatically limiting treatment options. This prospective cross-sectional study was designed to detect blaKPC gene from carbapenem resistant K. pneumoniae. MATERIALS AND METHODS: A totally of 1118 different clinical specimens were screened and confirmed for KPC producing K. pneumoniae phenotypically using Meropenem (10 µg) disc. The blaKPC gene was amplified from the isolates of K. pneumoniae to detect the presence of this gene. RESULT: Of the total samples processed, 18.6% (n = 36) were K. pneumoniae and among 36 K. pneumoniae, 61.1% (n = 22/36) were meropenem resistant. This study demonstrated the higher level of MDR 91.7% (n = 33) and KPC production 47.2% (n = 17) among K. pneumoniae isolates. The blaKPC gene was detected in 8.3% (n = 3) of meropenem resistant isolates. CONCLUSION: Since the study demonstrates the higher level of MDR and KPC producing K. pneumoniae isolates that has challenged the use of antimicrobial agents, continuous microbiology, and molecular surveillance to assist early detection and minimize the further dissemination of blaKPC should be initiated. We anticipate that the findings of this study will be useful in understanding the prevalence of KPC-producing K. pneumoniae in Nepal.
Assuntos
Antibacterianos , Proteínas de Bactérias , Infecções por Klebsiella , Klebsiella pneumoniae , Meropeném , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , beta-Lactamases/genética , Humanos , Nepal/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Proteínas de Bactérias/genética , Estudos Transversais , Estudos Prospectivos , Antibacterianos/farmacologia , Meropeném/farmacologia , Masculino , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Idoso , AdolescenteRESUMO
BACKGROUND: Colistin is a last-resort antibiotic used in extreme cases of multi-drug resistant (MDR) Gram-negative bacterial infections. Colistin resistance has increased in recent years and often goes undetected due to the inefficiency of predominantly used standard antibiotic susceptibility tests (AST). To address this challenge, we aimed to detect the prevalence of colistin resistance strains through both Vitek®2 and broth micro-dilution. We investigated 1748 blood, tracheal aspirate, and pleural fluid samples from the Intensive Care Unit (ICU), Neonatal Intensive Care Unit (NICU), and Tuberculosis and Respiratory Disease centre (TBRD) in an India hospital. Whole-genome sequencing (WGS) of extremely drug-resitant (XDR) and pan-drug resistant (PDR) strains revealed the resistance mechanisms through the Resistance Gene Identifier (RGI.v6.0.0) and Snippy.v4.6.0. Abricate.v1.0.1, PlasmidFinder.v2.1, MobileElementFinder.v1.0.3 etc. detected virulence factors, and mobile genetic elements associated to uncover the pathogenecity and the role of horizontal gene transfer (HGT). RESULTS: This study reveals compelling insights into colistin resistance among global high-risk clinical isolates: Klebsiella pneumoniae ST147 (16/20), Pseudomonas aeruginosa ST235 (3/20), and ST357 (1/20). Vitek®2 found 6 colistin-resistant strains (minimum inhibitory concentrations, MIC = 4 µg/mL), while broth microdilution identified 48 (MIC = 32-128 µg/mL), adhering to CLSI guidelines. Despite the absence of mobile colistin resistance (mcr) genes, mechanisms underlying colistin resistance included mgrB deletion, phosphoethanolamine transferases arnT, eptB, ompA, and mutations in pmrB (T246A, R256G) and eptA (V50L, A135P, I138V, C27F) in K. pneumoniae. P. aeruginosa harbored phosphoethanolamine transferases basS/pmrb, basR, arnA, cprR, cprS, alongside pmrB (G362S), and parS (H398R) mutations. Both strains carried diverse clinically relevant antimicrobial resistance genes (ARGs), including plasmid-mediated blaNDM-5 (K. pneumoniae ST147) and chromosomally mediated blaNDM-1 (P. aeruginosa ST357). CONCLUSION: The global surge in MDR, XDR and PDR bacteria necessitates last-resort antibiotics such as colistin. However, escalating resistance, particularly to colistin, presents a critical challenge. Inefficient colistin resistance detection methods, including Vitek2, alongside limited surveillance resources, accentuate the need for improved strategies. Whole-genome sequencing revealed alarming colistin resistance among K. pneumoniae and P. aeruginosa in an Indian hospital. The identification of XDR and PDR strains underscores urgency for enhanced surveillance and infection control. SNP analysis elucidated resistance mechanisms, highlighting the complexity of combatting resistance.