RESUMO
While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressively compromised the integrity of the electron transport chain. Ultimately, this led to deficient oxidative phosphorylation, diminishing nicotinamide adenine dinucleotide concentrations and impairing cytokine production in differentiating T cells. In accordance, mice lacking mEF-G1 in T cells were protected from experimental autoimmune encephalomyelitis, demonstrating that this pathway is crucial in maintaining T cell function and pathogenicity.
Assuntos
Antibacterianos/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Linezolida/uso terapêutico , Mitocôndrias/metabolismo , Peptídeos Cíclicos/uso terapêutico , Ribossomos/metabolismo , Células Th17/fisiologia , Animais , Autoimunidade/efeitos dos fármacos , Diferenciação Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Terapia de Alvo Molecular , Esclerose Múltipla/tratamento farmacológico , NAD/metabolismo , Fosforilação Oxidativa , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismoRESUMO
Heteroresistance (HR) is an enigmatic phenotype where, in a main population of susceptible cells, small subpopulations of resistant cells exist. This is a cause for concern, as this small subpopulation is difficult to detect by standard antibiotic susceptibility tests, and upon antibiotic exposure the resistant subpopulation may increase in frequency and potentially lead to treatment complications or failure. Here, we determined the prevalence and mechanisms of HR for 40 clinical Staphylococcus aureus isolates, against 6 clinically important antibiotics: daptomycin, gentamicin, linezolid, oxacillin, teicoplanin, and vancomycin. High frequencies of HR were observed for gentamicin (69.2%), oxacillin (27%), daptomycin (25.6%), and teicoplanin (15.4%) while none of the isolates showed HR toward linezolid or vancomycin. Point mutations in various chromosomal core genes, including those involved in membrane and peptidoglycan/teichoic acid biosynthesis and transport, tRNA charging, menaquinone and chorismite biosynthesis and cyclic-di-AMP biosynthesis, were the mechanisms responsible for generating the resistant subpopulations. This finding is in contrast to gram-negative bacteria, where increased copy number of bona fide resistance genes via tandem gene amplification is the most prevalent mechanism. This difference can be explained by the observation that S. aureus has a low content of resistance genes and absence of the repeat sequences that allow tandem gene amplification of these genes as compared to gram-negative species.
Assuntos
Daptomicina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Vancomicina , Linezolida/uso terapêutico , Teicoplanina/uso terapêutico , Prevalência , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/tratamento farmacológico , Oxacilina/uso terapêutico , Mutação , GentamicinasRESUMO
BACKGROUND: Tuberculosis is usually treated with a 6-month rifampin-based regimen. Whether a strategy involving shorter initial treatment may lead to similar outcomes is unclear. METHODS: In this adaptive, open-label, noninferiority trial, we randomly assigned participants with rifampin-susceptible pulmonary tuberculosis to undergo either standard treatment (rifampin and isoniazid for 24 weeks with pyrazinamide and ethambutol for the first 8 weeks) or a strategy involving initial treatment with an 8-week regimen, extended treatment for persistent clinical disease, monitoring after treatment, and retreatment for relapse. There were four strategy groups with different initial regimens; noninferiority was assessed in the two strategy groups with complete enrollment, which had initial regimens of high-dose rifampin-linezolid and bedaquiline-linezolid (each with isoniazid, pyrazinamide, and ethambutol). The primary outcome was a composite of death, ongoing treatment, or active disease at week 96. The noninferiority margin was 12 percentage points. RESULTS: Of the 674 participants in the intention-to-treat population, 4 (0.6%) withdrew consent or were lost to follow-up. A primary-outcome event occurred in 7 of the 181 participants (3.9%) in the standard-treatment group, as compared with 21 of the 184 participants (11.4%) in the strategy group with an initial rifampin-linezolid regimen (adjusted difference, 7.4 percentage points; 97.5% confidence interval [CI], 1.7 to 13.2; noninferiority not met) and 11 of the 189 participants (5.8%) in the strategy group with an initial bedaquiline-linezolid regimen (adjusted difference, 0.8 percentage points; 97.5% CI, -3.4 to 5.1; noninferiority met). The mean total duration of treatment was 180 days in the standard-treatment group, 106 days in the rifampin-linezolid strategy group, and 85 days in the bedaquiline-linezolid strategy group. The incidences of grade 3 or 4 adverse events and serious adverse events were similar in the three groups. CONCLUSIONS: A strategy involving initial treatment with an 8-week bedaquiline-linezolid regimen was noninferior to standard treatment for tuberculosis with respect to clinical outcomes. The strategy was associated with a shorter total duration of treatment and with no evident safety concerns. (Funded by the Singapore National Medical Research Council and others; TRUNCATE-TB ClinicalTrials.gov number, NCT03474198.).
Assuntos
Antituberculosos , Diarilquinolinas , Linezolida , Rifampina , Tuberculose Pulmonar , Humanos , Antituberculosos/efeitos adversos , Antituberculosos/uso terapêutico , Esquema de Medicação , Quimioterapia Combinada , Etambutol/efeitos adversos , Etambutol/uso terapêutico , Isoniazida/efeitos adversos , Isoniazida/uso terapêutico , Linezolida/efeitos adversos , Linezolida/uso terapêutico , Pirazinamida/efeitos adversos , Pirazinamida/uso terapêutico , Rifampina/efeitos adversos , Rifampina/uso terapêutico , Resultado do Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/complicações , Diarilquinolinas/efeitos adversos , Diarilquinolinas/uso terapêuticoRESUMO
BACKGROUND: The bedaquiline-pretomanid-linezolid regimen has been reported to have 90% efficacy against highly drug-resistant tuberculosis, but the incidence of adverse events with 1200 mg of linezolid daily has been high. The appropriate dose of linezolid and duration of treatment with this agent to minimize toxic effects while maintaining efficacy against highly drug-resistant tuberculosis are unclear. METHODS: We enrolled participants with extensively drug-resistant (XDR) tuberculosis (i.e., resistant to rifampin, a fluoroquinolone, and an aminoglycoside), pre-XDR tuberculosis (i.e., resistant to rifampin and to either a fluoroquinolone or an aminoglycoside), or rifampin-resistant tuberculosis that was not responsive to treatment or for which a second-line regimen had been discontinued because of side effects. We randomly assigned the participants to receive bedaquiline for 26 weeks (200 mg daily for 8 weeks, then 100 mg daily for 18 weeks), pretomanid (200 mg daily for 26 weeks), and daily linezolid at a dose of 1200 mg for 26 weeks or 9 weeks or 600 mg for 26 weeks or 9 weeks. The primary end point in the modified intention-to-treat population was the incidence of an unfavorable outcome, defined as treatment failure or disease relapse (clinical or bacteriologic) at 26 weeks after completion of treatment. Safety was also evaluated. RESULTS: A total of 181 participants were enrolled, 88% of whom had XDR or pre-XDR tuberculosis. Among participants who received bedaquiline-pretomanid-linezolid with linezolid at a dose of 1200 mg for 26 weeks or 9 weeks or 600 mg for 26 weeks or 9 weeks, 93%, 89%, 91%, and 84%, respectively, had a favorable outcome; peripheral neuropathy occurred in 38%, 24%, 24%, and 13%, respectively; myelosuppression occurred in 22%, 15%, 2%, and 7%, respectively; and the linezolid dose was modified (i.e., interrupted, reduced, or discontinued) in 51%, 30%, 13%, and 13%, respectively. Optic neuropathy developed in 4 participants (9%) who had received linezolid at a dose of 1200 mg for 26 weeks; all the cases resolved. Six of the seven unfavorable microbiologic outcomes through 78 weeks of follow-up occurred in participants assigned to the 9-week linezolid groups. CONCLUSIONS: A total of 84 to 93% of the participants across all four bedaquiline-pretomanid-linezolid treatment groups had a favorable outcome. The overall risk-benefit ratio favored the group that received the three-drug regimen with linezolid at a dose of 600 mg for 26 weeks, with a lower incidence of adverse events reported and fewer linezolid dose modifications. (Funded by the TB Alliance and others; ZeNix ClinicalTrials.gov number, NCT03086486.).
Assuntos
Antituberculosos , Linezolida , Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Aminoglicosídeos/uso terapêutico , Antituberculosos/efeitos adversos , Antituberculosos/uso terapêutico , Diarilquinolinas/efeitos adversos , Fluoroquinolonas , Humanos , Linezolida/efeitos adversos , Linezolida/uso terapêutico , Nitroimidazóis/efeitos adversos , Nitroimidazóis/uso terapêutico , Rifampina/uso terapêutico , Medição de Risco , Resultado do Tratamento , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
BACKGROUND: In patients with rifampin-resistant tuberculosis, all-oral treatment regimens that are more effective, shorter, and have a more acceptable side-effect profile than current regimens are needed. METHODS: We conducted an open-label, phase 2-3, multicenter, randomized, controlled, noninferiority trial to evaluate the efficacy and safety of three 24-week, all-oral regimens for the treatment of rifampin-resistant tuberculosis. Patients in Belarus, South Africa, and Uzbekistan who were 15 years of age or older and had rifampin-resistant pulmonary tuberculosis were enrolled. In stage 2 of the trial, a 24-week regimen of bedaquiline, pretomanid, linezolid, and moxifloxacin (BPaLM) was compared with a 9-to-20-month standard-care regimen. The primary outcome was an unfavorable status (a composite of death, treatment failure, treatment discontinuation, loss to follow-up, or recurrence of tuberculosis) at 72 weeks after randomization. The noninferiority margin was 12 percentage points. RESULTS: Recruitment was terminated early. Of 301 patients in stage 2 of the trial, 145, 128, and 90 patients were evaluable in the intention-to-treat, modified intention-to-treat, and per-protocol populations, respectively. In the modified intention-to-treat analysis, 11% of the patients in the BPaLM group and 48% of those in the standard-care group had a primary-outcome event (risk difference, -37 percentage points; 96.6% confidence interval [CI], -53 to -22). In the per-protocol analysis, 4% of the patients in the BPaLM group and 12% of those in the standard-care group had a primary-outcome event (risk difference, -9 percentage points; 96.6% CI, -22 to 4). In the as-treated population, the incidence of adverse events of grade 3 or higher or serious adverse events was lower in the BPaLM group than in the standard-care group (19% vs. 59%). CONCLUSIONS: In patients with rifampin-resistant pulmonary tuberculosis, a 24-week, all-oral regimen was noninferior to the accepted standard-care treatment, and it had a better safety profile. (Funded by Médecins sans Frontières; TB-PRACTECAL ClinicalTrials.gov number, NCT02589782.).
Assuntos
Antituberculosos , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Humanos , Antituberculosos/administração & dosagem , Antituberculosos/efeitos adversos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Quimioterapia Combinada , Moxifloxacina/administração & dosagem , Moxifloxacina/efeitos adversos , Moxifloxacina/uso terapêutico , Rifampina/efeitos adversos , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Adolescente , Adulto Jovem , Adulto , Linezolida/administração & dosagem , Linezolida/efeitos adversos , Linezolida/uso terapêutico , Administração OralRESUMO
Rationale: Pneumonia is a frequent and feared complication in intubated critically ill patients. Tissue concentrations of antimicrobial drugs need to be sufficiently high to treat the infection and also prevent development of bacterial resistance. It is uncertain whether pulmonary inflammation and injury affect antimicrobial drug penetration into lung tissue.Objectives: To determine and compare tissue and BAL fluid concentrations of ceftaroline fosamil and linezolid in a model of unilateral acute lung injury in pigs and to evaluate whether dose adjustment is necessary to reach sufficient antimicrobial concentrations in injured lung tissue.Methods: After induction of unilateral acute lung injury, ceftaroline fosamil and linezolid were administered intravenously. Drug concentrations were measured in lung tissue through microdialysis and in blood and BAL fluid samples during the following 8 hours. The primary endpoint was the tissue concentration area under the concentration curve in the first 8 hours (AUC0-8 h) of the two antimicrobial drugs.Measurements and Main Results: In 10 pigs, antimicrobial drug concentrations were higher in inflamed and injured lung tissue compared with those in uninflamed and uninjured lung tissue (median ceftaroline fosamil AUC0-8 h [and interquartile range] = 26.7 mg â h â L-1 [19.7-39.0] vs. 16.0 mg â h â L-1 [13.6-19.9], P = 0.02; median linezolid AUC0-8 h 76.0 mg â h â L-1 [68.1-96.0] vs. 54.6 mg â h â L-1 [42.7-60.9], P = 0.01), resulting in a longer time above the minimal inhibitory concentration and in higher peak concentrations and dialysate/plasma ratios. Penetration into BAL fluid was excellent for both antimicrobials, but without left-to-right differences (ceftaroline fosamil, P = 0.78; linezolid, P = 1.00).Conclusions: Tissue penetration of two commonly used antimicrobial drugs for pneumonia is enhanced by early lung tissue inflammation and injury, resulting in longer times above the minimal inhibitory concentration. Thus, lung tissue inflammation ameliorates antimicrobial drug penetration during the acute phase.
Assuntos
Lesão Pulmonar Aguda , Anti-Infecciosos , Pneumonia , Humanos , Animais , Suínos , Linezolida/uso terapêutico , Antibacterianos/efeitos adversos , Anti-Infecciosos/uso terapêutico , Ceftarolina , Pneumonia/tratamento farmacológico , Pneumonia/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Pulmão , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamenteRESUMO
Vancomycin-resistant enterococci (VRE) are common causes of bloodstream infections (BSIs) with high morbidity and mortality rates. They are pathogens of global concern with a limited treatment pipeline. Significant challenges exist in the management of VRE BSI, including drug dosing, the emergence of resistance, and the optimal treatment for persistent bacteremia and infective endocarditis. Therapeutic drug monitoring (TDM) for antimicrobial therapy is evolving for VRE-active agents; however, there are significant gaps in the literature for predicting antimicrobial efficacy for VRE BSIs. To date, TDM has the greatest evidence for predicting drug toxicity for the three main VRE-active antimicrobial agents daptomycin, linezolid, and teicoplanin. This article presents an overview of the treatment options for VRE BSIs, the role of antimicrobial dose optimization through TDM in supporting clinical infection management, and challenges and perspectives for the future.
Assuntos
Anti-Infecciosos , Bacteriemia , Infecções por Bactérias Gram-Positivas , Sepse , Enterococos Resistentes à Vancomicina , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Linezolida/uso terapêutico , Bacteriemia/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Infecções por Bactérias Gram-Positivas/tratamento farmacológicoRESUMO
BACKGROUND: Linezolid is evaluated in novel treatment regimens for tuberculous meningitis (TBM). Linezolid pharmacokinetics have not been characterized in this population, particularly in cerebrospinal fluid (CSF), as well as, following its co-administration with high-dose rifampicin. We aimed to characterize linezolid plasma and CSF pharmacokinetics in adults with TBM. METHODS: In the LASER-TBM pharmacokinetic substudy, the intervention groups received high-dose rifampicin (35â mg/kg) plus 1200â mg/day of linezolid for 28 days, which was then reduced to 600â mg/day. Plasma sampling was done on day 3 (intensive) and day 28 (sparse). A lumbar CSF sample was obtained on both visits. RESULTS: Thirty participants contributed 247 plasma and 28 CSF observations. Their median age and weight were 40 years (range, 27-56) and 58 kg (range, 30-96). Plasma pharmacokinetics was described by a 1-compartment model with first-order absorption and saturable elimination. Maximal clearance was 7.25 L/h, and the Michaelis-Menten constant was 27.2â mg/L. Rifampicin cotreatment duration did not affect linezolid pharmacokinetics. CSF-plasma partitioning correlated with CSF total protein up to 1.2â g/L, where the partition coefficient reached a maximal value of 37%. The plasma-CSF equilibration half-life was â¼3.5 hours. CONCLUSIONS: Linezolid was readily detected in CSF despite high-dose rifampicin coadministration. These findings support continued clinical evaluation of linezolid plus high-dose rifampicin for the treatment of TBM in adults. Clinical Trials Registration. ClinicalTrials.gov (NCT03927313).
Assuntos
Rifampina , Tuberculose Meníngea , Adulto , Humanos , Linezolida/uso terapêutico , Tuberculose Meníngea/tratamento farmacológico , Líquido CefalorraquidianoRESUMO
BACKGROUND: In 2019, the South African tuberculosis program replaced ethionamide with linezolid as part of an all-oral 9-month regimen. We evaluated treatment outcomes for patients assigned to regimens including linezolid in 2019 and ethionamide in 2017. METHODS: This retrospective cohort study included patients treated for multidrug-resistant/rifampicin-resistant tuberculosis throughout South Africa between 1 January and 31 December 2017 and 1 January to 31 December 2019. The cohort treated with a 9-month regimen containing ethionamide for four months, was compared with a cohort treated with a 9-month regimen containing linezolid for 2 months. The regimens were otherwise identical. Inverse probability weighting of propensity scores was used to adjust for potential confounding. A log-binomial regression model was used to estimate adjusted relative risk (aRR) comparing 24-month outcomes between cohorts including treatment success, death, loss to follow up, and treatment failure. Adverse event data were available for the linezolid cohort. FINDINGS: In total, 817 patients were included in the cohort receiving ethionamide and 4244 in the cohort receiving linezolid. No evidence for a difference was observed between linezolid and ethionamide regimens for treatment success (aRR = 0.96, 95% confidence interval [CI] .91-1.01), death (aRR = 1.01, 95% CI .87-1.17) or treatment failure (aRR = 0.87, 95% CI .44-1.75). Loss to follow-up was more common in the linezolid group, although estimates were imprecise (aRR = 1.22, 95% CI .99-1.50). CONCLUSIONS: No significant differences in treatment success and survival were observed with substitution of linezolid for ethionamide as a part of an all-oral 9-month regimen. Linezolid is an acceptable alternative to ethionamide in this shorter regimen for treatment of multidrug-resistant/rifampicin-resistant tuberculosis.
Assuntos
Antituberculosos , Etionamida , Linezolida , Rifampina , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Linezolida/administração & dosagem , Linezolida/uso terapêutico , Etionamida/uso terapêutico , Etionamida/administração & dosagem , Estudos Retrospectivos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , África do Sul , Masculino , Feminino , Rifampina/uso terapêutico , Rifampina/administração & dosagem , Adulto , Antituberculosos/administração & dosagem , Antituberculosos/uso terapêutico , Resultado do Tratamento , Pessoa de Meia-Idade , Administração Oral , Adulto Jovem , Mycobacterium tuberculosis/efeitos dos fármacosRESUMO
BACKGROUND: Effectiveness, safety, tolerability, and adherence are critical considerations in shifting to shorter tuberculosis (TB) regimens. Novel 6-month oral regimens that include bedaquiline (B), pretomanid (Pa), and linezolid (L), with or without a fourth drug, have been shown to be as or more effective than the established longer regimens for the treatment of multidrug-resistant/rifampicin-resistant TB (MDR/RR-TB). We aimed to evaluate the safety and tolerability of linezolid in BPaL-containing regimens for the treatment of MDR/RR-TB among recently completed clinical trials. METHODS: A review and meta-analysis was undertaken including published and unpublished data from clinical trials, conducted between 2010 and 2021, that evaluated regimens containing BPaL for the treatment of MDR/RR-TB. Individual patient data were obtained. For each BPaL-containing regimen, we evaluated the frequency and severity of treatment-related adverse events. The risk difference of adverse events for each regimen was calculated, in comparison to patients assigned to receiving the lowest cumulative exposure of linezolid. RESULTS: Data from 3 clinical trials investigating 8 unique BPaL-containing regimens were included, comprising a total of 591 participants. Adverse events were more frequent in groups randomized to a higher cumulative linezolid dose. Among patients who were randomized to a daily dose of 1200â mg linezolid, 68 of 195 (35%) experienced a grade 3-4 adverse event versus 89 of 396 (22%) patients receiving BPaL-containing regimens containing 600â mg linezolid. CONCLUSIONS: Regimens containing BPaL were relatively well tolerated when they included a daily linezolid dose of 600â mg. These novel regimens promise to improve the tolerability of treatment for MDR/RR-TB.
Assuntos
Linezolida , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/efeitos adversos , Diarilquinolinas/uso terapêutico , Linezolida/efeitos adversos , Nitroimidazóis , Ensaios Clínicos Controlados Aleatórios como Assunto , Rifampina/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
BACKGROUND: In 2019, the World Health Organization called for operational research on all-oral shortened regimens for multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB). We report safety and effectiveness of three 9-month all-oral regimens containing bedaquiline (Bdq), linezolid (Lzd), and levofloxacin (Lfx) and reinforced with cycloserine (Cs) and clofazimine (Cfz), delamanid (Dlm) and pyrazinamide (Z), or Dlm and Cfz. METHODS: We conducted a prospective cohort study of patients initiating treatment for pulmonary MDR/RR-TB under operational research conditions at public health facilities in Kazakhstan. Participants were screened monthly for adverse events. Participants with baseline resistance were excluded from the study and treated with a longer regimen. We analyzed clinically relevant adverse events of special interest in all participants and sputum culture conversion and end-of-treatment outcomes among individuals who were not excluded. RESULTS: Of 510 participants, 41% were women, the median age was 37 years (25th-75th percentile: 28-49), 18% had a body mass index <18.5â kg/m2, and 51% had cavitary disease. A total of 399 (78%) initiated Bdq-Lzd-Lfx-Cs-Cfz, 83 (16%) started Bdq-Lzd-Lfx-Dlm-Z, and 28 (5%) initiated Bdq-Lzd-Lfx-Dlm-Cfz. Fifty-eight individuals (11%) were excluded from the study, most commonly due to identification of baseline drug resistance (n = 52; 90%). Among the remaining 452 participants, treatment success frequencies were 92% (95% CI: 89-95%), 89% (95% CI: 80-94%), and 100% (95% CI: 86-100%) for regimens with Cs/Cfz, Dlm/Z, and Dlm/Cfz, respectively. Clinically relevant adverse events of special interest were uncommon. CONCLUSIONS: All regimens demonstrated excellent safety and effectiveness, expanding the potential treatment options for patients, providers, and programs.
Assuntos
Antituberculosos , Clofazimina , Rifampina , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Feminino , Masculino , Adulto , Antituberculosos/uso terapêutico , Antituberculosos/efeitos adversos , Antituberculosos/administração & dosagem , Cazaquistão , Estudos Prospectivos , Rifampina/uso terapêutico , Rifampina/administração & dosagem , Rifampina/efeitos adversos , Pessoa de Meia-Idade , Clofazimina/uso terapêutico , Clofazimina/administração & dosagem , Clofazimina/efeitos adversos , Quimioterapia Combinada , Linezolida/uso terapêutico , Linezolida/administração & dosagem , Linezolida/efeitos adversos , Levofloxacino/uso terapêutico , Levofloxacino/administração & dosagem , Levofloxacino/efeitos adversos , Resultado do Tratamento , Oxazóis/uso terapêutico , Oxazóis/efeitos adversos , Oxazóis/administração & dosagem , Nitroimidazóis/efeitos adversos , Nitroimidazóis/uso terapêutico , Nitroimidazóis/administração & dosagem , Administração Oral , Pirazinamida/uso terapêutico , Pirazinamida/administração & dosagem , Pirazinamida/efeitos adversos , Diarilquinolinas/uso terapêutico , Diarilquinolinas/efeitos adversos , Diarilquinolinas/administração & dosagem , Adulto Jovem , Ciclosserina/uso terapêutico , Ciclosserina/administração & dosagem , Ciclosserina/efeitos adversos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológicoRESUMO
BACKGROUND: Hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) are frequently caused by multidrug-resistant organisms. Patient-centered endpoints in clinical trials are needed to develop new antibiotics for HABP/VABP. Desirability of outcome ranking (DOOR) is a paradigm for the design, analysis, and interpretation of clinical trials based on a patient-centered, benefit-risk evaluation. METHODS: A multidisciplinary committee created an infectious diseases DOOR endpoint customized for HABP/VABP, incorporating infectious complications, serious adverse events, and mortality. We applied this to 2 previously completed, large randomized controlled trials for HABP/VABP. ZEPHyR compared vancomycin to linezolid and VITAL compared linezolid to tedizolid. For each trial, we evaluated the DOOR distribution and probability, including DOOR component and partial credit analyses. We also applied DOOR in subgroup analyses. RESULTS: In both trials, the HABP/VABP DOOR demonstrated similar overall clinical outcomes between treatment groups. In ZEPHyR, the probability that a participant treated with linezolid would have a more desirable outcome than a participant treated with vancomycin was 50.2% (95% confidence interval [CI], 45.1%--55.3%). In VITAL, the probability that a participant treated with tedizolid would have a more desirable outcome than a participant treated with linezolid was 48.7% (95% CI, 44.8%-52.6%). The DOOR component analysis revealed that participants treated with tedizolid had a less desirable outcome than those treated with linezolid when considering clinical response alone. However, participants with decreased renal function had improved overall outcomes with tedizolid. CONCLUSIONS: The HABP/VABP DOOR provided more granular information about clinical outcomes than is typically presented in clinical trials. HABP/VABP trials would benefit from prospectively using DOOR.
Assuntos
Pneumonia Associada a Assistência à Saúde , Pneumonia Bacteriana , Pneumonia Associada à Ventilação Mecânica , Humanos , Linezolida/uso terapêutico , Vancomicina/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Antibacterianos/uso terapêutico , Bactérias , Pneumonia Associada a Assistência à Saúde/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/microbiologia , Hospitais , Ventiladores MecânicosRESUMO
BACKGROUND: There are scarce data on the clinical outcomes of persons retreated with new/companion anti-tuberculosis (TB) drugs for multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB). We sought to evaluate the efficacy and safety of bedaquiline and delamanid containing regimens among patients with and without prior exposure to the new/companion drugs (bedaquiline, delamanid, linezolid, clofazimine, and fluoroquinolones). METHODS: We conducted a retrospective cohort study among patients with pulmonary MDR/RR-TB in Georgia who received bedaquiline and delamanid combination as a part of a salvage regimen from November 2017 to December 2020 in a programmatic setting. RESULTS: Among 106 persons with a median age of 39.5 years, 44 (41.5%) were previously treated with new/companion TB drugs. Patients with prior exposure to new/companion drugs had higher rates of baseline resistance compared to those without exposure to new/companion TB drugs (bedaquiline 15.2% vs 1.8%, linezolid 22.2% vs 16.7%). Sputum culture conversion rates among patients exposed and not exposed to new/companion drugs were 65.9% vs 98.0%, respectively (P < .001). Among patients with and without prior new/companion TB drug use, favorable outcome rates were 41.0% and 82.3%, respectively (P < .001). Treatment adherence in 32 (30.2%) patients was ≤80%. Five of 21 patients (23.8%) who had a baseline and repeat susceptibility test had acquired bedaquiline resistance. QTC/F prolongation (>500â ms) was rare (2.8%). CONCLUSIONS: Prior exposure to new/companion TB drugs was associated with poor clinical outcomes and acquired drug resistance. Tailoring the TB regimen to each patient's drug susceptibility test results and burden of disease and enhancing adherence support may improve outcomes.
Assuntos
Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Humanos , Adulto , Rifampina/uso terapêutico , Estudos Retrospectivos , Linezolida/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Diarilquinolinas/uso terapêutico , Antituberculosos/uso terapêutico , Nitroimidazóis/efeitos adversos , Oxazóis/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológicoRESUMO
BACKGROUND: The management of multidrug-resistant tuberculosis (MDR-TB) remains challenging. Treatment outcome is influenced by multiple factors; the specific roles of diabetes and glycemic control remain uncertain. This study aims to assess the impact of glycemic control on drug exposure, to investigate the association between drug exposure and treatment outcomes, and to identify clinically significant thresholds predictive of treatment outcome, among patients with diabetes. METHODS: This multicenter prospective cohort study involved patients with confirmed MDR-TB and diabetes. Drug exposure level was estimated by noncompartmental analysis. The minimum inhibitory concentrations (MICs) were determined for the individual Mycobacterium tuberculosis isolates. The influence of poor glycemic control (glycated hemoglobin ≥7%) on drug exposure and the associations between drug exposure and treatment outcome were evaluated by univariate and multivariate analysis. Classification and regression tree analysis was used to identify the drug exposure/susceptibility thresholds. RESULTS: Among the 131 diabetic participants, 43 (32.8%) exhibited poor glycemic control. Poor glycemic control was independently associated with decreased exposure to moxifloxacin, linezolid, bedaquiline, and cycloserine, but not clofazimine. Additionally, a higher ratio of drug exposure to susceptibility was found to be associated with a favorable MDR-TB treatment outcome. Thresholds predictive of 6-month culture conversion and favorable outcome were bedaquiline area under the concentration-time curve (AUC)/MIC ≥245 and moxifloxacin AUC/MIC ≥67, demonstrating predictive accuracy in patients, regardless of their glycemic control status. CONCLUSIONS: Glycemic control and optimal TB drug exposure are associated with improved treatment outcomes. This dual management strategy should be further validated in randomized controlled trials of patients with MDR-TB and diabetes.
Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Masculino , Feminino , Estudos Prospectivos , Antituberculosos/uso terapêutico , Pessoa de Meia-Idade , China/epidemiologia , Adulto , Resultado do Tratamento , Mycobacterium tuberculosis/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Moxifloxacina/uso terapêutico , Linezolida/uso terapêutico , Ciclosserina/uso terapêutico , Diarilquinolinas/uso terapêutico , Idoso , Clofazimina/uso terapêutico , Hemoglobinas Glicadas/análiseRESUMO
BACKGROUND: Emerging evidence suggests that shortened, simplified treatment regimens for rifampicin-resistant tuberculosis (RR-TB) can achieve comparable end-of-treatment (EOT) outcomes to longer regimens. We compared a 6-month regimen containing bedaquiline, pretomanid, linezolid, and moxifloxacin (BPaLM) to a standard of care strategy using a 9- or 18-month regimen depending on whether fluoroquinolone resistance (FQ-R) was detected on drug susceptibility testing (DST). METHODS AND FINDINGS: The primary objective was to determine whether 6 months of BPaLM is a cost-effective treatment strategy for RR-TB. We used genomic and demographic data to parameterize a mathematical model estimating long-term health outcomes measured in quality-adjusted life years (QALYs) and lifetime costs in 2022 USD ($) for each treatment strategy for patients 15 years and older diagnosed with pulmonary RR-TB in Moldova, a country with a high burden of TB drug resistance. For each individual, we simulated the natural history of TB and associated treatment outcomes, as well as the process of acquiring resistance to each of 12 anti-TB drugs. Compared to the standard of care, 6 months of BPaLM was cost-effective. This strategy was estimated to reduce lifetime costs by $3,366 (95% UI: [1,465, 5,742] p < 0.001) per individual, with a nonsignificant change in QALYs (-0.06; 95% UI: [-0.49, 0.03] p = 0.790). For those stopping moxifloxacin under the BPaLM regimen, continuing with BPaL plus clofazimine (BPaLC) provided more QALYs at lower cost than continuing with BPaL alone. Strategies based on 6 months of BPaLM had at least a 93% chance of being cost-effective, so long as BPaLC was continued in the event of stopping moxifloxacin. BPaLM for 6 months also reduced the average time spent with TB resistant to amikacin, bedaquiline, clofazimine, cycloserine, moxifloxacin, and pyrazinamide, while it increased the average time spent with TB resistant to delamanid and pretomanid. Sensitivity analyses showed 6 months of BPaLM to be cost-effective across a broad range of values for the relative effectiveness of BPaLM, and the proportion of the cohort with FQ-R. Compared to the standard of care, 6 months of BPaLM would be expected to save Moldova's national TB program budget $7.1 million (95% UI: [1.3 million, 15.4 million] p = 0.002) over the 5-year period from implementation. Our analysis did not account for all possible interactions between specific drugs with regard to treatment outcomes, resistance acquisition, or the consequences of specific types of severe adverse events, nor did we model how the intervention may affect TB transmission dynamics. CONCLUSIONS: Compared to standard of care, longer regimens, the implementation of the 6-month BPaLM regimen could improve the cost-effectiveness of care for individuals diagnosed with RR-TB, particularly in settings with a high burden of drug-resistant TB. Further research may be warranted to explore the impact and cost-effectiveness of shorter RR-TB regimens across settings with varied drug-resistant TB burdens and national income levels.
Assuntos
Antituberculosos , Análise Custo-Benefício , Moxifloxacina , Anos de Vida Ajustados por Qualidade de Vida , Rifampina , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Moldávia , Rifampina/uso terapêutico , Rifampina/economia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/economia , Antituberculosos/uso terapêutico , Antituberculosos/economia , Moxifloxacina/uso terapêutico , Moxifloxacina/economia , Adulto , Masculino , Feminino , Modelos Teóricos , Quimioterapia Combinada , Linezolida/uso terapêutico , Linezolida/economia , Diarilquinolinas/uso terapêutico , Diarilquinolinas/economia , Pessoa de Meia-Idade , Resultado do Tratamento , Esquema de Medicação , Adolescente , Mycobacterium tuberculosis/efeitos dos fármacosRESUMO
Clofazimine is included in drug regimens to treat rifampicin/drug-resistant tuberculosis (DR-TB), but there is little information about its interaction with other drugs in DR-TB regimens. We evaluated the pharmacokinetic interaction between clofazimine and isoniazid, linezolid, levofloxacin, and cycloserine, dosed as terizidone. Newly diagnosed adults with DR-TB at Klerksdorp/Tshepong Hospital, South Africa, were started on the then-standard treatment with clofazimine temporarily excluded for the initial 2 weeks. Pharmacokinetic sampling was done immediately before and 3 weeks after starting clofazimine, and drug concentrations were determined using validated liquid chromatography-tandem mass spectrometry assays. The data were interpreted with population pharmacokinetics in NONMEM v7.5.1 to explore the impact of clofazimine co-administration and other relevant covariates on the pharmacokinetics of isoniazid, linezolid, levofloxacin, and cycloserine. Clofazimine, isoniazid, linezolid, levofloxacin, and cycloserine data were available for 16, 27, 21, 21, and 6 participants, respectively. The median age and weight for the full cohort were 39 years and 52 kg, respectively. Clofazimine exposures were in the expected range, and its addition to the regimen did not significantly affect the pharmacokinetics of the other drugs except levofloxacin, for which it caused a 15% reduction in clearance. A posteriori power size calculations predicted that our sample sizes had 97%, 90%, and 87% power at P < 0.05 to detect a 30% change in clearance of isoniazid, linezolid, and cycloserine, respectively. Although clofazimine increased the area under the curve of levofloxacin by 19%, this is unlikely to be of great clinical significance, and the lack of interaction with other drugs tested is reassuring.
Assuntos
Antituberculosos , Clofazimina , Ciclosserina , Interações Medicamentosas , Isoniazida , Levofloxacino , Linezolida , Tuberculose Resistente a Múltiplos Medicamentos , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adulto , Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Masculino , Feminino , Linezolida/farmacocinética , Linezolida/uso terapêutico , Isoniazida/farmacocinética , Isoniazida/uso terapêutico , Levofloxacino/farmacocinética , Levofloxacino/uso terapêutico , Ciclosserina/farmacocinética , Ciclosserina/uso terapêutico , Pessoa de Meia-Idade , África do Sul , Adulto Jovem , Quimioterapia CombinadaRESUMO
According to the World Health Organization, the number of tuberculosis (TB) infections and the drug-resistant burden worldwide increased by 4.5% and 3.0%, respectively, between 2020 and 2021. Disease severity and complexity drive the interest for undertaking new clinical trials to provide efficient treatment to limit spread and drug resistance. TB Alliance conducted a phase 2 study in 106 patients to guide linezolid (LZD) dose selection using early bactericidal activity over 14 days of treatment. LZD is highly efficient for drug-resistant TB treatment, but treatment monitoring is required since serious adverse events can occur. The objective of this study was to develop a pharmacokinetic-pharmacodynamic (PKPD) model to analyze the dose-response relationship between linezolid exposure and efficacy biomarkers. Using time to positivity (TTP) and colony-forming unit (CFU) count data, we developed a PKPD model in six dosing regimens, differing on LZD dosing intensity. A one-compartment model with five transit absorption compartments and non-linear auto-inhibition elimination described best LZD pharmacokinetic characteristics. TTP and CFU logarithmic scaled [log(CFU)] showed a bactericidal activity of LZD against Mycobacterium tuberculosis. TTP was defined by a model with two significant covariates: the presence of uni- and bilateral cavities decreased baseline TTP value by 24%, and an increase on every 500 mg/L/h of cumulative area under the curve increased the rate at which TTP and CFU change from baseline by 20% and 11%, respectively. CLINICAL TRIALS: This study is registered with ClinicalTrials.gov as NCT02279875.
Assuntos
Antituberculosos , Linezolida , Mycobacterium tuberculosis , Linezolida/farmacocinética , Linezolida/farmacologia , Linezolida/administração & dosagem , Humanos , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/administração & dosagem , Mycobacterium tuberculosis/efeitos dos fármacos , Adulto , Masculino , Feminino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Relação Dose-Resposta a Droga , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Contagem de Colônia MicrobianaRESUMO
The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.
Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Oxazolidinonas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Linezolida/farmacologia , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Nitroimidazóis/farmacologia , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
A major challenge for tuberculosis (TB) drug development is to prioritize promising combination regimens from a large and growing number of possibilities. This includes demonstrating individual drug contributions to the activity of higher-order combinations. A BALB/c mouse TB infection model was used to evaluate the contributions of each drug and pairwise combination in the clinically relevant Nix-TB regimen [bedaquiline-pretomanid-linezolid (BPaL)] during the first 3 weeks of treatment at human equivalent doses. The rRNA synthesis (RS) ratio, an exploratory pharmacodynamic (PD) marker of ongoing Mycobacterium tuberculosis rRNA synthesis, together with solid culture CFU counts and liquid culture time to positivity (TTP) were used as PD markers of treatment response in lung tissue; and their time-course profiles were mathematically modeled using rate equations with pharmacologically interpretable parameters. Antimicrobial interactions were quantified using Bliss independence and Isserlis formulas. Subadditive (or antagonistic) and additive effects on bacillary load, assessed by CFU and TTP, were found for bedaquiline-pretomanid and linezolid-containing pairs, respectively. In contrast, subadditive and additive effects on rRNA synthesis were found for pretomanid-linezolid and bedaquiline-containing pairs, respectively. Additionally, accurate predictions of the response to BPaL for all three PD markers were made using only the single-drug and pairwise effects together with an assumption of negligible three-way drug interactions. The results represent an experimental and PD modeling approach aimed at reducing combinatorial complexity and improving the cost-effectiveness of in vivo systems for preclinical TB regimen development.
Assuntos
Antituberculosos , Diarilquinolinas , Modelos Animais de Doenças , Linezolida , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis , Animais , Antituberculosos/farmacologia , Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Linezolida/farmacologia , Linezolida/farmacocinética , Diarilquinolinas/farmacologia , Diarilquinolinas/farmacocinética , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Feminino , Nitroimidazóis/farmacologia , Nitroimidazóis/farmacocinética , Nitroimidazóis/uso terapêutico , Quimioterapia Combinada , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Testes de Sensibilidade Microbiana , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologiaRESUMO
Osteomyelitis caused by Staphylococcus aureus can involve the persistent infection of osteocytes. We sought to determine if current clinically utilized antibiotics were capable of clearing an intracellular osteocyte S. aureus infection. Rifampicin, vancomycin, levofloxacin, ofloxacin, amoxicillin, oxacillin, doxycycline, linezolid, gentamicin, and tigecycline were assessed for their minimum inhibitory concentration (MIC) and minimum bactericidal concentrations against 12 S. aureus strains, at pH 5.0 and 7.2 to mimic lysosomal and cytoplasmic environments, respectively. Those antibiotics whose bone estimated achievable concentration was commonly above their respective MIC for the strains tested were further assayed in a human osteocyte infection model under acute and chronic conditions. Osteocyte-like cells were treated at 1×, 4×, and 10× the MIC for 1 and 7 days following infection (acute model), or at 15 and 21 days of infection (chronic model). The intracellular effectivity of each antibiotic was measured in terms of CFU reduction, small colony variant formation, and bacterial mRNA expression change. Only rifampicin, levofloxacin, and linezolid reduced intracellular CFU numbers significantly in the acute model. Consistent with the transition to a non-culturable state, few if any CFU could be recovered from the chronic model. However, no treatment in either model reduced the quantity of bacterial mRNA or prevented non-culturable bacteria from returning to a culturable state. These findings indicate that S. aureus adapts phenotypically during intracellular infection of osteocytes, adopting a reversible quiescent state that is protected against antibiotics, even at 10× their MIC. Thus, new therapeutic approaches are necessary to cure S. aureus intracellular infections in osteomyelitis.