Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.381
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 24(6): 991-1006, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095377

RESUMO

Germinal center (GC) B cells undergo proliferation at very high rates in a hypoxic microenvironment but the cellular processes driving this are incompletely understood. Here we show that the mitochondria of GC B cells are highly dynamic, with significantly upregulated transcription and translation rates associated with the activity of transcription factor A, mitochondrial (TFAM). TFAM, while also necessary for normal B cell development, is required for entry of activated GC precursor B cells into the germinal center reaction; deletion of Tfam significantly impairs GC formation, function and output. Loss of TFAM in B cells compromises the actin cytoskeleton and impairs cellular motility of GC B cells in response to chemokine signaling, leading to their spatial disorganization. We show that B cell lymphoma substantially increases mitochondrial translation and that deletion of Tfam in B cells is protective against the development of lymphoma in a c-Myc transgenic mouse model. Finally, we show that pharmacological inhibition of mitochondrial transcription and translation inhibits growth of GC-derived human lymphoma cells and induces similar defects in the actin cytoskeleton.


Assuntos
Linfoma de Células B , Linfoma , Camundongos , Humanos , Animais , Linfócitos B/patologia , Centro Germinativo/patologia , Transcrição Gênica , Linfoma de Células B/genética , Linfoma de Células B/patologia , Camundongos Transgênicos , Microambiente Tumoral
2.
Cell ; 180(5): 878-894.e19, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32059783

RESUMO

Pathogenic autoantibodies arise in many autoimmune diseases, but it is not understood how the cells making them evade immune checkpoints. Here, single-cell multi-omics analysis demonstrates a shared mechanism with lymphoid malignancy in the formation of public rheumatoid factor autoantibodies responsible for mixed cryoglobulinemic vasculitis. By combining single-cell DNA and RNA sequencing with serum antibody peptide sequencing and antibody synthesis, rare circulating B lymphocytes making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations. Lymphoma driver mutations in genes regulating B cell proliferation and V(D)J mutation (CARD11, TNFAIP3, CCND3, ID3, BTG2, and KLHL6) were present in rogue B cells producing the pathogenic autoantibody. Antibody V(D)J mutations conferred pathogenicity by causing the antigen-bound autoantibodies to undergo phase transition to insoluble aggregates at lower temperatures. These results reveal a pre-neoplastic stage in human lymphomagenesis and a cascade of somatic mutations leading to an iconic pathogenic autoantibody.


Assuntos
Autoanticorpos/genética , Doenças Autoimunes/genética , Linfócitos B/imunologia , Linfoma/genética , Animais , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/patologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Transporte/genética , Evolução Clonal/genética , Evolução Clonal/imunologia , Ciclina D3/genética , Guanilato Ciclase/genética , Humanos , Proteínas Imediatamente Precoces/genética , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Proteínas Inibidoras de Diferenciação/genética , Linfoma/imunologia , Linfoma/patologia , Camundongos , Mutação/genética , Mutação/imunologia , Proteínas de Neoplasias/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteínas Supressoras de Tumor/genética , Recombinação V(D)J/genética
3.
Nat Immunol ; 23(4): 594-604, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35354951

RESUMO

While T cell receptor (TCR) αß+CD8α+CD8ß- intraepithelial lymphocytes (CD8αα+ IELs) differentiate from thymic IEL precursors (IELps) and contribute to gut homeostasis, the transcriptional control of their development remains poorly understood. In the present study we showed that mouse thymocytes deficient for the transcription factor leukemia/lymphoma-related factor (LRF) failed to generate TCRαß+CD8αα+ IELs and their CD8ß-expressing counterparts, despite giving rise to thymus and spleen CD8αß+ T cells. LRF-deficient IELps failed to migrate to the intestine and to protect against T cell-induced colitis, and had impaired expression of the gut-homing integrin α4ß7. Single-cell RNA-sequencing found that LRF was necessary for the expression of genes characteristic of the most mature IELps, including Itgb7, encoding the ß7 subunit of α4ß7. Chromatin immunoprecipitation and gene-regulatory network analyses both defined Itgb7 as an LRF target. Our study identifies LRF as an essential transcriptional regulator of IELp maturation in the thymus and subsequent migration to the intestinal epithelium.


Assuntos
Linfócitos Intraepiteliais , Leucemia , Linfoma , Animais , Antígenos CD8/genética , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Cadeias beta de Integrinas , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/metabolismo , Leucemia/metabolismo , Linfoma/metabolismo , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Fatores de Transcrição/metabolismo
4.
Annu Rev Immunol ; 29: 319-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21219174

RESUMO

Recurrent chromosomal translocations are characteristic features of many types of cancers, especially lymphomas and leukemias. Several basic mechanistic factors are required for the generation of most translocations. First, DNA double-strand breaks (DSBs) must be present simultaneously at the two participating loci. Second, the two broken loci must either be in proximity or be moved into proximity to be joined. Finally, cellular DNA repair pathways must be available to join the two broken loci to complete the translocation. These mechanistic factors can vary in different normal and mutant cells and, as a result, substantially influence the frequency at which particular translocations are generated in a given cell type. Ultimately, however, appearance of recurrent oncogenic translocations in tumors is, in most cases, strongly influenced by selection for the translocated oncogene during the tumorigenesis process. In this review, we discuss in depth the factors and pathways that contribute to the generation of translocations in lymphocytes and other cell types. We also discuss recent findings regarding mechanisms that underlie the appearance of recurrent translocations in tumors.


Assuntos
Linfócitos/metabolismo , Translocação Genética , Animais , Citidina Desaminase/genética , Quebras de DNA de Cadeia Dupla , Rearranjo Gênico do Linfócito B , Humanos , Leucemia/genética , Linfoma/genética
5.
Cell ; 175(2): 442-457.e23, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290143

RESUMO

Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) critically contribute to the efficacy of anti-tumor therapeutic antibodies. We report here an unexpected finding that macrophages after ADCP inhibit NK cell-mediated ADCC and T cell-mediated cytotoxicity in breast cancers and lymphomas. Mechanistically, AIM2 is recruited to the phagosomes by FcγR signaling following ADCP and activated by sensing the phagocytosed tumor DNAs through the disrupted phagosomal membrane, which subsequently upregulates PD-L1 and IDO and causes immunosuppression. Combined treatment with anti-HER2 antibody and inhibitors of PD-L1 and IDO enhances anti-tumor immunity and anti-HER2 therapeutic efficacy in mouse models. Furthermore, neoadjuvant trastuzumab therapy significantly upregulates PD-L1 and IDO in the tumor-associated macrophages (TAMs) of HER2+ breast cancer patients, correlating with poor trastuzumab response. Collectively, our findings unveil a deleterious role of ADCP macrophages in cancer immunosuppression and suggest that therapeutic antibody plus immune checkpoint blockade may provide synergistic effects in cancer treatment.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Citofagocitose/imunologia , Macrófagos/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos/fisiologia , Antígeno B7-H1/genética , Antígeno B7-H1/fisiologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citofagocitose/fisiologia , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia , Células Matadoras Naturais/fisiologia , Linfoma/imunologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fagocitose/imunologia , Fagocitose/fisiologia , Fagossomos/fisiologia , Receptores de IgG/imunologia
6.
Cell ; 171(1): 103-119.e18, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938112

RESUMO

It is now established that Bcl11b specifies T cell fate. Here, we show that in developing T cells, the Bcl11b enhancer repositioned from the lamina to the nuclear interior. Our search for factors that relocalized the Bcl11b enhancer identified a non-coding RNA named ThymoD (thymocyte differentiation factor). ThymoD-deficient mice displayed a block at the onset of T cell development and developed lymphoid malignancies. We found that ThymoD transcription promoted demethylation at CTCF bound sites and activated cohesin-dependent looping to reposition the Bcl11b enhancer from the lamina to the nuclear interior and to juxtapose the Bcl11b enhancer and promoter into a single-loop domain. These large-scale changes in nuclear architecture were associated with the deposition of activating epigenetic marks across the loop domain, plausibly facilitating phase separation. These data indicate how, during developmental progression and tumor suppression, non-coding transcription orchestrates chromatin folding and compartmentalization to direct with high precision enhancer-promoter communication.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Proteínas Repressoras/genética , Linfócitos T/citologia , Proteínas Supressoras de Tumor/genética , Animais , Fator de Ligação a CCCTC , Cromatina/metabolismo , Leucemia/genética , Região de Controle de Locus Gênico , Linfoma/genética , Camundongos , Lâmina Nuclear/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Timo/citologia , Timo/metabolismo , Transcrição Gênica
7.
Genes Dev ; 38(5-6): 253-272, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565249

RESUMO

Oncogenic activation of MYC in cancers predominantly involves increased transcription rather than coding region mutations. However, MYC-dependent lymphomas frequently acquire point mutations in the MYC phosphodegron, including at threonine 58 (T58), where phosphorylation permits binding via the FBW7 ubiquitin ligase triggering MYC degradation. To understand how T58 phosphorylation functions in normal cell physiology, we introduced an alanine mutation at T58 (T58A) into the endogenous c-Myc locus in the mouse germline. While MYC-T58A mice develop normally, lymphomas and myeloid leukemias emerge in ∼60% of adult homozygous T58A mice. We found that primitive hematopoietic progenitor cells from MYC-T58A mice exhibit aberrant self-renewal normally associated with hematopoietic stem cells (HSCs) and up-regulate a subset of MYC target genes important in maintaining stem/progenitor cell balance. In lymphocytes, genomic occupancy by MYC-T58A was increased at all promoters compared with WT MYC, while genes differentially expressed in a T58A-dependent manner were significantly more proximal to MYC-bound enhancers. MYC-T58A lymphocyte progenitors exhibited metabolic alterations and decreased activation of inflammatory and apoptotic pathways. Our data demonstrate that a single point mutation stabilizing MYC is sufficient to skew target gene expression, producing a profound gain of function in multipotential hematopoietic progenitors associated with self-renewal and initiation of lymphomas and leukemias.


Assuntos
Proteína 7 com Repetições F-Box-WD , Neoplasias Hematológicas , Linfoma , Proteínas Proto-Oncogênicas c-myc , Animais , Camundongos , Células Germinativas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mutação Puntual , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo
8.
Nat Immunol ; 20(1): 86-96, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538335

RESUMO

Germinal center (GC) B cells feature repression of many gene enhancers to establish their characteristic transcriptome. Here we show that conditional deletion of Lsd1 in GCs significantly impaired GC formation, associated with failure to repress immune synapse genes linked to GC exit, which are also direct targets of the transcriptional repressor BCL6. We found that BCL6 directly binds LSD1 and recruits it primarily to intergenic and intronic enhancers. Conditional deletion of Lsd1 suppressed GC hyperplasia caused by constitutive expression of BCL6 and significantly delayed BCL6-driven lymphomagenesis. Administration of catalytic inhibitors of LSD1 had little effect on GC formation or GC-derived lymphoma cells. Using a CRISPR-Cas9 domain screen, we found instead that the LSD1 Tower domain was critical for dependence on LSD1 in GC-derived B cells. These results indicate an essential role for LSD1 in the humoral immune response, where it modulates enhancer function by forming repression complexes with BCL6.


Assuntos
Linfócitos B/fisiologia , Centro Germinativo/patologia , Histona Desmetilases/metabolismo , Linfoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Animais , Sistemas CRISPR-Cas , Carcinogênese , DNA Intergênico/genética , Centro Germinativo/imunologia , Histona Desmetilases/genética , Hiperplasia , Sinapses Imunológicas/genética , Íntrons/genética , Linfoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6/genética
9.
Nat Rev Mol Cell Biol ; 20(9): 515-534, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31110302

RESUMO

PI3Ks are a family of lipid kinases that phosphorylate intracellular inositol lipids to regulate signalling and intracellular vesicular traffic. Mammals have eight isoforms of PI3K, divided into three classes. The class I PI3Ks generate 3-phosphoinositide lipids, which directly activate signal transduction pathways. In addition to being frequently genetically activated in cancer, similar mutations in class I PI3Ks have now also been found in a human non-malignant overgrowth syndrome and a primary immune disorder that predisposes to lymphoma. The class II and class III PI3Ks are regulators of membrane traffic along the endocytic route, in endosomal recycling and autophagy, with an often indirect effect on cell signalling. Here, we summarize current knowledge of the different PI3K classes and isoforms, focusing on recently uncovered biological functions and the mechanisms by which these kinases are activated. Deeper insight into the PI3K isoforms will undoubtedly continue to contribute to a better understanding of fundamental cell biological processes and, ultimately, of human disease.


Assuntos
Endossomos/metabolismo , Linfoma/enzimologia , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Transporte Biológico Ativo , Endocitose , Humanos , Isoenzimas/metabolismo , Linfoma/patologia
10.
Cell ; 160(3): 477-88, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25619689

RESUMO

MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc(+/-)) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis, and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR, and S6K activities. In contrast to observations in other longevity models, Myc(+/-) mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan.


Assuntos
Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Envelhecimento , Animais , Tamanho Corporal , Feminino , Longevidade , Linfoma/genética , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Transcriptoma
11.
Cell ; 163(4): 947-59, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593423

RESUMO

RAG initiates antibody V(D)J recombination in developing lymphocytes by generating "on-target" DNA breaks at matched pairs of bona fide recombination signal sequences (RSSs). We employ bait RAG-generated breaks in endogenous or ectopically inserted RSS pairs to identify huge numbers of RAG "off-target" breaks. Such breaks occur at the simple CAC motif that defines the RSS cleavage site and are largely confined within convergent CTCF-binding element (CBE)-flanked loop domains containing bait RSS pairs. Marked orientation dependence of RAG off-target activity within loops spanning up to 2 megabases implies involvement of linear tracking. In this regard, major RAG off-targets in chromosomal translocations occur as convergent RSS pairs at enhancers within a loop. Finally, deletion of a CBE-based IgH locus element disrupts V(D)J recombination domains and, correspondingly, alters RAG on- and off-target distributions within IgH. Our findings reveal how RAG activity is developmentally focused and implicate mechanisms by which chromatin domains harness biological processes within them.


Assuntos
Cromossomos de Mamíferos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Recombinação V(D)J , Animais , Fator de Ligação a CCCTC , Cromossomos de Mamíferos/química , Proteínas de Ligação a DNA/metabolismo , Genes myc , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Linfoma/genética , Camundongos , Motivos de Nucleotídeos , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA , Translocação Genética
12.
Nature ; 627(8002): 221-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383791

RESUMO

Epigenomes enable the rectification of disordered cancer gene expression, thereby providing new targets for pharmacological interventions. The clinical utility of targeting histone H3 lysine trimethylation (H3K27me3) as an epigenetic hallmark has been demonstrated1-7. However, in actual therapeutic settings, the mechanism by which H3K27me3-targeting therapies exert their effects and the response of tumour cells remain unclear. Here we show the potency and mechanisms of action and resistance of the EZH1-EZH2 dual inhibitor valemetostat in clinical trials of patients with adult T cell leukaemia/lymphoma. Administration of valemetostat reduced tumour size and demonstrated durable clinical response in aggressive lymphomas with multiple genetic mutations. Integrative single-cell analyses showed that valemetostat abolishes the highly condensed chromatin structure formed by the plastic H3K27me3 and neutralizes multiple gene loci, including tumour suppressor genes. Nevertheless, subsequent long-term treatment encounters the emergence of resistant clones with reconstructed aggregate chromatin that closely resemble the pre-dose state. Acquired mutations at the PRC2-compound interface result in the propagation of clones with increased H3K27me3 expression. In patients free of PRC2 mutations, TET2 mutation or elevated DNMT3A expression causes similar chromatin recondensation through de novo DNA methylation in the H3K27me3-associated regions. We identified subpopulations with distinct metabolic and gene translation characteristics implicated in primary susceptibility until the acquisition of the heritable (epi)mutations. Targeting epigenetic drivers and chromatin homeostasis may provide opportunities for further sustained epigenetic cancer therapies.


Assuntos
Histonas , Linfoma , Adulto , Humanos , Histonas/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Metilação , Cromatina/genética
13.
Cell ; 159(7): 1524-37, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25483777

RESUMO

The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA(+) enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment.


Assuntos
Linfócitos B/metabolismo , Carcinogênese , Citidina Desaminase/genética , Elementos Facilitadores Genéticos , Animais , Dano ao DNA , Humanos , Linfoma/metabolismo , Camundongos
14.
Mol Cell ; 81(19): 3886-3887, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624215

RESUMO

Gong et al. (2021) demonstrate that MYC-induced proteotoxic stress could be relieved by inactivating RNA helicase DDX3X for tumor initiation, and in male MYC-driven lymphomas, the homologous helicase DDX3Y, encoded on the Y chromosome, is subsequently induced for disease progression.


Assuntos
RNA Helicases DEAD-box , Linfoma , Humanos , Masculino
15.
Cell ; 152(3): 417-29, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374339

RESUMO

Chromosomal translocations involving antigen receptor loci are common in lymphoid malignancies. Translocations require DNA double-strand breaks (DSBs) at two chromosomal sites, their physical juxtaposition, and their fusion by end-joining. Ability of lymphocytes to generate diverse repertoires of antigen receptors and effector antibodies derives from programmed genomic alterations that produce DSBs. We discuss these lymphocyte-specific processes, with a focus on mechanisms that provide requisite DSB target specificity and mechanisms that suppress DSB translocation. We also discuss recent work that provides new insights into DSB repair pathways and the influences of three-dimensional genome organization on physiological processes and cancer genomes.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Instabilidade Genômica , Linfócitos/metabolismo , Recombinação V(D)J , Animais , Humanos , Linfócitos/imunologia , Linfoma/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Translocação Genética
16.
N Engl J Med ; 390(16): 1467-1480, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657244

RESUMO

BACKGROUND: Patients with relapsed or refractory hematologic cancers have a poor prognosis. Chimeric antigen receptor (CAR) T-cell therapy as a bridge to allogeneic hematopoietic stem-cell transplantation (HSCT) has the potential for long-term tumor elimination. However, pre-HSCT myeloablation and graft-versus-host disease (GVHD) prophylaxis agents have toxic effects and could eradicate residual CAR T cells and compromise antitumor effects. Whether the integration of CAR T-cell therapy and allogeneic HSCT can preserve CAR T-cell function and improve tumor control is unclear. METHODS: We tested a novel "all-in-one" strategy consisting of sequential CD7 CAR T-cell therapy and haploidentical HSCT in 10 patients with relapsed or refractory CD7-positive leukemia or lymphoma. After CAR T-cell therapy led to complete remission with incomplete hematologic recovery, patients received haploidentical HSCT without pharmacologic myeloablation or GVHD prophylaxis drugs. Toxic effects and efficacy were closely monitored. RESULTS: After CAR T-cell therapy, all 10 patients had complete remission with incomplete hematologic recovery and grade 4 pancytopenia. After haploidentical HSCT, 1 patient died on day 13 of septic shock and encephalitis, 8 patients had full donor chimerism, and 1 patient had autologous hematopoiesis. Three patients had grade 2 HSCT-associated acute GVHD. The median follow-up was 15.1 months (range, 3.1 to 24.0) after CAR T-cell therapy. Six patients remained in minimal residual disease-negative complete remission, 2 had a relapse of CD7-negative leukemia, and 1 died of septic shock at 3.7 months. The estimated 1-year overall survival was 68% (95% confidence interval [CI], 43 to 100), and the estimated 1-year disease-free survival was 54% (95% CI, 29 to 100). CONCLUSIONS: Our findings suggest that sequential CD7 CAR T-cell therapy and haploidentical HSCT is safe and effective, with remission and serious but reversible adverse events. This strategy offers a feasible approach for patients with CD7-positive tumors who are ineligible for conventional allogeneic HSCT. (Funded by the National Natural Science Foundation of China and the Key Project of Science and Technology Department of Zhejiang Province; ClinicalTrials.gov numbers, NCT04599556 and NCT04538599.).


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Leucemia , Linfoma , Receptores de Antígenos Quiméricos , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antígenos CD7 , Terapia Combinada , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Leucemia/terapia , Leucemia/mortalidade , Linfoma/mortalidade , Linfoma/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Indução de Remissão , Transplante Homólogo , Recidiva , Idoso
17.
Trends Immunol ; 45(2): 138-153, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38238227

RESUMO

Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.


Assuntos
Hipersensibilidade , Linfoma , Humanos , Mutação com Ganho de Função , Hipersensibilidade/genética , Regulação da Expressão Gênica , Células Germinativas , Fator de Transcrição STAT6/genética
18.
Cell ; 148(4): 739-51, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22341446

RESUMO

B cells infected by Epstein-Barr virus (EBV), a transforming virus endemic in humans, are rapidly cleared by the immune system, but some cells harboring the virus persist for life. Under conditions of immunosuppression, EBV can spread from these cells and cause life-threatening pathologies. We have generated mice expressing the transforming EBV latent membrane protein 1 (LMP1), mimicking a constitutively active CD40 coreceptor, specifically in B cells. Like human EBV-infected cells, LMP1+ B cells were efficiently eliminated by T cells, and breaking immune surveillance resulted in rapid, fatal lymphoproliferation and lymphomagenesis. The lymphoma cells expressed ligands for a natural killer (NK) cell receptor, NKG2D, and could be targeted by an NKG2D-Fc fusion protein. These experiments indicate a central role for LMP1 in the surveillance and transformation of EBV-infected B cells in vivo, establish a preclinical model for B cell lymphomagenesis in immunosuppressed patients, and validate a new therapeutic approach.


Assuntos
Modelos Animais de Doenças , Herpesvirus Humano 4 , Vigilância Imunológica , Linfoma/imunologia , Linfoma/terapia , Proteínas da Matriz Viral/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Humanos , Imunoterapia , Linfoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Proteínas da Matriz Viral/genética
19.
Cell ; 149(6): 1269-83, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682249

RESUMO

Cell-cycle arrest, apoptosis, and senescence are widely accepted as the major mechanisms by which p53 inhibits tumor formation. Nevertheless, it remains unclear whether they are the rate-limiting steps in tumor suppression. Here, we have generated mice bearing lysine to arginine mutations at one (p53(K117R)) or three (p53(3KR); K117R+K161R+K162R) of p53 acetylation sites. Although p53(K117R/K117R) cells are competent for p53-mediated cell-cycle arrest and senescence, but not apoptosis, all three of these processes are ablated in p53(3KR/3KR) cells. Surprisingly, unlike p53 null mice, which rapidly succumb to spontaneous thymic lymphomas, early-onset tumor formation does not occur in either p53(K117R/K117R) or p53(3KR/3KR) animals. Notably, p53(3KR) retains the ability to regulate energy metabolism and reactive oxygen species production. These findings underscore the crucial role of acetylation in differentially modulating p53 responses and suggest that unconventional activities of p53, such as metabolic regulation and antioxidant function, are critical for suppression of early-onset spontaneous tumorigenesis.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Senescência Celular , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Humanos , Linfoma/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Alinhamento de Sequência , Neoplasias do Timo/metabolismo , Proteína Supressora de Tumor p53/genética
20.
Cell ; 151(7): 1474-87, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260137

RESUMO

DNA Ligase IV is responsible for sealing of double-strand breaks (DSBs) during nonhomologous end-joining (NHEJ). Inhibiting Ligase IV could result in amassing of DSBs, thereby serving as a strategy toward treatment of cancer. Here, we identify a molecule, SCR7 that inhibits joining of DSBs in cell-free repair system. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding but not that of T4 DNA Ligase or Ligase I. SCR7 inhibits NHEJ in a Ligase IV-dependent manner within cells, and activates the intrinsic apoptotic pathway. More importantly, SCR7 impedes tumor progression in mouse models and when coadministered with DSB-inducing therapeutic modalities enhances their sensitivity significantly. This inhibitor to target NHEJ offers a strategy toward the treatment of cancer and improvement of existing regimens.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , DNA Ligases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pirimidinas/uso terapêutico , Bases de Schiff/uso terapêutico , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , DNA Ligase Dependente de ATP , DNA Ligases/química , DNA Ligases/genética , Modelos Animais de Doenças , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Linfócitos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Pirimidinas/síntese química , Pirimidinas/química , Tolerância a Radiação , Ratos , Bases de Schiff/síntese química , Bases de Schiff/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA