RESUMO
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Assuntos
Apresentação de Antígeno , Antígenos/imunologia , Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Antígenos/química , Reações Cruzadas/imunologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Lipídeos/imunologia , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T/químicaRESUMO
Muscle damage elicits a sterile immune response that facilitates complete regeneration. Here, we used mass spectrometry-based lipidomics to map the mediator lipidome during the transition from inflammation to resolution and regeneration in skeletal muscle injury. We observed temporal regulation of glycerophospholipids and production of pro-inflammatory lipid mediators (for example, leukotrienes and prostaglandins) and specialized pro-resolving lipid mediators (for example, resolvins and lipoxins) that were modulated by ibuprofen. These time-dependent profiles were recapitulated in sorted neutrophils and Ly6Chi and Ly6Clo muscle-infiltrating macrophages, with a distinct pro-resolving signature observed in Ly6Clo macrophages. RNA sequencing of macrophages stimulated with resolvin D2 showed similarities to transcriptional changes found during the temporal transition from Ly6Chi macrophage to Ly6Clo macrophage. In vivo, resolvin D2 increased Ly6Clo macrophages and functional improvement of the regenerating muscle. These results reveal dynamic lipid mediator signatures of innate immune cells and provide a proof of concept for their exploitable effector roles in muscle regeneration.
Assuntos
Mediadores da Inflamação/imunologia , Lipídeos/imunologia , Macrófagos/imunologia , Músculo Esquelético/imunologia , Regeneração/imunologia , Animais , Ácidos Docosa-Hexaenoicos/imunologia , Ácidos Docosa-Hexaenoicos/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Metabolismo dos Lipídeos/imunologia , Lipídeos/análise , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Regeneração/genéticaRESUMO
The hallmark function of αß T cell antigen receptors (TCRs) involves the highly specific co-recognition of a major histocompatibility complex molecule and its carried peptide. However, the molecular basis of the interactions of TCRs with the lipid antigen-presenting molecule CD1c is unknown. We identified frequent staining of human T cells with CD1c tetramers across numerous subjects. Whereas TCRs typically show high specificity for antigen, both tetramer binding and autoreactivity occurred with CD1c in complex with numerous, chemically diverse self lipids. Such extreme polyspecificity was attributable to binding of the TCR over the closed surface of CD1c, with the TCR covering the portal where lipids normally protrude. The TCR essentially failed to contact lipids because they were fully seated within CD1c. These data demonstrate the sequestration of lipids within CD1c as a mechanism of autoreactivity and point to small lipid size as a determinant of autoreactive T cell responses.
Assuntos
Antígenos CD1/imunologia , Autoantígenos/imunologia , Autoimunidade/imunologia , Glicoproteínas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Apresentação de Antígeno/imunologia , Humanos , Lipídeos/imunologia , Ativação Linfocitária/imunologiaRESUMO
Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems.
Assuntos
Imunidade Inata , Lipídeos/imunologia , Animais , Membrana Celular/química , Fibroblastos/metabolismo , Doença de Gaucher/imunologia , Humanos , Interleucina-6/imunologia , Leucodistrofia de Células Globoides/imunologia , Redes e Vias Metabólicas , Camundongos , Esfingolipídeos/metabolismo , Receptores Toll-Like/imunologiaRESUMO
A central paradigm in αß T cell-mediated immunity is the simultaneous co-recognition of antigens and antigen-presenting molecules by the αß T cell antigen receptor (TCR). CD1a presents a broad repertoire of lipid-based antigens. We found that a prototypical autoreactive TCR bound CD1a when it was presenting a series of permissive endogenous ligands, while other lipid ligands were nonpermissive to TCR binding. The structures of two TCR-CD1a-lipid complexes showed that the TCR docked over the A' roof of CD1a in a manner that precluded direct contact with permissive ligands. Nonpermissive ligands indirectly inhibited TCR binding by disrupting the TCR-CD1a contact zone. The exclusive recognition of CD1a by the TCR represents a previously unknown mechanism whereby αß T cells indirectly sense self antigens that are bound to an antigen-presenting molecule.
Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD1/imunologia , Autoantígenos/imunologia , Lipídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Células Jurkat , Ligantes , Ligação ProteicaRESUMO
To broadly measure the spectrum of cellular self-antigens for natural killer T cells (NKT), we developed a sensitive lipidomics system to analyze lipids trapped between CD1d and NKT T cell receptors (TCRs). We captured diverse antigen complexes formed in cells from natural endogenous lipids, with or without inducing endoplasmic reticulum (ER) stress. After separating protein complexes with no, low, or high CD1d-TCR interaction, we eluted lipids to establish the spectrum of self-lipids that facilitate this interaction. Although this unbiased approach identified fifteen molecules, they clustered into only two related groups: previously known phospholipid antigens and unexpected neutral lipid antigens. Mass spectrometry studies identified the neutral lipids as ceramides, deoxyceramides, and diacylglycerols, which can be considered headless lipids because they lack polar headgroups that usually form the TCR epitope. The crystal structure of the TCR-ceramide-CD1d complex showed how the missing headgroup allowed the TCR to predominantly contact CD1d, supporting a model of CD1d autoreactivity. Ceramide and related headless antigens mediated physiological TCR binding affinity, weak NKT cell responses, and tetramer binding to polyclonal human and mouse NKT cells. Ceramide and sphingomyelin are oppositely regulated components of the "sphingomyelin cycle" that are altered during apoptosis, transformation, and ER stress. Thus, the unique molecular link of ceramide to NKT cell response, along with the recent identification of sphingomyelin blockers of NKT cell activation, provide two mutually reinforcing links for NKT cell response to sterile cellular stress conditions.
Assuntos
Antígenos CD1d , Lipidômica , Células T Matadoras Naturais , Receptores de Antígenos de Linfócitos T , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Animais , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Camundongos , Lipidômica/métodos , Humanos , Autoantígenos/imunologia , Autoantígenos/metabolismo , Ceramidas/metabolismo , Ceramidas/imunologia , Lipídeos/química , Lipídeos/imunologia , Estresse do Retículo Endoplasmático/imunologiaRESUMO
T cells autoreactive to the antigen-presenting molecule CD1a are common in human blood and skin, but the search for natural autoantigens has been confounded by background T cell responses to CD1 proteins and self lipids. After capturing CD1a-lipid complexes, we gently eluted ligands while preserving non-ligand-bound CD1a for testing lipids from tissues. CD1a released hundreds of ligands of two types. Inhibitory ligands were ubiquitous membrane lipids with polar head groups, whereas stimulatory compounds were apolar oils. We identified squalene and wax esters, which naturally accumulate in epidermis and sebum, as autoantigens presented by CD1a. The activation of T cells by skin oils suggested that headless mini-antigens nest within CD1a and displace non-antigenic resident lipids with large head groups. Oily autoantigens naturally coat the surface of the skin; thus, this points to a previously unknown mechanism of barrier immunity.
Assuntos
Antígenos CD1/imunologia , Autoantígenos/imunologia , Lipídeos/imunologia , Pele/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno , Antígenos CD1/genética , Autoantígenos/química , Autoantígenos/isolamento & purificação , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Lipídeos/isolamento & purificação , Ativação Linfocitária , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/genética , Relação Estrutura-AtividadeRESUMO
The CD1 family of antigen-presenting molecules adopt a major histocompatibility complex class I (MHC-I) fold. Whereas MHC molecules present peptides, the CD1 family has evolved to bind self- and foreign-lipids. The CD1 family of antigen-presenting molecules comprises four members-CD1a, CD1b, CD1c, and CD1d-that differ in their architecture around the lipid-binding cleft, thereby enabling diverse lipids to be accommodated. These CD1-lipid complexes are recognized by T cell receptors (TCRs) expressed on T cells, either through dual recognition of CD1 and lipid or in a new model whereby the TCR directly contacts CD1, thereby triggering an immune response. Chemical syntheses of lipid antigens, and analogs thereof, have been crucial in understanding the underlying specificity of T cell-mediated lipid immunity. This review will focus on our current understanding of how TCRs interact with CD1-lipid complexes, highlighting how it can be fundamentally different from TCR-MHC-peptide corecognition.
Assuntos
Antígenos CD1 , Receptores de Antígenos de Linfócitos T , Antígenos CD1/imunologia , Antígenos CD1/química , Antígenos CD1/metabolismo , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/química , Animais , Lipídeos/química , Lipídeos/imunologia , Apresentação de Antígeno , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has necessitated the development of broad cross-reactive vaccines. Recent findings suggest that enhanced antigen presentation could lead to cross-reactive humoral responses against the emerging variants. Toward enhancing the antigen presentation to dendritic cells (DCs), we developed a novel shikimoylated mannose receptor targeting lipid nanoparticle (SMART-LNP) system that could effectively deliver mRNAs into DCs. To improve the translation of mRNA, we developed spike domain-based trimeric S1 (TS1) mRNA with optimized codon sequence, base modification, and engineered 5' and 3' UTRs. In a mouse model, SMART-LNP-TS1 vaccine could elicit robust broad cross-reactive IgGs against Omicron sub-variants, and induced interferon-γ-producing T cells against SARS-CoV-2 virus compared with non-targeted LNP-TS1 vaccine. Further, T cells analysis revealed that SMART-LNP-TS1 vaccine induced long-lived memory T cell subsets, T helper 1 (Th1)-dominant and cytotoxic T cells immune responses against the SARS-CoV-2 virus. Importantly, SMART-LNP-TS1 vaccine produced strong Th1-predominant humoral and cellular immune responses. Overall, SMART-LNPs can be explored for precise antigenic mRNA delivery and robust immune responses. This platform technology can be explored further as a next-generation delivery system for mRNA-based immune therapies.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Células Dendríticas , Imunidade Humoral , Lipossomos , Nanopartículas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Animais , Nanopartículas/química , Camundongos , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de mRNA/imunologia , Reações Cruzadas/imunologia , Anticorpos Antivirais/imunologia , Lipídeos/química , Lipídeos/imunologia , Feminino , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
The development and maturation of semi-invariant natural killer T cells (iNKT cells) rely on the recognition of self antigens presented by CD1d restriction molecules in thymus. The nature of the stimulatory thymic self lipids remains elusive. We isolated lipids from thymocytes and found that ether-bonded mono-alkyl glycerophosphates and the precursors and degradation products of plasmalogens stimulated iNKT cells. Synthetic analogs showed high potency in activating thymic and peripheral iNKT cells. Mice deficient in the peroxisomal enzyme glyceronephosphate O-acyltransferase (GNPAT), essential for the synthesis of ether lipids, had significant alteration of the thymic maturation of iNKT cells and fewer iNKT cells in both thymus and peripheral organs, which confirmed the role of ether-bonded lipids as iNKT cell antigens. Thus, peroxisome-derived lipids are nonredundant self antigens required for the generation of a full iNKT cell repertoire.
Assuntos
Lipídeos/imunologia , Células T Matadoras Naturais/imunologia , Peroxissomos/imunologia , Timócitos/imunologia , Timo/imunologia , Animais , Antígenos CD/metabolismo , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Interleucina-4/metabolismo , Lectinas Tipo C/metabolismo , Lipídeos/isolamento & purificação , Lisofosfolipídeos/imunologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Peroxissomos/química , Fosfatidiletanolaminas/imunologia , Fosfatidiletanolaminas/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Timo/metabolismoRESUMO
Natural killer T (NKT) cells detect lipids presented by CD1d. Most studies focus on type I NKT cells that express semi-invariant αß T cell receptors (TCR) and recognize α-galactosylceramides. However, CD1d also presents structurally distinct lipids to NKT cells expressing diverse TCRs (type II NKT cells), but our knowledge of the antigens for type II NKT cells is limited. An early study identified a nonlipidic NKT cell agonist, phenyl pentamethyldihydrobenzofuransulfonate (PPBF), which is notable for its similarity to common sulfa drugs, but its mechanism of NKT cell activation remained unknown. Here, we demonstrate that a range of pentamethylbenzofuransulfonates (PBFs), including PPBF, activate polyclonal type II NKT cells from human donors. Whereas these sulfa drug-like molecules might have acted pharmacologically on cells, here we demonstrate direct contact between TCRs and PBF-treated CD1d complexes. Further, PBF-treated CD1d tetramers identified type II NKT cell populations expressing αßTCRs and γδTCRs, including those with variable and joining region gene usage (TRAV12-1-TRAJ6) that was conserved across donors. By trapping a CD1d-type II NKT TCR complex for direct mass-spectrometric analysis, we detected molecules that allow the binding of CD1d to TCRs, finding that both selected PBF family members and short-chain sphingomyelin lipids are present in these complexes. Furthermore, the combination of PPBF and short-chain sphingomyelin enhances CD1d tetramer staining of PPBF-reactive T cell lines over either molecule alone. This study demonstrates that nonlipidic small molecules, which resemble sulfa drugs implicated in systemic hypersensitivity and drug allergy reactions, are targeted by a polyclonal population of type II NKT cells in a CD1d-restricted manner.
Assuntos
Antígenos CD1d/metabolismo , Sulfonatos de Arila/imunologia , Autoantígenos/metabolismo , Benzofuranos/imunologia , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Apresentação de Antígeno/imunologia , Antígenos CD1d/imunologia , Autoantígenos/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologiaRESUMO
Microglia are universal sensors of alterations in CNS physiology. These cells integrate complex molecular signals and undergo comprehensive phenotypical remodeling to adapt inflammatory responses. In the last years, single-cell analyses have revealed that microglia exhibit diverse phenotypes during development, growth and disease. Emerging evidence suggests that such phenotype transitions are mediated by reprogramming of cell metabolism. Indeed, metabolic pathways are distinctively altered in activated microglia and are central nodes controlling microglial responses. Microglial lipid metabolism has been specifically involved in the control of microglial activation and effector functions, such as migration, phagocytosis and inflammatory signaling, and minor disturbances in microglial lipid handling associates with altered brain function in disorders featuring neuroinflammation. In this review, we explore new and relevant aspects of microglial metabolism in health and disease. We give special focus on how different branches of lipid metabolism, such as lipid sensing, synthesis and oxidation, integrate and control essential aspects of microglial biology, and how disturbances in these processes associate with aging and the pathogenesis of, for instance, multiple sclerosis and Alzheimer's disease. Finally, challenges and advances in microglial lipid research are discussed.
Assuntos
Encéfalo/imunologia , Imunidade Inata/genética , Metabolismo dos Lipídeos/imunologia , Doenças Neuroinflamatórias/imunologia , Encéfalo/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Lipídeos/imunologia , Microglia/imunologia , Microglia/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Fagocitose/genéticaRESUMO
Mouse invariant natural killer T cells (iNKT cells) provide cognate and noncognate help for lipid and protein-specific B cells, respectively. However, the long-term outcome for B cells after cognate help is provided by iNKT cells is unknown at present. Here we found that cognate iNKT cell help resulted in a B cell differentiation program characterized by extrafollicular plasmablasts, germinal-center formation, affinity maturation and a robust primary immunoglobulin G (IgG) antibody response that was uniquely dependent on iNKT cell-derived interleukin 21 (IL-21). However, cognate help from iNKT cells did not generate an enhanced humoral memory response. Thus, cognate iNKT cell help for lipid-specific B cells induces a unique signature that is a hybrid of classic T cell-dependent and T cell-independent type 2 B cell responses.
Assuntos
Antígenos/imunologia , Linfócitos B/imunologia , Interleucinas/fisiologia , Lipídeos/imunologia , Células T Matadoras Naturais/imunologia , Animais , Centro Germinativo/imunologia , Imunidade Humoral , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Baço/imunologiaRESUMO
Failure of the immune system to discriminate myelin components from foreign antigens plays a critical role in the pathophysiology of multiple sclerosis. In fact, the appearance of anti-myelin autoantibodies, targeting both proteins and glycolipids, is often responsible for functional alterations in myelin-producing cells in this disease. Nevertheless, some of these antibodies were reported to be beneficial for remyelination. Recombinant human IgM22 (rHIgM22) binds to myelin and to the surface of O4-positive oligodendrocytes, and promotes remyelination in mouse models of chronic demyelination. Interestingly, the identity of the antigen recognized by this antibody remains to be elucidated. The preferential binding of rHIgM22 to sulfatide-positive cells or tissues suggests that sulfatide might be part of the antigen pattern recognized by the antibody, however, cell populations lacking sulfatide expression are also responsive to rHIgM22. Thus, we assessed the binding of rHIgM22 in vitro to purified lipids and lipid extracts from various sources to identify the antigen(s) recognized by this antibody. Our results show that rHIgM22 is indeed able to bind both sulfatide and its deacylated form, whereas no significant binding for other myelin sphingolipids has been detected. Remarkably, binding of rHIgM22 to sulfatide in lipid monolayers can be positively or negatively regulated by the presence of other lipids. Moreover, rHIgM22 also binds to phosphatidylinositol, phosphatidylserine and phosphatidic acid, suggesting that not only sulfatide, but also other membrane lipids might play a role in the binding of rHIgM22 to oligodendrocytes and to other cell types not expressing sulfatide.
Assuntos
Remielinização , Animais , Humanos , Camundongos , Imunoglobulina M , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Lipídeos/imunologiaRESUMO
γδ T cells form an abundant part of the human cellular immune system, where they respond to tissue damage, infection, and cancer. The spectrum of known molecular targets recognized by Vδ1-expressing γδ T cells is becoming increasingly diverse. Here we describe human γδ T cells that recognize CD1b, a lipid antigen-presenting molecule, which is inducibly expressed on monocytes and dendritic cells. Using CD1b tetramers to study multiple donors, we found that many CD1b-specific γδ T cells use Vδ1. Despite their common use of Vδ1, three CD1b-specific γδ T cell receptors (TCRs) showed clear differences in the surface of CD1b recognized, the requirement for lipid antigens, and corecognition of butryophilin-like proteins. Several Vγ segments were present among the CD1b-specific TCRs, but chain swap experiments demonstrated that CD1b specificity was mediated by the Vδ1 chain. One of the CD1b-specific Vδ1+ TCRs paired with Vγ4 and shows dual reactivity to CD1b and butyrophilin-like proteins. αß TCRs typically recognize the peptide display platform of MHC proteins. In contrast, our results demonstrate the use of rearranged receptors to mediate diverse modes of recognition across the surface of CD1b in ways that do and do not require carried lipids.
Assuntos
Antígenos CD1/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Apresentação de Antígeno , Antígenos CD1/imunologia , Cristalografia por Raios X/métodos , Humanos , Linfócitos Intraepiteliais/fisiologia , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Modelos Moleculares , Monócitos/metabolismo , Linfócitos T/imunologiaRESUMO
The signaling lipid sphingosine 1-phosphate (S1P) plays key roles in many physiological processes. In the immune system, S1P's best-described function is to draw cells out of tissues into circulation. Here, we will review models of S1P distribution in the thymus, lymph nodes, spleen, and nonlymphoid tissues. These models have been challenging to construct, because of the lack of tools to map lipid gradients. Nonetheless, evidence to date suggests that S1P distribution is exquisitely tightly controlled, and that concentrations of signaling-available S1P cannot be predicted by standard rules of thumb. The fine regulation of S1P gradients may explain how S1P can simultaneously direct multiple cell movements both between tissues and circulation and within tissues. It may also make it feasible to develop drugs that enable spatially specific modulation of S1P signaling.
Assuntos
Imunidade Celular , Liases/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Circulação Sanguínea , Movimento Celular , Humanos , Imunomodulação , Lipídeos/imunologia , Transdução de Sinais , Esfingosina/metabolismoRESUMO
Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-bound transcription factors that activate genes encoding enzymes required for synthesis of cholesterol and unsaturated fatty acids. SREBPs are controlled by multiple mechanisms at the level of mRNA synthesis, proteolytic activation, and transcriptional activity. In this review, we summarize the recent findings that contribute to the current understanding of the regulation of SREBPs and their physiologic roles in maintenance of lipid homeostasis, insulin signaling, innate immunity, and cancer development.
Assuntos
Lipídeos , Neoplasias/metabolismo , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Homeostase , Humanos , Imunidade Inata , Lipídeos/imunologia , Neoplasias/imunologia , Transdução de Sinais/imunologia , Proteínas de Ligação a Elemento Regulador de Esterol/imunologiaRESUMO
Molecular studies of host-pathogen evolution have largely focused on the consequences of variation at protein-protein interaction surfaces. The potential for other microbe-associated macromolecules to promote arms race dynamics with host factors remains unclear. The cluster of differentiation 1 (CD1) family of vertebrate cell surface receptors plays a crucial role in adaptive immunity through binding and presentation of lipid antigens to T-cells. Although CD1 proteins present a variety of endogenous and microbial lipids to various T-cell types, they are less diverse within vertebrate populations than the related major histocompatibility complex (MHC) molecules. We discovered that CD1 genes exhibit a high level of divergence between simian primate species, altering predicted lipid-binding properties and T-cell receptor interactions. These findings suggest that lipid-protein conflicts have shaped CD1 genetic variation during primate evolution. Consistent with this hypothesis, multiple primate CD1 family proteins exhibit signatures of repeated positive selection at surfaces impacting antigen presentation, binding pocket morphology, and T-cell receptor accessibility. Using a molecular modeling approach, we observe that interspecies variation as well as single mutations at rapidly-evolving sites in CD1a drastically alter predicted lipid binding and structural features of the T-cell recognition surface. We further show that alterations in both endogenous and microbial lipid-binding affinities influence the ability of CD1a to undergo antigen swapping required for T-cell activation. Together these findings establish lipid-protein interactions as a critical force of host-pathogen conflict and inform potential strategies for lipid-based vaccine development.
Assuntos
Antígenos CD1/genética , Evolução Molecular , Lipídeos/imunologia , Modelos Moleculares , Primatas/genética , Animais , Família Multigênica , Primatas/imunologia , Seleção GenéticaRESUMO
BACKGROUND & AIMS: Inflammation in the gastrointestinal tract may lead to the development of cancer. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. Thus, we sought to determine the role of dicarbonyl electrophiles in inflammation-associated carcinogenesis. METHODS: The formation of isoLG adducts was analyzed in the gastric tissues of patients infected with Helicobacter pylori from gastritis to precancerous intestinal metaplasia, in human gastric organoids, and in patients with colitis and colitis-associated carcinoma (CAC). The effect on cancer development of a potent scavenger of dicarbonyl electrophiles, 5-ethyl-2-hydroxybenzylamine (EtHOBA), was determined in transgenic FVB/N insulin-gastrin (INS-GAS) mice and Mongolian gerbils as models of H pylori-induced carcinogenesis and in C57BL/6 mice treated with azoxymethane-dextran sulfate sodium as a model of CAC. The effect of EtHOBA on mutations in gastric epithelial cells of H pylori-infected INS-GAS mice was assessed by whole-exome sequencing. RESULTS: We show increased isoLG adducts in gastric epithelial cell nuclei in patients with gastritis and intestinal metaplasia and in human gastric organoids infected with H pylori. EtHOBA inhibited gastric carcinoma in infected INS-GAS mice and gerbils and attenuated isoLG adducts, DNA damage, and somatic mutation frequency. Additionally, isoLG adducts were elevated in tissues from patients with colitis, colitis-associated dysplasia, and CAC as well as in dysplastic tumors of C57BL/6 mice treated with azoxymethane-dextran sulfate sodium. In this model, EtHOBA significantly reduced adduct formation, tumorigenesis, and dysplasia severity. CONCLUSIONS: Dicarbonyl electrophiles represent a link between inflammation and somatic genomic alterations and are thus key targets for cancer chemoprevention.
Assuntos
Transformação Celular Neoplásica/imunologia , Neoplasias Associadas a Colite/imunologia , Lipídeos/imunologia , Lesões Pré-Cancerosas/imunologia , Neoplasias Gástricas/imunologia , Animais , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/prevenção & controle , Modelos Animais de Doenças , Células Epiteliais , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Gastrite/imunologia , Gastrite/microbiologia , Gastrite/patologia , Gerbillinae , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Helicobacter pylori/isolamento & purificação , Humanos , Lipídeos/antagonistas & inibidores , Metaplasia/imunologia , Metaplasia/microbiologia , Metaplasia/patologia , Camundongos , Camundongos Transgênicos , Organoides , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/microbiologia , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/prevenção & controleRESUMO
Staphylococcus aureus (SA) is the causative agent of both skin/soft tissue infections as well as invasive bloodstream infections. Though vaccines have been developed to target both humoral and T cell-mediated immune responses against SA, they have largely failed due to lack of protective efficacy. Group 1 CD1-restricted T cells recognize lipid rather than peptide antigens. Previously found to recognize lipids derived from cell wall of Mycobacterium tuberculosis (Mtb), these cells were associated with protection against Mtb infection in humans. Using a transgenic mouse model expressing human group 1 CD1 molecules (hCD1Tg), we demonstrate that group 1 CD1-restricted T cells can recognize SA-derived lipids in both immunization and infection settings. Systemic infection of hCD1Tg mice showed that SA-specific group 1 CD1-restricted T cell response peaked at 10 days post-infection, and hCD1Tg mice displayed significantly decreased kidney pathology at this time point compared with WT control mice. Immunodominant SA lipid antigens recognized by group 1 CD1-restricted T cells were comprised mainly of cardiolipin and phosphatidyl glycerol, with little contribution from lysyl-phosphatidyl glycerol which is a unique bacterial lipid not present in mammals. Group 1 CD1-restricted T cell lines specific for SA lipids also conferred protection against SA infection in the kidney after adoptive transfer. They were further able to effectively control SA replication in vitro through direct antigen presentation by group 1 CD1-expressing BMDCs. Together, our data demonstrate a previously unknown role for group 1 CD1-restricted SA lipid-specific T cells in the control of systemic MRSA infection.