Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 14(6): 554-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624557

RESUMO

Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell-deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS-ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3-L-PGDS-DP1 loop that drives mast cell maturation.


Assuntos
Fosfolipases A2 do Grupo III/imunologia , Mastócitos/imunologia , Comunicação Parácrina/imunologia , Prostaglandina D2/imunologia , Receptores de Prostaglandina/imunologia , Animais , Western Blotting , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Fosfolipases A2 do Grupo III/genética , Fosfolipases A2 do Grupo III/metabolismo , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/imunologia , Lipocalinas/metabolismo , Mastócitos/metabolismo , Mastócitos/ultraestrutura , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Comunicação Parácrina/genética , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Biochem Cell Biol ; 102(4): 342-345, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696838

RESUMO

Lipocalin-2 (LCN2), an effector molecule of the innate immune system that is small enough to be tagged as a reporter molecule, can be coupled with the ferric ion through a siderophore such as enterobactin (Ent). Mintbody (modification-specific intracellular antibody) can track a posttranslational protein modification in epigenetics. We constructed plasmids expressing the LCN2 hybrid of mintbody to examine the potential of LCN2 as a novel reporter for magnetic resonance imaging (MRI). Cells expressing the LCN2 hybrid of mintbody showed proper expression and localization of the hybrid and responded reasonably to Ent, suggesting their potential for in vivo study by MRI.


Assuntos
Lipocalina-2 , Lipocalinas , Lipocalina-2/metabolismo , Lipocalina-2/genética , Humanos , Lipocalinas/metabolismo , Lipocalinas/genética , Imageamento por Ressonância Magnética , Genes Reporter , Proteínas de Fase Aguda/metabolismo , Proteínas de Fase Aguda/genética , Enterobactina/metabolismo , Animais , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética
3.
Immunity ; 43(3): 475-87, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26320658

RESUMO

Interleukin-17 (IL-17) induces pathology in autoimmunity and infections; therefore, constraint of this pathway is an essential component of its regulation. We demonstrate that the signaling intermediate MCPIP1 (also termed Regnase-1, encoded by Zc3h12a) is a feedback inhibitor of IL-17 receptor signal transduction. MCPIP1 knockdown enhanced IL-17-mediated signaling, requiring MCPIP1's endoribonuclease but not deubiquitinase domain. MCPIP1 haploinsufficient mice showed enhanced resistance to disseminated Candida albicans infection, which was reversed in an Il17ra(-/-) background. Conversely, IL-17-dependent pathology in Zc3h12a(+/-) mice was exacerbated in both EAE and pulmonary inflammation. MCPIP1 degraded Il6 mRNA directly but only modestly downregulated the IL-6 promoter. However, MCPIP1 strongly inhibited the Lcn2 promoter by regulating the mRNA stability of Nfkbiz, encoding the IκBζ transcription factor. Unexpectedly, MCPIP1 degraded Il17ra and Il17rc mRNA, independently of the 3' UTR. The cumulative impact of MCPIP1 on IL-6, IκBζ, and possibly IL-17R subunits results in a biologically relevant inhibition of IL-17 signaling.


Assuntos
Inflamação/imunologia , Interleucina-17/imunologia , Ribonucleases/imunologia , Transdução de Sinais/imunologia , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/imunologia , Proteínas de Fase Aguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Candida albicans/imunologia , Candida albicans/fisiologia , Candidíase/genética , Candidíase/imunologia , Candidíase/microbiologia , Linhagem Celular , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Immunoblotting , Inflamação/genética , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Lipocalina-2 , Lipocalinas/genética , Lipocalinas/imunologia , Lipocalinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia , Proteínas Oncogênicas/metabolismo , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleases/genética , Ribonucleases/metabolismo
4.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673873

RESUMO

The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).


Assuntos
Oxirredutases Intramoleculares , Lipocalinas , Humanos , Lipocalinas/metabolismo , Lipocalinas/química , Lipocalinas/genética , Neoplasias/metabolismo , Relação Estrutura-Atividade , Animais
5.
Chembiochem ; 24(10): e202200795, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37005222

RESUMO

The transferrin receptor (TfR) mediates transcytosis across the blood-brain barrier (BBB), which offers a promising approach for the non-invasive delivery of therapeutics into the brain parenchyma. Employing the recombinant homodimeric murine TfR ectodomain, prepared in a biochemically functional state, we have selected a cognate Anticalin via phage display and bacterial cell surface display from a random library based on the human lipocalin 2 (Lcn2). After affinity maturation, several engineered lipocalin variants were identified that bind murine TfR in a non-competitive manner with the natural ligand (transferrin ⋅ Fe3+ ), among those an Anticalin - dubbed FerryCalin - exhibiting a dissociation constant (KD ) of 3.8 nM. Epitope analysis using the SPOT technique revealed a sequential epitope in a surface region of TfR remote from the transferrin-binding site. Due to the fast kon rate and short complex half-life, as evidenced by real-time surface plasmon resonance (SPR) measurements, FerryCalin, or one of its related mutants, shows characteristics as a potential vehicle for the brain delivery of biopharmaceuticals.


Assuntos
Lipocalinas , Receptores da Transferrina , Camundongos , Humanos , Animais , Lipocalinas/genética , Receptores da Transferrina/química , Receptores da Transferrina/metabolismo , Encéfalo/metabolismo , Transferrina/química , Transferrina/metabolismo , Epitopos
6.
FASEB J ; 36(3): e22235, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35199864

RESUMO

Matricellular proteins, a group of extracellular matrix (ECM) proteins, are key regulators of skin repair and their dysregulation impairs wound healing in diabetes. Tubulointerstitial nephritis antigen like 1 (TINAGL1) is a new member of matricellular protein family, and the understanding of its functional role is still relatively limited. In the current study, we detected the expression of TINAGL1 in diabetic skin wound tissues through RT-PCR, ELISA and Western blot analysis, investigated the contribution of TINAGL1 to wound healing through cutaneous administration of recombinant TINAGL1 protein, and characterized its regulation by hyperglycemia through RNA-seq and signal pathway inhibition assay. We showed that TINAGL1 expression has dynamic change and reaching a peak on day-9 after wound during the wound healing process in wild-type (WT) mice. Interestingly, decreased TINAGL1 expression is detected in skin tissues of diabetic patients and mice after wound. Then, we found that high glucose (HG), an important factor that impairs wound healing, reduces the expression of TINAGL1 in fibroblasts through JNK pathway. Notably, the histology analysis, Masson trichrome assay and IHC assay showed that exogenous TINAGL1 promotes wound healing in diabetic mice by accelerating the formation of granulation tissues. Our study provides evidence that TINAGL1 has an essential role in diabetic wound healing, and meanwhile, indicates that manipulation of TINAGL1 might be a possible therapeutic approach.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Lipocalinas/metabolismo , Proteínas de Neoplasias/metabolismo , Cicatrização , Adulto , Animais , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Regulação para Baixo , Feminino , Glucose/metabolismo , Humanos , Lipocalinas/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Células NIH 3T3 , Proteínas de Neoplasias/genética
7.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 314-321, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36762499

RESUMO

As the essential tissue for sperm maturation and storage, the epididymis secretes a number of tissue-specific proteins to exert its functions. Among these proteins, epididymal lipocalins have been intensively studied because of their epididymis-specific expression pattern and clustered genomic organization. In this study, rLcn13, a member of the rat epididymal lipocalin family, is identified and elaborately characterized. The cDNA sequence of rLcn13 consists of 719 nucleotides and encodes a 176 amino-acid protein with a predicted N-terminal signal peptide of 19 amino acids. rLcn13 shares a similar genomic structure and predicted 3D protein structure with other lipocalin family members. A recombinant rLCN13 mature peptide of 157 amino acids is expressed and purified, which is used to raise a polyclonal antibody against rLCN13 with high specificity and sensitivity. Northern blot, western blot, and immunohistochemistry assays reveal that rLcn13 is an epididymis-specific gene which is expressed predominantly in the initial segment and proximal caput epididymis and influenced by androgen. The rLCN13 protein is modified by N-glycosylation and secreted into the epididymal lumen, and then binds to the acrosome region of the sperm. Our data demonstrate that rLcn13 exhibits a specific temporospatial expression pattern and androgen dependence, indicating its potential roles in sperm maturation.


Assuntos
Androgênios , Lipocalinas , Ratos , Masculino , Animais , Sequência de Aminoácidos , Lipocalinas/genética , Lipocalinas/metabolismo , Androgênios/metabolismo , Epididimo , Sêmen/metabolismo , Espermatozoides/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(26): 14926-14935, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554495

RESUMO

Molecular ON-switches in which a chemical compound induces protein-protein interactions can allow cellular function to be controlled with small molecules. ON-switches based on clinically applicable compounds and human proteins would greatly facilitate their therapeutic use. Here, we developed an ON-switch system in which the human retinol binding protein 4 (hRBP4) of the lipocalin family interacts with engineered hRBP4 binders in a small molecule-dependent manner. Two different protein scaffolds were engineered to bind to hRBP4 when loaded with the orally available small molecule A1120. The crystal structure of an assembled ON-switch shows that the engineered binder specifically recognizes the conformational changes induced by A1120 in two loop regions of hRBP4. We demonstrate that this conformation-specific ON-switch is highly dependent on the presence of A1120, as demonstrated by an ∼500-fold increase in affinity upon addition of the small molecule drug. Furthermore, the ON-switch successfully regulated the activity of primary human CAR T cells in vitro. We anticipate that lipocalin-based ON-switches have the potential to be broadly applied for the safe pharmacological control of cellular therapeutics.


Assuntos
Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linhagem Celular , Citocinas/imunologia , Humanos , Lipocalinas/genética , Lipocalinas/imunologia , Conformação Molecular , Piperidinas/química , Piperidinas/farmacologia , Receptores de Antígenos Quiméricos/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/imunologia , Linfócitos T/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 117(28): 16546-16556, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601225

RESUMO

During blood-stage development, malaria parasites are challenged with the detoxification of enormous amounts of heme released during the proteolytic catabolism of erythrocytic hemoglobin. They tackle this problem by sequestering heme into bioinert crystals known as hemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control heme crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of hemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multidirectional crystal branching. Although hemoglobin processing remains unaffected, PV5-deficient parasites generate less hemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology, neither the crystalline order nor unit cell of hemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in hemozoin formation and underscore the heme biomineralization pathway as an attractive target for therapeutic exploitation.


Assuntos
Heme/metabolismo , Lipocalinas/metabolismo , Malária/parasitologia , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Hemeproteínas/genética , Hemeproteínas/metabolismo , Humanos , Lipocalinas/química , Lipocalinas/genética , Malária/metabolismo , Camundongos , Plasmodium berghei/química , Plasmodium berghei/genética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
10.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674705

RESUMO

Exposure to the Mus m 1 aeroallergen is a significant risk factor for laboratory animal allergy. This allergen, primarily expressed in mouse urine where it is characterized by a marked and dynamic polymorphism, is also present in epithelium and dander. Considering the relevance of sequence/structure assessment in protein antigenic reactivity, we compared the sequence of the variant Mus m 1.0102 to other members of the Mus m 1 allergen, and used Discotope 2.0 to predict conformational epitopes based on its 3D-structure. Conventional diagnosis of mouse allergy is based on serum IgE testing, using an epithelial extract as the antigen source. Given the heterogeneous and variable composition of extracts, we developed an indirect ELISA assay based on the recombinant component Mus m 1.0102. The assay performed with adequate precision and reasonable diagnostic accuracy (AUC = 0.87) compared to a routine clinical diagnostic test that exploits the native allergen. Recombinant Mus m 1.0102 turned out to be a valuable tool to study the fine epitope mapping of specific IgE reactivity to the major allergen responsible for mouse allergy. We believe that advancing in its functional characterization will lead to the standardization of murine lipocalins and to the development of allergen-specific immunotherapy.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Animais , Camundongos , Lipocalinas/genética , Ensaio de Imunoadsorção Enzimática , Imunoglobulina E , Proteínas Recombinantes/genética
11.
Int Arch Allergy Immunol ; 183(1): 93-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515139

RESUMO

BACKGROUND: Cow's milk allergy (CMA) is the most common IgE-mediated food allergy and Bos d 5 is the major allergen in cow's milk proteins. More than 60% of the patients with CMA are sensitized to this protein. METHODS AND RESULTS: A recombinant protein, encoded by a synthetic gene and consisting of reassembled Bos d 5 fragments, was expressed in E. coli strain BL21 (DE3) cells and purified to homogeneity. The B5M lacked relevant IgE-reactivity and allergenic activity compared with Bos d 5 in dot-blot and basophil activation assays. T-cell proliferation experiments demonstrated that B5M preserved the main T cell epitopes of Bos d 5. Immunization of rabbits with B5M induced protective IgG antibodies that blocked the binding of patients' IgE antibodies to the wild-type allergen and inhibited the degranulation of basophils induced by Bos d 5. CONCLUSION: Thus, we developed a new strategy, which was based on rational molecular reassembly for allergen-specific immunotherapy (AIT) of CMA and food allergy.


Assuntos
Alérgenos/imunologia , Lipocalinas/imunologia , Hipersensibilidade a Leite/imunologia , Leite/efeitos adversos , Vacinas/imunologia , Alérgenos/química , Alérgenos/genética , Animais , Especificidade de Anticorpos/imunologia , Basófilos/imunologia , Basófilos/metabolismo , Bovinos , Epitopos de Linfócito T/imunologia , Humanos , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Imunoterapia , Lipocalinas/química , Lipocalinas/genética , Hipersensibilidade a Leite/prevenção & controle , Ligação Proteica/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinas/administração & dosagem
12.
Vet Res ; 53(1): 98, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435808

RESUMO

Dairy cows often develop different degrees of endometritis after calving and this is attributed to pathogenic bacterial infections such as by Escherichia coli and Staphylococcus aureus. Infection of the bovine endometrium causes tissue damage and increases the expression of prostaglandin D2 (PGD2), which exerts anti-inflammatory effects on lung inflammation. However, the roles of PGD2 and its DP1 receptor in endometritis in cows remain unclear. Here, we examined the anti-inflammatory roles of the lipocalin-type prostaglandin D2 synthase (L-PGDS)/PGD2 and DP1 receptor regulatory pathways in bovine endometritis. We evaluated the regulatory effects of PGD2 on inflammation and tissue damage in E. coli- and S. aureus-infected bovine endometrial cells cultured in vitro. We found that the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1ß, and tumour necrosis factor (TNF)-α as well as expression of matrix metalloproteinase (MMP)-2, platelet-activating factor receptor (PAFR), and high mobility group box (HMGB)-1 were suppressed after DP1 receptor agonist treatment. In contrast, IL-6, IL-1ß, and TNF-α release and MMP-2, PAFR, and HMGB-1 expression levels were increased after treatment of bovine endometrial tissue with DP1 receptor antagonists. DP1-induced anti-inflammatory effects were dependent on cellular signal transduction. The L-PGDS/PGD2 pathway and DP1 receptor induced anti-inflammatory effects in bovine endometrium infected with S. aureus and E. coli by inhibiting the mitogen-activated protein kinase and nuclear factor-κB signalling pathways, thereby reducing tissue damage. Overall, our findings provide important insights into the pathophysiological roles of PGD2 in bovine endometritis and establish a theoretical basis for applying prostaglandins or non-steroidal anti-inflammatory drugs for treating endometrial inflammatory infertility in bovines.


Assuntos
Doenças dos Bovinos , Endometrite , Feminino , Bovinos , Animais , Endometrite/veterinária , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Prostaglandinas , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/metabolismo
13.
Biochem Biophys Res Commun ; 569: 66-71, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34237429

RESUMO

Prostaglandin D2 (PGD2), an endogenous somnogen, is a unique PG that is secreted into the cerebrospinal fluid. PGD2 is a relatively fragile molecule and should be transported to receptors localized in the basal forebrain without degradation. However, it remains unclear how PGD2 is stably carried to such remote receptors. Here, we demonstrate that the PGD2-synthesizing enzyme, Lipocalin-type prostaglandin D synthase (L-PGDS), binds not only its substrate PGH2 but also its product PGD2 at two distinct binding sites for both ligands. This behaviour implys its PGD2 carrier function. Nevertheless, since the high affinity (Kd = âˆ¼0.6 µM) of PGD2 in the catalytic binding site is comparable to that of PGH2, it may act as a competitive inhibitor, while our binding assay exhibits only weak inhibition (Ki = 189 µM) of the catalytic reaction. To clarify this enigmatic behavior, we determined the solution structure of L-PGDS bound to one substrate analog by NMR and compared it with the two structures: one in the apo form and the other in substrate analogue complex with 1:2 stoichiometry. The structural comparisons showed clearly that open or closed forms of loops at the entrance of ligand binding cavity are regulated by substrate binding to two sites, and that the binding to a second non-catalytic binding site, which apparently substrate concentration dependent, induces opening of the cavity that releases the product. From these results, we propose that L-PGDS is a unique enzyme having a carrier function and a substrate-induced product-release mechanism.


Assuntos
Domínio Catalítico , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Prostaglandina D2/metabolismo , Prostaglandina H2/metabolismo , Animais , Sítios de Ligação , Biocatálise , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Cinética , Lipocalinas/química , Lipocalinas/genética , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Mutação , Prostaglandina D2/química , Prostaglandina H2/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
14.
J Exp Zool B Mol Dev Evol ; 336(4): 352-363, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33465290

RESUMO

Crustacyanin has the function of binding astaxanthin which is the best antioxidant, and plays an important role in the body color variation of crustaceans. To investigate the causes of body color variation of the ridgetail white prawn, Exopalaemon carinicauda, the present study obtained four subtypes of crustacyanin gene: C1, C2, A1, and A2. Based on fluorescence quantitative polymerase chain reaction, lipocalin-C1 is mainly expressed in the eyestalk, lipocalin-C2 is in the ventral nerve cord, and lipocalin-A1 and lipocalin-A2 are in subcutaneous adipose tissues. Under the inhibiting effect of Cd2+ stress, the expression of four subtypes first increases and then decreases within 24 h, and reaches the maximum at 6 or 12 h. RNA interference experiments showed a decrease in the expression of lipocalin genes in subcutaneous adipose tissue for each subtype, with the body color changing from transparent to red, and the dark red spots on the epidermis changing to bright red. Moreover, the blue protein in the subcutaneous adipose tissue largely disappeared, based on the light micrographs. In view of these findings, the crustacyanin gene appears to fulfill some function in the resistance to heavy metal stress and body color formation of E. carinicauda.


Assuntos
Cádmio/toxicidade , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metais Pesados/toxicidade , Palaemonidae/metabolismo , Pigmentação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Palaemonidae/genética , Filogenia , Pigmentação/fisiologia , RNA/genética , RNA/metabolismo , Interferência de RNA
15.
Mol Pharm ; 18(5): 2032-2038, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33877834

RESUMO

Triple negative breast cancer (TNBC) remains one of the most challenging subtypes of breast cancer to treat and is responsible for approximately 12% of breast cancer cases in the US per year. In 2019, the protein Tinagl1 was identified as a key factor for improved prognoses in certain TNBC patients. While the intracellular mechanism of action has been thoroughly studied, little is known about the role of Tinagl1 in the tumor microenvironment. In this study, we developed a lipid nanoparticle-based gene therapy to directly target the expression of Tinagl1 in tumor cells for localized expression. Additionally, we sought to characterize the changes to the tumor microenvironment induced by Tinagl1 treatment, with the goal of informing future choices for combination therapies including Tinagl1. We found that Tinagl1 gene therapy was able to slow tumor growth from the first dose and that the effects held steady for nearly a week following the final dose. No toxicity was found with this treatment. Additionally, the use of Tinagl1 increases the tumor vasculature by 3-fold but does not increase the tumor permeability or risk of metastasis. However, the increase in vasculature arising from Tinagl1 therapy reduced the expression of Hif1a significantly (p < 0.01), which may decrease the risk of drug resistance.


Assuntos
Proteínas da Matriz Extracelular/genética , Terapia Genética/métodos , Lipocalinas/genética , Nanopartículas/química , Plasmídeos/administração & dosagem , Neoplasias de Mama Triplo Negativas/terapia , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Lipossomos , Glândulas Mamárias Animais/patologia , Camundongos , Plasmídeos/genética , Proteínas Recombinantes/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética
16.
Circ Res ; 125(3): 282-294, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31213138

RESUMO

RATIONALE: Fluid shear stress (FSS) maintains NOS-3 (endothelial NO synthase) expression. Homozygosity for the C variant of the T-786C single-nucleotide polymorphism of the NOS3 gene, which solely exists in humans, renders the gene less sensitive to FSS, resulting in a reduced endothelial cell (EC) capacity to generate NO. Decreased bioavailability of NO in the arterial vessel wall facilitates atherosclerosis. Consequently, individuals homozygous for the C variant have an increased risk for coronary heart disease (CHD). OBJECTIVE: At least 2 compensatory mechanisms seem to minimize the deleterious effects of this single-nucleotide polymorphism in affected individuals, one of which is characterized herein. METHODS AND RESULTS: Human genotyped umbilical vein ECs and THP-1 monocytes were used to investigate the role of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in vitro. Its concentration in plasma samples from genotyped patients with CHD and age-matched CHD-free controls was determined using quantitative ultraperformance LC-MS/MS. Exposure of human ECs to FSS effectively reduced monocyte transmigration particularly through monolayers of CC-genotype ECs. Primarily in CC-genotype ECs, FSS elicited a marked rise in COX (cyclooxygenase)-2 and L-PGDS (lipocalin-type prostaglandin D synthase) expression, which appeared to be NO sensitive, and provoked a significant release of 15d-PGJ2 over baseline. Exogenous 15d-PGJ2 significantly reduced monocyte transmigration and exerted a pronounced anti-inflammatory effect on the transmigrated monocytes by downregulating, for example, transcription of the IL (interleukin)-1ß gene (IL1B). Reporter gene analyses verified that this effect is due to binding of Nrf2 (nuclear factor [erythroid-derived 2]-like 2) to 2 AREs (antioxidant response elements) in the proximal IL1B promoter. In patients with CHD, 15d-PGJ2 plasma levels were significantly upregulated compared with age-matched CHD-free controls, suggesting that this powerful anti-inflammatory prostanoid is part of an endogenous defence mechanism to counteract CHD. CONCLUSIONS: Despite a reduced capacity to form NO, CC-genotype ECs maintain a robust anti-inflammatory phenotype through an enhanced FSS-dependent release of 15d-PGJ2.


Assuntos
Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico/sangue , Polimorfismo de Nucleotídeo Único , Prostaglandina D2/análogos & derivados , Adaptação Fisiológica , Idoso , Idoso de 80 Anos ou mais , Doença das Coronárias/sangue , Doença das Coronárias/genética , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Indução Enzimática , Feminino , Genes Reporter , Predisposição Genética para Doença , Hemorreologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Oxirredutases Intramoleculares/biossíntese , Oxirredutases Intramoleculares/genética , Lipocalinas/biossíntese , Lipocalinas/genética , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/fisiologia , Óxido Nítrico Sintase Tipo III/genética , Prostaglandina D2/biossíntese , Prostaglandina D2/sangue , Prostaglandina D2/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Células THP-1
17.
Prostaglandins Other Lipid Mediat ; 157: 106585, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34371198

RESUMO

Adipose dysfunction is the primary defect in obesity that contributes to the development of dyslipidemia, insulin resistance, cardiovascular diseases, type 2 diabetes, non-alcoholic fatty liver disease (NAFLD) and some cancers. Previously, we demonstrated the development of NAFLD in lipocalin-type prostaglandin D2 synthase (L-PGDS) knockout mice regardless of diet. In the present study, we examined the role of L-PGDS in adipose in response to a high fat diet. We observed decreased expression of L-PGDS in adipose tissue and concomitant lower plasma levels in a dietary model of obesity as well as in insulin resistant 3T3-L1 adipocytes. We show reduced adiponectin expression and phosphorylation of AMPK in white adipose tissue of L-PGDS KO mice after 14 weeks on a high fat diet as compared to control C57BL/6 mice. We also observe an increased fat content in L-PGDS KO mice as demonstrated by adipocyte hypertrophy and increased expression of lipogenenic genes. We confirmed our in vivo findings in in vitro 3T3-L1 adipocytes, using an enzymatic inhibitor of L-PGDS (AT56). Rosiglitazone treatment drastically increased L-PGDS expression in insulin resistant 3T3-L1 adipocytes and increased adiponectin expression and AMPK phosphorylation in AT56 treated 3T3-L1 adipocytes. We conclude that the absence of L-PGDS has a deleterious effect on adipose tissue functioning, which further reduces insulin sensitivity in adipose tissue. Consequently, we propose L-PGDS appears to function as a potential member of the adipokine secretome involved in the regulation of the obesity-associated metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células 3T3-L1 , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Oxirredutases Intramoleculares , Lipocalinas/genética , Lipocalinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
18.
Mol Biol Rep ; 48(8): 6015-6023, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34328598

RESUMO

BACKGROUND: Sperm acquire the ability to fertilize ova through a complex process of epididymal maturation. To identify the functions of genes expressed in the proximal epididymis, mouse models specific to this region are needed. METHODS AND RESULTS: A Lcn8-Cre knock-in mouse line was generated using CRISPR/Cas9 technology. A 37 bp coding sequence of Lcn8 from the ATG start codon was replaced by an NLS-Cre-polyA cassette, resulting in Cre expression and the absence of Lcn8. Epididymal initial segment-specific Cre expression was identified using RT-PCR and western blotting, and the spatial-temporal Cre activity was further confirmed by using the Rosa26tdTomato reporter mice. Immunofluorescence staining showed that active Cre recombinase was present in the principal cells. Histological analyses of sperm and epididymides, and the four-month mating tests, were used to confirm that Cre expression did not affect normal development and male fecundity. CONCLUSIONS: The novel Lcn8-Cre mice can be used to establish epididymal initial segment-specific conditional knock-out mouse models.


Assuntos
Epididimo/metabolismo , Lipocalinas/genética , Espermatozoides/metabolismo , Animais , Doenças dos Genitais Masculinos , Integrases , Lipocalinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testículo/metabolismo
19.
J Gastroenterol Hepatol ; 36(1): 196-203, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32537806

RESUMO

BACKGROUND AND AIM: Tubulointerstitial nephritis antigen-like 1 (TINAGL1), as a novel matricellular protein, has been demonstrated to participate in cancer progression, whereas the potential function of TINAGL1 in gastric cancer (GC) remains unknown. METHODS: The expression pattern of TINAGL1 in GC was examined by immunohistochemistry, ELISA, real-time polymerase chain reaction, and Western blot. Correlation between TINAGL1 and matrix metalloproteinases (MMPs) was analyzed by the GEPIA website and Kaplan-Meier plots database. The lentivirus-based TINAGL1 knockdown, CCK-8, and transwell assays were used to test the function of TINAGL1 in vitro. The role of TINAGL1 was confirmed by subcutaneous xenograft, abdominal dissemination, and lung metastasis model. Microarray experiments, ELISA, real-time polymerase chain reaction, and Western blot were used to identify molecular mechanism. RESULTS: TINAGL1 was increased in GC tumor tissues and associated with poor patient survival. Moreover, TINAGL1 significantly promoted GC cell proliferation and migration in vitro as well as facilitated GC tumor growth and metastasis in vivo. TINAGL1 expression in GC cells was accompanied with increasing MMPs including MMP2, MMP9, MMP11, MMP14, and MMP16. GEPIA database revealed that these MMPs were correlated with TINAGL1 in GC tumors and that the most highly expressed MMP was MMP2. Mechanically, TINAGL1 regulated MMP2 through the JNK signaling pathway activation. CONCLUSIONS: Our data highlight that TINAGL1 promotes GC growth and metastasis and regulates MMP2 expression, indicating that TINAGL1 may serve as a therapeutic target for GC.


Assuntos
Proliferação de Células/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Lipocalinas/genética , Lipocalinas/metabolismo , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Metástase Neoplásica/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação para Cima/genética , Regulação para Cima/fisiologia , Animais , Linhagem Celular , Movimento Celular/genética , Modelos Animais de Doenças , Progressão da Doença , Proteínas da Matriz Extracelular/fisiologia , Feminino , Humanos , Lipocalinas/fisiologia , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias Gástricas/terapia
20.
Clin Exp Nephrol ; 25(5): 445-455, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33595729

RESUMO

BACKGROUND: Lipid-metabolizing enzymes and their metabolites affect inflammation and fibrosis, but their roles in chronic kidney disease (CKD) have not been completely understood. METHODS: To clarify their role in CKD, we measured the mRNA levels of major lipid-metabolizing enzymes in 5/6 nephrectomized (Nx) kidneys of C57BL/6 J mice. Mediator lipidomics was performed to reveal lipid profiles of CKD kidneys. RESULTS: In 5/6 Nx kidneys, both mRNA and protein levels of Alox15 were higher when compared with those in sham kidneys. With respect to in situ hybridization, the mRNA level of Alox15 was higher in renal tubules of 5/6 Nx kidneys. To examine the role of Alox15 in CKD pathogenesis, we performed 5/6 Nx on Alox15-/- mice. Alox15-/- CKD mice exhibited better renal functions than wild-type mice. Interstitial fibrosis was also inhibited in Alox15-/- CKD mice. Mediator lipidomics revealed that Alox15-/- CKD mouse kidneys had significantly higher levels of PGD2 than the control. To investigate the effects of PGD2 on renal fibrosis, we administered PGD2 to TGF-ß1-stimulated NRK-52E cells and HK-2 cells, which lead to a dose-dependent suppression of type I collagen and αSMA in both cell lines. CONCLUSION: Increased PGD2 in Alox15-/- CKD mouse kidneys could inhibit fibrosis, thereby resulting in CKD improvement. Thus, Alox15 inhibition and PGD2 administration may be novel therapeutic targets for CKD.


Assuntos
Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Rim/patologia , Metabolismo dos Lipídeos/genética , Prostaglandina D2/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/fisiopatologia , Actinas/genética , Actinas/metabolismo , Animais , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Fibrose , Humanos , Oxirredutases Intramoleculares/genética , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Lipocalinas/genética , Masculino , Camundongos Endogâmicos C57BL , Nefrectomia , Prostaglandina D2/farmacologia , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA