Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.618
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 36: 489-517, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29400998

RESUMO

The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis in our body. Cells infected by bacteria or viruses also die. The cell death that occurs under physiological conditions mainly proceeds by apoptosis, which is a noninflammatory, or silent, process, while pathogen infection induces necroptosis or pyroptosis, which activates the immune system and causes inflammation. Dead cells generated by apoptosis are quickly engulfed by macrophages for degradation. Caspases are a large family of cysteine proteases that act in cascades. A cascade that leads to caspase 3 activation mediates apoptosis and is responsible for killing cells, recruiting macrophages, and presenting an "eat me" signal(s). When apoptotic cells are not efficiently engulfed by macrophages, they undergo secondary necrosis and release intracellular materials that represent a damage-associated molecular pattern, which may lead to a systemic lupus-like autoimmune disease.


Assuntos
Apoptose/imunologia , Fagocitose/imunologia , Animais , Biomarcadores , Caspases/metabolismo , Morte Celular , Humanos , Lisossomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptores de Morte Celular/metabolismo , Transdução de Sinais , Especificidade por Substrato
2.
Annu Rev Biochem ; 93(1): 367-387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594929

RESUMO

Lysosomes are the degradative endpoints of material delivered by endocytosis and autophagy and are therefore particularly prone to damage. Membrane permeabilization or full rupture of lysosomal or late endosomal compartments is highly deleterious because it threatens cellular homeostasis and can elicit cell death and inflammatory signaling. Cells have developed a complex response to endo-lysosomal damage that largely consists of three branches. Initially, a number of repair pathways are activated to restore the integrity of the lysosomal membrane. If repair fails or if damage is too extensive, lysosomes are isolated and degraded by a form of selective autophagy termed lysophagy. Meanwhile, an mTORC1-governed signaling cascade drives biogenesis and regeneration of new lysosomal components to reestablish the full lysosomal capacity of the cell. This damage response is vital to counteract the effects of various conditions, including neurodegeneration and infection, and can constitute a critical vulnerability in cancer cells.


Assuntos
Autofagia , Endossomos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Lisossomos/metabolismo , Humanos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Endossomos/metabolismo , Endocitose , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética
3.
Annu Rev Biochem ; 93(1): 447-469, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38603559

RESUMO

Lysosomes catabolize and recycle lipids and other biological molecules to maintain cellular homeostasis in diverse nutrient environments. Lysosomal lipid catabolism relies on the stimulatory activity of bis(monoacylglycero)phosphate (BMP), an enigmatic lipid whose levels are altered across myriad lysosome-associated diseases. Here, we review the discovery of BMP over half a century ago and its structural properties that facilitate the activation of lipid hydrolases and recruitment of their coactivators. We further discuss the current, yet incomplete, understanding of BMP catabolism and anabolism. To conclude, we discuss its role in lysosome-associated diseases and the potential for modulating its levels by pharmacologically activating and inhibiting the BMP synthase to therapeutically target lysosomal storage disorders, drug-induced phospholipidosis, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, cancer, and viral infection.


Assuntos
Lisofosfolipídeos , Doenças por Armazenamento dos Lisossomos , Lisossomos , Monoglicerídeos , Humanos , Lisossomos/metabolismo , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Monoglicerídeos/química , Animais , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Metabolismo dos Lipídeos
4.
Cell ; 187(5): 1109-1126.e21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382525

RESUMO

Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown. Here, we find that mouse oocytes accumulate protein aggregates in specialized compartments that we named endolysosomal vesicular assemblies (ELVAs). Combining live-cell imaging, electron microscopy, and proteomics, we found that ELVAs are non-membrane-bound compartments composed of endolysosomes, autophagosomes, and proteasomes held together by a protein matrix formed by RUFY1. Functional assays revealed that in immature oocytes, ELVAs sequester aggregated proteins, including TDP-43, and degrade them upon oocyte maturation. Inhibiting degradative activity in ELVAs leads to the accumulation of protein aggregates in the embryo and is detrimental for embryo survival. Thus, ELVAs represent a strategy to safeguard protein homeostasis in long-lived cells.


Assuntos
Vesículas Citoplasmáticas , Oócitos , Agregados Proteicos , Animais , Feminino , Camundongos , Autofagossomos , Vesículas Citoplasmáticas/metabolismo , Lisossomos/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteólise
5.
Cell ; 186(24): 5328-5346.e26, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37883971

RESUMO

Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.


Assuntos
Lisossomos , Transdução de Sinais , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes , Fenômenos Fisiológicos Celulares
6.
Cell ; 185(20): 3739-3752.e18, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36113465

RESUMO

Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.


Assuntos
Cistina , Prótons , Sistemas de Transporte de Aminoácidos/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Humanos , Lisossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
Cell ; 185(13): 2292-2308.e20, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35750034

RESUMO

Lysosomes require an acidic lumen between pH 4.5 and 5.0 for effective digestion of macromolecules. This pH optimum is maintained by proton influx produced by the V-ATPase and efflux through an unidentified "H+ leak" pathway. Here we show that TMEM175, a genetic risk factor for Parkinson's disease (PD), mediates the lysosomal H+ leak by acting as a proton-activated, proton-selective channel on the lysosomal membrane (LyPAP). Acidification beyond the normal range potently activated LyPAP to terminate further acidification of lysosomes. An endogenous polyunsaturated fatty acid and synthetic agonists also activated TMEM175 to trigger lysosomal proton release. TMEM175 deficiency caused lysosomal over-acidification, impaired proteolytic activity, and facilitated α-synuclein aggregation in vivo. Mutational and pH normalization analyses indicated that the channel's H+ conductance is essential for normal lysosome function. Thus, modulation of LyPAP by cellular cues may dynamically tune the pH optima of endosomes and lysosomes to regulate lysosomal degradation and PD pathology.


Assuntos
Doença de Parkinson , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Canais de Potássio/metabolismo , Prótons
8.
Annu Rev Biochem ; 90: 709-737, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33606955

RESUMO

Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for multiple receptor classes and to affect myriad physiological and developmental processes. This review summarizes our present understanding of how endocytosis orchestrates cellular signaling networks, with an emphasis on mechanistic underpinnings and focusing on two receptor classes-tyrosine kinase and G protein-coupled receptors-that have been investigated in particular detail. Together, these examples provide a useful survey of the current consensus, uncertainties, and controversies in this rapidly advancing area of cell biology.


Assuntos
Endocitose/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Transporte Proteico , Transdução de Sinais
9.
Nat Immunol ; 25(3): 483-495, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177283

RESUMO

Tumor cells and surrounding immune cells undergo metabolic reprogramming, leading to an acidic tumor microenvironment. However, it is unclear how tumor cells adapt to this acidic stress during tumor progression. Here we show that carnosine, a mobile buffering metabolite that accumulates under hypoxia in tumor cells, regulates intracellular pH homeostasis and drives lysosome-dependent tumor immune evasion. A previously unrecognized isoform of carnosine synthase, CARNS2, promotes carnosine synthesis under hypoxia. Carnosine maintains intracellular pH (pHi) homeostasis by functioning as a mobile proton carrier to accelerate cytosolic H+ mobility and release, which in turn controls lysosomal subcellular distribution, acidification and activity. Furthermore, by maintaining lysosomal activity, carnosine facilitates nuclear transcription factor X-box binding 1 (NFX1) degradation, triggering galectin-9 and T-cell-mediated immune escape and tumorigenesis. These findings indicate an unconventional mechanism for pHi regulation in cancer cells and demonstrate how lysosome contributes to immune evasion, thus providing a basis for development of combined therapeutic strategies against hepatocellular carcinoma that exploit disrupted pHi homeostasis with immune checkpoint blockade.


Assuntos
Carcinoma Hepatocelular , Carnosina , Neoplasias Hepáticas , Humanos , Homeostase , Lisossomos , Hipóxia , Concentração de Íons de Hidrogênio , Microambiente Tumoral
10.
Nat Rev Mol Cell Biol ; 25(3): 223-245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38001393

RESUMO

Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.


Assuntos
Lisossomos , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lisossomos/metabolismo , Homeostase/fisiologia , Autofagia/fisiologia
11.
Nat Rev Mol Cell Biol ; 25(5): 379-395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38110635

RESUMO

Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.


Assuntos
Morte Celular , Animais , Humanos , Apoptose/fisiologia , Caspases/metabolismo , Morte Celular/fisiologia , Ferroptose/fisiologia , Lisossomos/metabolismo , Necroptose , Piroptose/fisiologia , Transdução de Sinais
12.
Cell ; 184(18): 4753-4771.e27, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388391

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Aloenxertos/imunologia , Motivos de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Terapia de Imunossupressão , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Oncogenes , Organoides/efeitos dos fármacos , Organoides/patologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
13.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34314701

RESUMO

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Assuntos
Cérebro/patologia , Proteína Semelhante a ELAV 4/genética , Ácido Glutâmico/metabolismo , Mutação/genética , Neurônios/patologia , Organoides/metabolismo , Splicing de RNA/genética , Proteínas tau/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Hidrazonas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organoides/efeitos dos fármacos , Organoides/ultraestrutura , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Grânulos de Estresse/efeitos dos fármacos , Grânulos de Estresse/metabolismo , Sinapses/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
14.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497611

RESUMO

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/química , Evolução Molecular , Feminino , Humanos , Insulina/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo
15.
Cell ; 184(18): 4651-4668.e25, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450028

RESUMO

GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.


Assuntos
Produtos Biológicos/uso terapêutico , Encéfalo/metabolismo , Doenças por Armazenamento dos Lisossomos/terapia , Progranulinas/uso terapêutico , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Endossomos/metabolismo , Feminino , Demência Frontotemporal/sangue , Demência Frontotemporal/líquido cefalorraquidiano , Gliose/complicações , Gliose/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos , Lipofuscina/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Degeneração Neural/patologia , Fenótipo , Progranulinas/deficiência , Progranulinas/metabolismo , Receptores Imunológicos/metabolismo , Receptores da Transferrina/metabolismo , Distribuição Tecidual
16.
Nat Rev Mol Cell Biol ; 24(3): 186-203, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36097284

RESUMO

'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.


Assuntos
Autofagia , Microautofagia , Animais , Humanos , Lisossomos/metabolismo , Comunicação Celular , Macroautofagia , Mamíferos
17.
Nat Rev Mol Cell Biol ; 24(8): 560-575, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36864290

RESUMO

Maintenance of protein homeostasis and organelle integrity and function is critical for cellular homeostasis and cell viability. Autophagy is the principal mechanism that mediates the delivery of various cellular cargoes to lysosomes for degradation and recycling. A myriad of studies demonstrate important protective roles for autophagy against disease. However, in cancer, seemingly opposing roles of autophagy are observed in the prevention of early tumour development versus the maintenance and metabolic adaptation of established and metastasizing tumours. Recent studies have addressed not only the tumour cell intrinsic functions of autophagy, but also the roles of autophagy in the tumour microenvironment and associated immune cells. In addition, various autophagy-related pathways have been described, which are distinct from classical autophagy, that utilize parts of the autophagic machinery and can potentially contribute to malignant disease. Growing evidence on how autophagy and related processes affect cancer development and progression has helped guide efforts to design anticancer treatments based on inhibition or promotion of autophagy. In this Review, we discuss and dissect these different functions of autophagy and autophagy-related processes during tumour development, maintenance and progression. We outline recent findings regarding the role of these processes in both the tumour cells and the tumour microenvironment and describe advances in therapy aimed at autophagy processes in cancer.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Autofagia/fisiologia , Lisossomos , Microambiente Tumoral
18.
Cell ; 181(5): 1176-1187.e16, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32437660

RESUMO

Dysfunctional mitochondria accumulate in many human diseases. Accordingly, mitophagy, which removes these mitochondria through lysosomal degradation, is attracting broad attention. Due to uncertainties in the operational principles of conventional mitophagy probes, however, the specificity and quantitativeness of their readouts are disputable. Thorough investigation of the behaviors and fates of fluorescent proteins inside and outside lysosomes enabled us to develop an indicator for mitophagy, mito-SRAI. Through strict control of its mitochondrial targeting, we were able to monitor mitophagy in fixed biological samples more reproducibly than before. Large-scale image-based high-throughput screening led to the discovery of a hit compound that induces selective mitophagy of damaged mitochondria. In a mouse model of Parkinsons disease, we found that dopaminergic neurons selectively failed to execute mitophagy that promoted their survival within lesions. These results show that mito-SRAI is an essential tool for quantitative studies of mitochondrial quality control.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Lisossomos/metabolismo , Mitofagia/fisiologia , Animais , Autofagia/fisiologia , Imunofluorescência/métodos , Corantes Fluorescentes/química , Humanos , Lisossomos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitofagia/genética
19.
Cell ; 181(3): 748-748.e1, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32359442

RESUMO

In addition to their well-defined recycling function, lysosomes act as metabolic signaling hubs that adjust cellular metabolism according to the availability of nutrients and growth factors by regulating metabolic kinases and transcription factors on their surface. Moreover, lysosomal hydrolases and ions released to cytosol or extracellular space have recently emerged as important regulators of various cellular processes from cell death to cell division. To view this SnapShot, open or download the PDF.


Assuntos
Lisossomos/metabolismo , Lisossomos/fisiologia , Autofagia/fisiologia , Citosol/metabolismo , Espaço Extracelular/metabolismo , Humanos , Hidrolases/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
Cell ; 180(3): 602-602.e1, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032518

RESUMO

Lysosomal storage diseases (LSDs) represent a group of monogenic inherited metabolic disorders characterized by the progressive accumulation of undegraded substrates inside lysosomes, resulting in aberrant lysosomal activity and homeostasis. This SnapShot summarizes the intracellular localization and function of proteins implicated in LSDs. Common aspects of LSD pathogenesis and the major current therapeutic approaches are noted. To view this SnapShot, open or download the PDF.


Assuntos
Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/metabolismo , Animais , Autofagia , Enzimas/metabolismo , Células Eucarióticas/metabolismo , Homeostase , Humanos , Doenças por Armazenamento dos Lisossomos/classificação , Doenças por Armazenamento dos Lisossomos/terapia , Proteínas de Membrana Lisossomal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA