Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.367
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(2): 390-408.e23, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38157855

RESUMO

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.


Assuntos
Proteinose Alveolar Pulmonar , Receptores CCR2 , Criança , Humanos , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/diagnóstico , Receptores CCR2/deficiência , Receptores CCR2/genética , Receptores CCR2/metabolismo , Reinfecção/metabolismo
2.
Nat Immunol ; 25(6): 994-1006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38671323

RESUMO

The lung is constantly exposed to the outside world and optimal adaptation of immune responses is crucial for efficient pathogen clearance. However, mechanisms that lead to lung-associated macrophages' functional and developmental adaptation remain elusive. To reveal such mechanisms, we developed a reductionist model of environmental intranasal ß-glucan exposure, allowing for the detailed interrogation of molecular mechanisms of pulmonary macrophage adaptation. Employing single-cell transcriptomics, high-dimensional imaging and flow cytometric characterization paired with in vivo and ex vivo challenge models, we reveal that pulmonary low-grade inflammation results in the development of apolipoprotein E (ApoE)-dependent monocyte-derived alveolar macrophages (ApoE+CD11b+ AMs). ApoE+CD11b+ AMs expressed high levels of CD11b, ApoE, Gpnmb and Ccl6, were glycolytic, highly phagocytic and produced large amounts of interleukin-6 upon restimulation. Functional differences were cell intrinsic, and myeloid cell-specific ApoE ablation inhibited Ly6c+ monocyte to ApoE+CD11b+ AM differentiation dependent on macrophage colony-stimulating factor secretion, promoting ApoE+CD11b+ AM cell death and thus impeding ApoE+CD11b+ AM maintenance. In vivo, ß-glucan-elicited ApoE+CD11b+ AMs limited the bacterial burden of Legionella pneumophilia after infection and improved the disease outcome in vivo and ex vivo in a murine lung fibrosis model. Collectively these data identify ApoE+CD11b+ AMs generated upon environmental cues, under the control of ApoE signaling, as an essential determinant for lung adaptation enhancing tissue resilience.


Assuntos
Apolipoproteínas E , Lectinas Tipo C , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , beta-Glucanas , Animais , Camundongos , Adaptação Fisiológica/imunologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular , Lectinas Tipo C/metabolismo , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo
3.
Nat Immunol ; 25(6): 1110-1122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698086

RESUMO

Lung-resident macrophages, which include alveolar macrophages and interstitial macrophages (IMs), exhibit a high degree of diversity, generally attributed to different activation states, and often complicated by the influx of monocytes into the pool of tissue-resident macrophages. To gain a deeper insight into the functional diversity of IMs, here we perform comprehensive transcriptional profiling of resident IMs and reveal ten distinct chemokine-expressing IM subsets at steady state and during inflammation. Similar IM subsets that exhibited coordinated chemokine signatures and differentially expressed genes were observed across various tissues and species, indicating conserved specialized functional roles. Other macrophage types shared specific IM chemokine profiles, while also presenting their own unique chemokine signatures. Depletion of CD206hi IMs in Pf4creR26EYFP+DTR and Pf4creR26EYFPCx3cr1DTR mice led to diminished inflammatory cell recruitment, reduced tertiary lymphoid structure formation and fewer germinal center B cells in models of allergen- and infection-driven inflammation. These observations highlight the specialized roles of IMs, defined by their coordinated chemokine production, in regulating immune cell influx and organizing tertiary lymphoid tissue architecture.


Assuntos
Quimiocinas , Macrófagos , Animais , Camundongos , Quimiocinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Inflamação/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Especificidade de Órgãos/imunologia , Perfilação da Expressão Gênica , Camundongos Transgênicos , Estruturas Linfoides Terciárias/imunologia , Transcriptoma
4.
Nat Immunol ; 25(11): 2097-2109, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39367123

RESUMO

Monocyte-derived alveolar macrophages drive lung injury and fibrosis in murine models and are associated with pulmonary fibrosis in humans. Monocyte-derived alveolar macrophages have been suggested to develop a phenotype that promotes lung repair as injury resolves. We compared single-cell and cytokine profiling of the alveolar space in a cohort of 35 patients with post-acute sequelae of COVID-19 who had persistent respiratory symptoms and abnormalities on a computed tomography scan of the chest that subsequently improved or progressed. The abundance of monocyte-derived alveolar macrophages, their gene expression programs, and the level of the monocyte chemokine CCL2 in bronchoalveolar lavage fluid positively associated with the severity of radiographic fibrosis. Monocyte-derived alveolar macrophages from patients with resolving or progressive fibrosis expressed the same set of profibrotic genes. Our findings argue against a distinct reparative phenotype in monocyte-derived alveolar macrophages, highlighting their utility as a biomarker of failed lung repair and a potential target for therapy.


Assuntos
COVID-19 , Macrófagos Alveolares , Fibrose Pulmonar , SARS-CoV-2 , Humanos , COVID-19/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Feminino , Masculino , SARS-CoV-2/fisiologia , Pessoa de Meia-Idade , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/diagnóstico por imagem , Idoso , Líquido da Lavagem Broncoalveolar/citologia , Pulmão/patologia , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Tomografia Computadorizada por Raios X , Monócitos/imunologia , Monócitos/metabolismo , Citocinas/metabolismo , Adulto , Quimiocina CCL2/metabolismo
5.
Cell ; 184(14): 3774-3793.e25, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34115982

RESUMO

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.


Assuntos
Citomegalovirus/fisiologia , Macrófagos Alveolares/virologia , Animais , Apresentação de Antígeno , Efeito Espectador , Ciclo Celular , Linhagem Celular Transformada , Reprogramação Celular , Citomegalovirus/patogenicidade , Citomegalovirus/ultraestrutura , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Proteínas de Fluorescência Verde/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Células-Tronco/patologia , Replicação Viral/fisiologia , Via de Sinalização Wnt
6.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278358

RESUMO

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Assuntos
Anti-Inflamatórios/administração & dosagem , Azetidinas/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , COVID-19/fisiopatologia , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Janus Quinases/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos Alveolares/imunologia , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacos
7.
Nat Immunol ; 24(3): 423-438, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807642

RESUMO

Respiratory viral infections reprogram pulmonary macrophages with altered anti-infectious functions. However, the potential function of virus-trained macrophages in antitumor immunity in the lung, a preferential target of both primary and metastatic malignancies, is not well understood. Using mouse models of influenza and lung metastatic tumors, we show here that influenza trains respiratory mucosal-resident alveolar macrophages (AMs) to exert long-lasting and tissue-specific antitumor immunity. Trained AMs infiltrate tumor lesions and have enhanced phagocytic and tumor cell cytotoxic functions, which are associated with epigenetic, transcriptional and metabolic resistance to tumor-induced immune suppression. Generation of antitumor trained immunity in AMs is dependent on interferon-γ and natural killer cells. Notably, human AMs with trained immunity traits in non-small cell lung cancer tissue are associated with a favorable immune microenvironment. These data reveal a function for trained resident macrophages in pulmonary mucosal antitumor immune surveillance. Induction of trained immunity in tissue-resident macrophages might thereby be a potential antitumor strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Influenza Humana , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Macrófagos Alveolares , Neoplasias Pulmonares/metabolismo , Pulmão , Microambiente Tumoral
8.
Nat Immunol ; 24(12): 2068-2079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919524

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence. Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation. However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition. Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.


Assuntos
COVID-19 , Interferon gama , Animais , Interferon gama/metabolismo , SARS-CoV-2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Macrófagos Alveolares/metabolismo , Células Matadoras Naturais/metabolismo , Pulmão/metabolismo , Macaca/metabolismo
9.
Cell ; 183(1): 110-125.e11, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888431

RESUMO

During respiration, humans breathe in more than 10,000 liters of non-sterile air daily, allowing some pathogens access to alveoli. Interestingly, alveoli outnumber alveolar macrophages (AMs), which favors alveoli devoid of AMs. If AMs, like most tissue macrophages, are sessile, then this numerical advantage would be exploited by pathogens unless neutrophils from the blood stream intervened. However, this would translate to omnipresent persistent inflammation. Developing in vivo real-time intravital imaging of alveoli revealed AMs crawling in and between alveoli using the pores of Kohn. Importantly, these macrophages sensed, chemotaxed, and, with high efficiency, phagocytosed inhaled bacterial pathogens such as P. aeruginosa and S. aureus, cloaking the bacteria from neutrophils. Impairing AM chemotaxis toward bacteria induced superfluous neutrophil recruitment, leading to inappropriate inflammation and injury. In a disease context, influenza A virus infection impaired AM crawling via the type II interferon signaling pathway, and this greatly increased secondary bacterial co-infection.


Assuntos
Bactérias/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Animais , Feminino , Homeostase , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/imunologia , Fagocitose/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Alvéolos Pulmonares , Transdução de Sinais , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade
10.
Nat Immunol ; 23(12): 1687-1702, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36456739

RESUMO

Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.


Assuntos
Vacina BCG , Macrófagos Alveolares , Imunidade Treinada , Pulmão , Vacinação , Imunidade Inata
11.
Nat Immunol ; 23(3): 458-468, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210623

RESUMO

Alveolar macrophages (AMs) are lung tissue-resident macrophages that can be expanded in culture, but it is unknown to what extent culture affects their in vivo identity. Here we show that mouse long-term ex vivo expanded AMs (exAMs) maintained a core AM gene expression program, but showed culture adaptations related to adhesion, metabolism and proliferation. Upon transplantation into the lung, exAMs reacquired full transcriptional and epigenetic AM identity, even after several months in culture and could self-maintain long-term in the alveolar niche. Changes in open chromatin regions observed in culture were fully reversible in transplanted exAMs and resulted in a gene expression profile indistinguishable from resident AMs. Our results indicate that long-term proliferation of AMs in culture did not compromise cellular identity in vivo. The robustness of exAM identity provides new opportunities for mechanistic analysis and highlights the therapeutic potential of exAMs.


Assuntos
Pulmão , Macrófagos Alveolares , Animais , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos
12.
Nat Immunol ; 22(2): 118-127, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462453

RESUMO

Macrophages have long been considered as particularly plastic cells. However, recent work combining fate mapping, single-cell transcriptomics and epigenetics has undermined the macrophage plasticity dogma. Here, we discuss recent studies that have carefully dissected the response of individual macrophage subsets to pulmonary insults and call for an adjustment of the macrophage plasticity concept. We hypothesize that prolonged tissue residency shuts down much of the plasticity of macrophages and propose that the restricted plasticity of resident macrophages has been favored by evolution to safeguard tissue homeostasis. Recruited monocytes are more plastic and their differentiation into resident macrophages during inflammation can result in a dual imprinting from both the ongoing inflammation and the macrophage niche. This results in inflammation-imprinted resident macrophages, and we speculate that rewired niche circuits could maintain this inflammatory state. We believe that this revisited plasticity model offers opportunities to reset the macrophage pool after a severe inflammatory episode.


Assuntos
Plasticidade Celular , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Pneumonia/imunologia , Animais , Microambiente Celular , Epigênese Genética , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Fenótipo , Pneumonia/genética , Pneumonia/metabolismo , Transdução de Sinais
13.
Cell ; 175(4): 898-900, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388447

RESUMO

Using single-cell RNA sequencing of both immune and non-immune cells in the developing lung, Cohen et al. map candidate cell-cell interactions during alveolar macrophage development. This revealed potential cross-talk between epithelial cells, ILC2s, basophils, and the developing macrophages, which were validated both in vitro and in vivo.


Assuntos
Basófilos , Macrófagos Alveolares , Comunicação Celular , Imunidade Inata , Pulmão , Linfócitos , Macrófagos
14.
Cell ; 175(6): 1463-1465, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500533

RESUMO

Trained innate immunity mediates protection against heterologous infections and is mediated by epigenetic and functional reprogramming of myeloid cells and their progenitors. Now, Yao et al. describe trained immunity induced locally in alveolar macrophages by a viral infection, with IFNγ release from effector CD8+ lymphocytes initiating this process.


Assuntos
Memória Imunológica , Viroses , Humanos , Imunidade Inata , Macrófagos Alveolares , Linfócitos T
15.
Cell ; 175(4): 1031-1044.e18, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318149

RESUMO

Lung development and function arises from the interactions between diverse cell types and lineages. Using single-cell RNA sequencing (RNA-seq), we characterize the cellular composition of the lung during development and identify vast dynamics in cell composition and their molecular characteristics. Analyzing 818 ligand-receptor interaction pairs within and between cell lineages, we identify broadly interacting cells, including AT2, innate lymphocytes (ILCs), and basophils. Using interleukin (IL)-33 receptor knockout mice and in vitro experiments, we show that basophils establish a lung-specific function imprinted by IL-33 and granulocyte-macrophage colony-stimulating factor (GM-CSF), characterized by unique signaling of cytokines and growth factors important for stromal, epithelial, and myeloid cell fates. Antibody-depletion strategies, diphtheria toxin-mediated selective depletion of basophils, and co-culture studies show that lung resident basophils are important regulators of alveolar macrophage development and function. Together, our study demonstrates how whole-tissue signaling interaction map on the single-cell level can broaden our understanding of cellular networks in health and disease.


Assuntos
Basófilos/metabolismo , Comunicação Celular , Impressão Genômica , Macrófagos Alveolares/metabolismo , Transcriptoma , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-33/metabolismo , Macrófagos Alveolares/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única
16.
Cell ; 175(6): 1634-1650.e17, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30433869

RESUMO

Innate immune memory is an emerging area of research. However, innate immune memory at major mucosal sites remains poorly understood. Here, we show that respiratory viral infection induces long-lasting memory alveolar macrophages (AMs). Memory AMs are programed to express high MHC II, a defense-ready gene signature, and increased glycolytic metabolism, and produce, upon re-stimulation, neutrophil chemokines. Using a multitude of approaches, we reveal that the priming, but not maintenance, of memory AMs requires the help from effector CD8 T cells. T cells jump-start this process via IFN-γ production. We further find that formation and maintenance of memory AMs are independent of monocytes or bone marrow progenitors. Finally, we demonstrate that memory AMs are poised for robust trained immunity against bacterial infection in the lung via rapid induction of chemokines and neutrophilia. Our study thus establishes a new paradigm of immunological memory formation whereby adaptive T-lymphocytes render innate memory of mucosal-associated macrophages.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Memória Imunológica , Pulmão/citologia , Macrófagos Alveolares/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Monócitos/citologia , Monócitos/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Linfócitos T Auxiliares-Indutores/citologia
17.
Nat Immunol ; 21(2): 145-157, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932810

RESUMO

Despite the prevalence and clinical importance of influenza, its long-term effect on lung immunity is unclear. Here we describe that following viral clearance and clinical recovery, at 1 month after infection with influenza, mice are better protected from Streptococcus pneumoniae infection due to a population of monocyte-derived alveolar macrophages (AMs) that produce increased interleukin-6. Influenza-induced monocyte-derived AMs have a surface phenotype similar to resident AMs but display a unique functional, transcriptional and epigenetic profile that is distinct from resident AMs. In contrast, influenza-experienced resident AMs remain largely similar to naive AMs. Thus, influenza changes the composition of the AM population to provide prolonged antibacterial protection. Monocyte-derived AMs persist over time but lose their protective profile. Our results help to understand how transient respiratory infections, a common occurrence in human life, can constantly alter lung immunity by contributing monocyte-derived, recruited cells to the AM population.


Assuntos
Imunidade Inata/imunologia , Macrófagos Alveolares/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Animais , Camundongos
18.
Nat Immunol ; 21(6): 636-648, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424365

RESUMO

Sepsis and trauma cause inflammation and elevated susceptibility to hospital-acquired pneumonia. As phagocytosis by macrophages plays a critical role in the control of bacteria, we investigated the phagocytic activity of macrophages after resolution of inflammation. After resolution of primary pneumonia, murine alveolar macrophages (AMs) exhibited poor phagocytic capacity for several weeks. These paralyzed AMs developed from resident AMs that underwent an epigenetic program of tolerogenic training. Such adaptation was not induced by direct encounter of the pathogen but by secondary immunosuppressive signals established locally upon resolution of primary infection. Signal-regulatory protein α (SIRPα) played a critical role in the establishment of the microenvironment that induced tolerogenic training. In humans with systemic inflammation, AMs and also circulating monocytes still displayed alterations consistent with reprogramming six months after resolution of inflammation. Antibody blockade of SIRPα restored phagocytosis in monocytes of critically ill patients in vitro, which suggests a potential strategy to prevent hospital-acquired pneumonia.


Assuntos
Epigênese Genética , Inflamação/etiologia , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Animais , Biomarcadores , Reprogramação Celular , Citocinas/metabolismo , Humanos , Tolerância Imunológica , Imunofenotipagem , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/imunologia , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Fagocitose/imunologia , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
Immunity ; 56(8): 1939-1954.e12, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442134

RESUMO

Lung infection during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via the angiotensin-I-converting enzyme 2 (ACE2) receptor induces a cytokine storm. However, the precise mechanisms involved in severe COVID-19 pneumonia are unknown. Here, we showed that interleukin-10 (IL-10) induced the expression of ACE2 in normal alveolar macrophages, causing them to become vectors for SARS-CoV-2. The inhibition of this system in hamster models attenuated SARS-CoV-2 pathogenicity. Genome-wide association and quantitative trait locus analyses identified a IFNAR2-IL10RB readthrough transcript, COVID-19 infectivity-enhancing dual receptor (CiDRE), which was highly expressed in patients harboring COVID-19 risk variants at the IFNAR2 locus. We showed that CiDRE exerted synergistic effects via the IL-10-ACE2 axis in alveolar macrophages and functioned as a decoy receptor for type I interferons. Collectively, our data show that high IL-10 and CiDRE expression are potential risk factors for severe COVID-19. Thus, IL-10R and CiDRE inhibitors might be useful COVID-19 therapies.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Interleucina-10/genética , Macrófagos Alveolares/metabolismo , Estudo de Associação Genômica Ampla , Peptidil Dipeptidase A/metabolismo
20.
Nat Immunol ; 20(5): 571-580, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936493

RESUMO

Fine control of macrophage activation is needed to prevent inflammatory disease, particularly at barrier sites such as the lungs. However, the dominant mechanisms that regulate the activation of pulmonary macrophages during inflammation are poorly understood. We found that alveolar macrophages (AlvMs) were much less able to respond to the canonical type 2 cytokine IL-4, which underpins allergic disease and parasitic worm infections, than macrophages from lung tissue or the peritoneal cavity. We found that the hyporesponsiveness of AlvMs to IL-4 depended upon the lung environment but was independent of the host microbiota or the lung extracellular matrix components surfactant protein D (SP-D) and mucin 5b (Muc5b). AlvMs showed severely dysregulated metabolism relative to that of cavity macrophages. After removal from the lungs, AlvMs regained responsiveness to IL-4 in a glycolysis-dependent manner. Thus, impaired glycolysis in the pulmonary niche regulates AlvM responsiveness during type 2 inflammation.


Assuntos
Inflamação/imunologia , Pulmão/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Animais , Inflamação/genética , Inflamação/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Larva/imunologia , Larva/fisiologia , Pulmão/metabolismo , Pulmão/patologia , Ativação de Macrófagos/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mucina-5B/genética , Mucina-5B/imunologia , Mucina-5B/metabolismo , Nippostrongylus/imunologia , Nippostrongylus/fisiologia , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Infecções por Strongylida/genética , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA