Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 200, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500068

RESUMO

BACKGROUND: Michelia lacei W.W.Smith (Magnoliaceae), was classified as a Plant Species with Extremely Small Populations (PSESP) by the Yunnan Provincial Government in both action plans of 2012 and 2021. This evergreen tree is known for its high ornamental and scientific value, but it faces significant threats due to its extremely small population size and narrow geographical distribution. The study aims to understand the genetic structure, diversity, and demographic history of this species to inform its conservation strategies. RESULTS: The analysis of transcriptome data from 64 individuals across seven populations of M. lacei identified three distinct genetic clusters and generated 104,616 single-nucleotide polymorphisms (SNPs). The KM ex-situ population, originating from Longling County, exhibited unique genetic features, suggesting limited gene flow. The genetic diversity was substantial, with significant differences between populations, particularly between the KM lineage and the OTHER lineage. Demographic history inferred from the data indicated population experienced three significant population declines during glaciations, followed by periods of recovery. We estimated the effective population size (Ne) of the KM and OTHER lineages 1,000 years ago were 85,851 and 416,622, respectively. Gene flow analysis suggested past gene flow between populations, but the KM ex-situ population showed no recent gene flow. A total of 805 outlier SNPs, associated with four environmental factors, suggest potential local adaptation and showcase the species' adaptive potential. Particularly, the BZ displayed 515 adaptive loci, highlighting its strong potential for adaptation within this group. CONCLUSIONS: The comprehensive genomic analysis of M. lacei provides valuable insights into its genetic background and highlights the urgent need for conservation efforts. The study underscores the importance of ex-situ conservation methods, such as seed collection and vegetative propagation, to safeguard genetic diversity and promote population restoration. The preservation of populations like MC and BZ is crucial for maintaining the species' genetic diversity. In-situ conservation measures, including the establishment of in-situ conservation sites and community engagement, are essential to enhance protection awareness and ensure the long-term survival of this threatened plant species.


Assuntos
Magnolia , Magnoliaceae , Humanos , Animais , Variação Genética , Transcriptoma , China , Espécies em Perigo de Extinção , Magnolia/genética , Magnoliaceae/genética
2.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175683

RESUMO

The wood of Michelia macclurei Dandy (MD) is an excellent material that is widely used in the furniture, handicraft, and construction industries. However, less research has been conducted on the chemical composition and biological activity of heartwood, which is the main valuable part of the wood. This study aimed to investigate the chemical composition and biological activities of the heartwood of Michelia macclurei Dandy (MDHW) and to confirm the active ingredients. Triple quadrupole gas chromatography-mass spectrometry (GC-MS) was used to characterize the volatile components of MDHW, while ultra-performance liquid chromatography-mass spectrometry was used to analyze the non-volatile components (UPLC-MS). The total reducing power, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assays, acetylcholinesterase and α-glucosidase inhibition assays, and an antimicrobial test of 4 gram bacteria were used to describe the in vitro bioactivities. The GC-MS analysis showed that the volatile components of MDHW were mainly fatty compounds and terpenoids, with sesquiterpenes and their derivatives dominating the terpene composition. ß-elemene was the main terpene component in the steam distillation (11.88%) and ultrasonic extraction (8.2%) methods. A total of 67 compounds, comprising 45 alkaloids, 9 flavonoids, 6 lignans, and others, were found by UPLC-MS analysis. The primary structural kinds of the non-volatile components were 35 isoquinoline alkaloids. Alkaloids were the predominant active constituent in all MDHW extracts, including crude extracts, alkaloid fractions, and non-alkaloid fractions. These extracts all demonstrate some biological effects in terms of antioxidant, enzyme inhibition, and bacterial inhibition. The findings of this study show that MDHW is abundant in chemical structure types, has great bioactivity assessment, and has the potential to be used to create natural antioxidants, products that postpone Alzheimer's disease and lower blood sugar levels and antibacterial agents.


Assuntos
Antioxidantes , Magnoliaceae , Antioxidantes/química , Cromatografia Líquida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Acetilcolinesterase , Espectrometria de Massas em Tandem , Inibidores Enzimáticos/análise , Terpenos/análise , Bactérias
3.
Molecules ; 28(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630187

RESUMO

Numerous plants of medicinal value grow on Hainan Island (China). Given the lack of knowledge on the phytochemical and pharmacological properties of Michelia shiluensis Chun and Y. F. Wu (M. shiluensis), the application of natural antioxidants and antimicrobials in the food industry has attracted increasing interest. This study aimed to compare the chemical composition, free-radical-scavenging capacity, and antibiosis of aqueous extracts of the fresh and dried leaves of M. shiluensis. The aqueous extract of the leaves of M. shiluensis was obtained using steam distillation, and its chemical components were separated and identified via gas chromatography-mass spectrometry (GC-MS). The free-radical-scavenging capacity and antibiosis were determined. Further, 28 and 20 compounds were isolated from the fresh leaf aqueous extract of M. shiluensis (MSFLAE) and dried leaf aqueous extract of M. shiluensis (MSDLAE), respectively. The free-radical-scavenging capacity of MSFLAE and MSDLAE was determined by the 2,2-diphenyl-1 picrylhydrazyl (DPPH) method, which was 43.43% and 38.74%, respectively. The scavenging capacity of MSFLAE and MSDLAE determined by the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate (ABTS)) method was 46.90% and 25.99%, respectively. The iron ion reduction capacity of MSFLAE and MSDLAE was determined by the ferric-reducing antioxidant power (FRAP) method as 94.7 and 62.9 µmol Fe2⁺/L, respectively. This indicated that the two leaf aqueous extracts had a certain free-radical-scavenging capacity, and the capacity of MSFLAE was higher than that of MSDLAE. The antibiosis of the two leaf aqueous extracts on the three foodborne pathogenic bacteria was low, but the antimicrobial effects on Gram-positive bacteria were better than those on Gram-negative bacteria. The antibiosis of MSFLAE on Escherichia coli and Staphylococcus aureus was greater than that of MSDLAE. Finally, MSFLAE and MSDLAE both had certain free-radical-scavenging capacities and antibiosis, confirming that the use of this plant in the research and development of natural antioxidants and antibacterial agents was reasonable. Plant aqueous extracts are an essential source of related phytochemistry and have immense pharmacological potential.


Assuntos
Antibiose , Magnoliaceae , Vapor , Alcanossulfonatos , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Escherichia coli
4.
BMC Genomics ; 23(1): 716, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36261795

RESUMO

BACKGROUND: The subgenus Gynopodium belonging to genus Magnolia have high ornamental, economic, and ecological value. Subgenus Gynopodium contains eight species, but six of these species are threatened. No studies to date have characterized the characteristics of the chloroplast genomes (CPGs) within subgenus Gynopodium species. In this study, we compared the structure of CPGs, identified the mutational hotspots and resolved the phylogenetic relationship of subgenus Gynopodium. RESULTS: The CPGs of six subgenus Gynopodium species ranged in size from 160,027 bp to 160,114 bp. A total of 131 genes were identified, including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. We detected neither major expansions or contractions in the inverted repeat region, nor rearrangements or insertions in the CPGs of six subgenus Gynopodium species. A total of 300 large repeat sequences (forward, reverse, and palindrome repeats), 847 simple sequence repeats, and five highly variable regions were identified. One gene (ycf1) and four intergenic regions (psbA-trnH-GUG, petA-psbJ, rpl32-trnL-UAG, and ccsA-ndhD) were identified as mutational hotspots by their high nucleotide diversity (Pi) values (≥ 0.004), which were useful for species discrimination. Maximum likelihood and Bayesian inference trees were concordant and indicated that Magnoliaceae consisted of two genera Liriodendron and Magnolia. Six species of subgenus Gynopodium clustered as a monophyletic clade, forming a sister clade with subgenus Yulania (BS = 100%, PP = 1.00). Due to the non-monophyly of subgenus Magnolia, subgenus Gynopodium should be treated as a section of Magnolia. Within section Gynopodium, M. sinica diverged first (posterior probability = 1, bootstrap = 100), followed by M. nitida, M. kachirachirai and M. lotungensis. M. omeiensis was sister to M. yunnanensis (posterior probability = 0.97, bootstrap = 50). CONCLUSION: The CPGs and characteristics information provided by our study could be useful in species identification, conservation genetics and resolving phylogenetic relationships of Magnoliaceae species.


Assuntos
Genoma de Cloroplastos , Magnolia , Magnoliaceae , Genoma de Cloroplastos/genética , Magnolia/genética , Filogenia , Teorema de Bayes , Magnoliaceae/genética , Repetições de Microssatélites , RNA de Transferência , DNA Intergênico , Nucleotídeos
5.
Planta ; 257(1): 4, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434125

RESUMO

MAIN CONCLUSION: In Magnolia polytepala, the formation of floral organization and color was attributed to tissue-dependent differential expression levels of MADS-box genes and anthocyanin biosynthetic genes. In angiosperms, the diversity of floral morphology and organization suggests its value in exploring plant evolution. Magnolia polytepala, an endemic basal angiosperm species in China, possesses three green sepal-like tepals in the outermost whorl and pink petal-like tepals in the inner three whorls, forming unique floral morphology and organization. However, we know little about its underlying molecular regulatory mechanism. Here, we first reported the full-length transcriptome of M. polytepala using PacBio sequencing. A total of 16 MADS-box transcripts were obtained from the transcriptome data, including floral homeotic genes (e.g., MpAPETALA3) and other non-floral homeotic genes (MpAGL6, etc.). Phylogenetic analysis and spatial expression pattern reflected their putative biological function as their homologues in Arabidopsis. In addition, nine structural genes involved in anthocyanin biosynthesis pathway had been screened out, and tepal color difference was significantly associated with their tissue-dependent differential expression levels. This study provides a relatively comprehensive investigation of the MADS-box family and anthocyanin biosynthetic genes in M. polytepala, and will facilitate our understanding of the regulatory mechanism underlying floral organization and color in basal angiosperms.


Assuntos
Arabidopsis , Magnolia , Magnoliaceae , Magnoliopsida , Magnoliopsida/genética , Magnoliopsida/metabolismo , Magnolia/genética , Magnolia/metabolismo , Proteínas de Domínio MADS/metabolismo , Magnoliaceae/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Antocianinas/genética , Evolução Molecular , Arabidopsis/genética
6.
Mol Phylogenet Evol ; 167: 107359, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34793981

RESUMO

The Caribbean islands provide an ideal setting for studying biodiversity, given their complex geological and environmental history, and their historical and current geographical proximity to the American mainland. Magnolia, a flagship tree genus that has 15 endemic and threatened taxa (12 species and 3 subspecies) on the Caribbean islands, offers an excellent case study to empirically test Caribbean biogeographical hypotheses. We constructed phylogenetic hypotheses to: (1) reveal their evolutionary history, (2) test the current largely morphology-based classification and assess species limits, and (3) investigate major biogeographic hypotheses proposed for the region. Nuclear and chloroplast DNA sequence data of all 15 Caribbean Magnolia taxa are included, supplemented by a selection of American mainland species, and species representing most major clades of the Magnoliaceae family. We constructed phylogenetic hypotheses in a time-calibrated Bayesian framework, supplemented with haplotype network analyses and ancestral range estimations. Genetic synapomorphies in the studied markers confirm the species limits of 14 out of 15 morphologically recognizable Caribbean Magnolia taxa. There is evidence for four colonization events of Magnolia into the Caribbean from the American mainland, which most likely occurred by overwater dispersal, given age estimates of maximum 16 mya for their presence on the Caribbean islands.


Assuntos
Magnolia , Magnoliaceae , Teorema de Bayes , Região do Caribe , Filogenia , Filogeografia
7.
Ann Bot ; 130(1): 41-52, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35460565

RESUMO

BACKGROUND AND AIMS: Ongoing global warming is a challenge for humankind. A series of drastic climatic changes have been proven to have occurred throughout the Cenozoic based on a variety of geological evidence, which helps to better understand our planet's future climate. Notably, extant biomes have recorded drastic environmental shifts. The climate in southern Asia, which hosts high biodiversity, is deeply impacted by the Asian monsoon. The origins and evolutionary dynamics of biomes occurring between the tropics and sub-tropics in southern Asia have probably been deeply impacted by climatic changes; however, these aspects remain poorly studied. We tested whether the evolutionary dynamics of the above biomes have recorded the drastic, late Cenozoic environmental shifts, by focusing on Magnolia section Michelia of the family Magnoliaceae. METHODS: We established a fine time-calibrated phylogeny of M. section Michelia based on complete plastid genomes and inferred its ancestral ranges. Finally, we estimated the evolutionary dynamics of this section through time, determining its diversification rate and the dispersal events that occurred between tropical and sub-tropical areas. KEY RESULTS: The tropical origin of M. section Michelia was dated to the late Oligocene; however, the diversification of its core group (i.e. M. section Michelia subsection Michelia) has occurred mainly from the late Miocene onward. Two key evolutionary shifts (dated approx. 8 and approx. 3 million years ago, respectively) were identified, each of them probably in response to drastic climatic changes. CONCLUSION: Here, we inferred the underlying evolutionary dynamics of biomes in southern Asia, which probably reflect late Cenozoic climatic changes. The occurrence of modern Asian monsoons was probably fundamental for the origin of M. section Michelia; moreover, the occurrence of asymmetric dispersal events between the tropics and sub-tropics hint at an adaptation strategy of M. section Michelia to global cooling, in agreement with the tropical conservatism hypothesis.


Assuntos
Magnolia , Magnoliaceae , Biodiversidade , Mudança Climática , Filogenia
8.
Am J Bot ; 109(6): 899-909, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35471633

RESUMO

PREMISE: Across species, main leaf vein density scales inversely with leaf area (A). Yet, minor vein density manifests no clear relationship with respect to A, despite having the potential to provide important insights into the trade-off among the investments in leaf mechanical support, hydraulics, and light interception. METHODS: To examine this phenomenon, the leaves of nine Magnoliaceae leaves were sampled, and the scaling relationships among A and midrib length (ML), total vein length (TVL), total vein area (TVA), total areole area (TAA), and mean areole area (MAA) were determined. The scaling relationships between MAA and areole density (the number of areoles per unit leaf area) and between MAA and A were also analyzed. RESULTS: For five of the nine species, A was proportional to ML2 . For eight of the nine species, TVL and TVA were both proportional to A. The numerical values of the scaling exponents for TAA vs. A were between 1.0 and 1.07 for eight species; i.e., as expected, TAA was isometrically proportional to A. There was no correlation between MAA and A, but MAA scaled inversely with respect to areole density for each species. CONCLUSIONS: The correlation between midrib "density" (i.e., ML/A) and A, and the lack of correlation between total leaf vein density and A result from the A ∝$\propto $ ML2 scaling relationship and the proportional relationship between TVL and A, respectively. Leaves with the same size can have widely varying MAA. Thus, leaf size itself does not directly constrain leaf hydraulic efficiency and redundancy.


Assuntos
Magnoliaceae , Folhas de Planta
9.
Chem Biodivers ; 19(3): e202100894, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34994077

RESUMO

Methanolic extracts of the leaf and flower of Michelia L., an evergreen aromatic genus widely used in landscaping, industry and medicine of various countries, were analyzed. The UPLC-ESI-MS/MS analysis led to the identification of 28 polyphenols from six Michelia species that widely distributed and cultivated in southern China, among which quinic acid and chlorogenic acid were the main components. The flower extract of Michelia maudiae had the most abundant polyphenols content, as well as high contents of total phenolic (117.31±7.26 mg GAE/g DW) and total flavonoid (251.60±15.56 mg CE/g DW). Meanwhile, it also showed outstanding performance in three antioxidant indexes of DPPH, ABTS and FRAP. The leaf extracts of Michelia chapensis and Michelia floribunda exhibited excellent inhibition against four pathogenic bacteria. Moreover, certain inhibitory activities were displayed by Michelia macclurei extracts against α-amylase and α-glucosidase. This study explored the biological activities of six Michelia species, and provided reference for variety selection with the aim of designing novel phyto-pharmaceuticals.


Assuntos
Antioxidantes , Magnoliaceae , Antibacterianos/análise , Antibacterianos/farmacologia , Antioxidantes/química , Flores/química , Extratos Vegetais/química , Espectrometria de Massas em Tandem , alfa-Amilases , alfa-Glucosidases
10.
Molecules ; 27(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684387

RESUMO

Michelia × alba (M. alba) is a flowering tree best known for its essential oil, which has long been used as a fragrance ingredient for perfume and cosmetics. In addition, the plant has been used in traditional medicine in Asia and dates back hundreds of years. To date, there is a limited number of publications on the bioactivities of M. alba, which focused on its tyrosinase inhibition, antimicrobial, antidiabetic, anti-inflammatory, and antioxidant activities. Nevertheless, M. alba may have additional unexplored bioactivities associated with its bioactive compounds such as linalool (72.8% in flower oil and 80.1% in leaf oil), α-terpineol (6.04% flower oil), phenylethyl alcohol (2.58% flower oil), ß-pinene (2.39% flower oil), and geraniol (1.23% flower oil). Notably, these compounds have previously been reported to exhibit therapeutic activities such as anti-cancer, anti-inflammation, anti-depression, anti-ulcer, anti-hypertriglyceridemia, and anti-hypertensive activities. In this review paper, we examine and discuss the scientific evidence on the phytochemistry, bioactivities, and traditional uses of M. alba. Here, we report a total of 168 M. alba biological compounds and highlight the therapeutic potential of its key bioactive compounds. This review may provide insights into the therapeutic potential of M. alba and its biologically active components for the prevention and treatment of diseases and management of human health and wellness.


Assuntos
Magnoliaceae , Óleos Voláteis , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/química , Humanos , Óleos Voláteis/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química
11.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164038

RESUMO

Essential oils (EOs) of Clausena indica fruits, Zanthoxylum rhetsa fruits, and Michelia tonkinensis seeds were analyzed for their phytochemical profiles and biological activities, including anti-diabetes, anti-gout, and anti-leukemia properties. Sixty-six volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), in which, myristicin (68.3%), limonene (44.2%), and linalool (49.3%) were the most prominent components of EOs extracted from C. indica, Z. rhetsa, and M. tonkinensis, respectively. In addition, only EOs from C. indica inhibited the activities of all tested enzymes comprising α-amylase (IC50 = 7.73 mg/mL), α-glucosidase (IC50 = 0.84 mg/mL), and xanthine oxidase (IC50 = 0.88 mg/mL), which are related to type 2 diabetes and gout. Remarkably, all EOs from C. indica, Z. rhetsa (IC50 = 0.73 mg/mL), and M. tonkinensis (IC50 = 1.46 mg/mL) showed a stronger anti-α-glucosidase ability than acarbose (IC50 = 2.69 mg/mL), a known anti-diabetic agent. Moreover, the growth of leukemia cell Meg-01 was significantly suppressed by all EOs, of which, the IC50 values were recorded as 0.32, 0.64, and 0.31 mg/mL for EOs from C. indica, Z. rhetsa, and M. tonkinensis, respectively. As it stands, this is the first report about the inhibitory effects of EOs from C. indica and Z. rhetsa fruits, and M. tonkinensis seeds on the human leukemia cell line Meg-01 and key enzymes linked to diabetes and gout. In conclusion, the present study suggests that EOs from these natural spices may be promising candidates for pharmaceutical industries to develop nature-based drugs to treat diabetes mellitus or gout, as well as malignant hematological diseases such as leukemia.


Assuntos
Antineoplásicos/uso terapêutico , Clausena/química , Supressores da Gota/uso terapêutico , Hipoglicemiantes/uso terapêutico , Leucemia/tratamento farmacológico , Magnoliaceae/química , Óleos Voláteis/uso terapêutico , Zanthoxylum/química , Humanos , Óleos Voláteis/química
12.
Pharm Biol ; 60(1): 1656-1668, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36052952

RESUMO

CONTEXT: Michelia champaca L. (Magnoliaceae) has been known since ancient times for its rich medicinal properties. OBJECTIVE: The ethanol extract of Michelia champaca leaves (EEMC) was evaluated on depression and anxiety using in vivo and in silico studies. MATERIALS AND METHODS: Swiss albino mice were divided into control, standard, 100 and 200 mg/kg b.w. EEMC groups and for drug administration using oral gavage. The antidepressant activity was evaluated using forced swim test (FST) and tail suspension test (TST) whereas the anxiolytic activity through elevated plus maze and light and dark tests. The in silico studies included molecular docking against human potassium channel KCSA-FAB and human serotonin transporter, and ADME/T analysis. RESULTS: Open arm duration and entries were comparable between 200 mg/kg b.w. group (184.45 ± 1.00 s and 6.25 ± 1.11, respectively) and that of diazepam treated group (180.02 s ± 0.40 and 6.10 ± 0.05, respectively). Time spent in the light cubicle was higher (46.86 ± 0.03%), similar to that of diazepam (44.33 ± 0.64%), suggesting its potent anxiolytic activity. A delayed onset of immobility and lowered immobility time was seen at both the treatment doses (FST: 93.7 ± 1.70 and 89.1 ± 0.40 s; TST: 35.05 ± 2.75 and 38.50 ± 4.10 s) and the standard drug imipramine (FST: 72.7 ± 3.72 and TST: 30.01 ± 2.99 s), indicative of its antidepressant ability. In silico studies predicted doripenem to induce anxiolytic and antidepressant activity by inhibiting human potassium channel KCSA-FAB and human serotonin transporter proteins, respectively. CONCLUSIONS: EEMC is a rich source of bioactive compounds with strong antidepressant and anxiolytic properties.


Assuntos
Ansiolíticos , Magnoliaceae , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Diazepam , Humanos , Camundongos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Canais de Potássio , Proteínas da Membrana Plasmática de Transporte de Serotonina
13.
Plant J ; 103(5): 1910-1923, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32524692

RESUMO

Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome-level genome assembly of C. salicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein-coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole-genome duplication were inferred in the C. salicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for C. salicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole-genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of C. salicifolius.


Assuntos
Calycanthaceae/genética , Evolução Molecular , Flavonoides/biossíntese , Genoma de Planta/genética , Magnoliaceae/genética , Calycanthaceae/metabolismo , Cromossomos de Plantas/genética , Flavonoides/genética , Duplicação Gênica/genética , Genes de Plantas/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Ann Bot ; 128(7): 875-886, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34397092

RESUMO

BACKGROUND AND AIMS: In hierarchically reticulate venation patterns, smaller orders of veins form areoles in which stomata are located. This study aimed to quantify the spatial relationship among stomata at the areole level. METHODS: For each of 12 leaves of M. cavaleriei var. platypetala, we assumed that stomatal characteristics were symmetrical on either side of the midrib, and divided the leaf surface on one side of the midrib into six layers equidistantly spaced along the apical-basal axis. We then further divided each layer into three positions equidistantly spaced from midrib to leaf margin, resulting in a total of 18 sampling locations. In addition, for 60 leaves, we sampled three positions from midrib to margin within only the widest layer of the leaf. Stomatal density and mean nearest neighbour distance (MNND) were calculated for each section. A replicated spatial point pattern approach quantified stomatal spatial relationships at different distances (0-300 µm). KEY RESULTS: A tendency towards regular arrangement (inhibition as opposed to attraction or clustering) was observed between stomatal centres at distances <100 µm. Leaf layer (leaf length dimension) had no significant effect on local stomatal density, MNND or the spatial distribution characteristics of stomatal centres. In addition, we did not find greater inhibition at the centre of areoles, and in positions farther from the midrib. CONCLUSIONS: Spatial inhibition might be caused by the one-cell-spacing rule, resulting in more regular arrangement of stomata, and it was found to exist at distances up to ~100 µm. This work implies that leaf hydraulic architecture, consisting of both vascular and mesophyll properties, is sufficient to prevent important spatial variability in water supply at the areole level.


Assuntos
Magnoliaceae , Folhas de Planta , Estômatos de Plantas
15.
Molecules ; 26(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923456

RESUMO

In this study, Magnolia citrata Noot and Chalermglin (Magnoliaceae) essential oil (MCEO) was evaluated for insecticidal activity against the yellow fever mosquito Aedes aegypti and attractant activity for the Mediterranean fruit fly Ceratitis capitata. The leaves of Magnolia citrata (Gioi chanh) were collected from northwestern Vietnam, and the water-distilled MCEO was analyzed by gas-chromatography and mass spectrometry (GC-MS). The major constituents of MCEO were identified as linalool 19%, geranial 16%, citronellal 14%, neral 14%, and sabinene 12%. MCEO showed 100% mortality at 1 µg/µL against 1st instar larvae of Ae. aegypti (Orlando strain, ORL), and the oil exhibited 54% (ORL) and 68% (Puerto Rico strain) mortality at 5 µg/mosquito against Ae. aegypti adult females. Initial screens showed that MCEO had weak insecticidal activity compared to the positive control permethrin. In bioassays with sterile male C. capitata, MCEO exhibited moderately strong attraction, comparable to that observed with a positive control, Tetradenia riparia essential oil (TREO). Herein, the insecticidal and attractant activities of MCEO are reported for the first time.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Inseticidas/farmacologia , Magnolia/química , Aedes/efeitos dos fármacos , Animais , Ceratitis capitata/efeitos dos fármacos , Magnoliaceae/química , Óleos Voláteis/farmacologia
16.
Bull Environ Contam Toxicol ; 104(5): 682-688, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32239255

RESUMO

The increasing concentration of surface ozone (O3) was observed during recent decades in the world, which affects tree roots and forest soils. Meanwhile, the impact of ozone on tree roots is greatly affected by soil condition. However, there is a lack of knowledge about the possible effects of ozone on tree roots and soil processes. In this study, The influences of surface ozone (O3) stress on the root biomass, morphology, nutrients, soil properties, and soil enzyme activity of Elaeocarpus sylvestris and Michelia chapensis seedlings were examined at four O3 concentrations (charcoal-filtered air, 1 × O3 air, 2 × O3 air, and 4 × O3 air). Elevated O3 concentrations were found to significantly increase the root C content, N content, C/P ratio, and N/P ratio, and significantly decrease the root biomass, number of root tips, and root C/N ratio of both species. The soil organic matter content, pH, total N content, and urease and catalase activities of both species tended to increase. The limitation in root growth and responses in the root structure of E. sylvestris induced by elevated O3 concentrations led to increased bulk density and decreased soil porosity and void ratio. These profound effects of O3 concentrations on the roots and soil characteristics of these two species underscore the importance of research in O3 science.


Assuntos
Poluentes Atmosféricos/toxicidade , Elaeocarpaceae/efeitos dos fármacos , Magnoliaceae/efeitos dos fármacos , Ozônio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Solo/química , Poluentes Atmosféricos/análise , Biomassa , China , Elaeocarpaceae/crescimento & desenvolvimento , Florestas , Magnoliaceae/crescimento & desenvolvimento , Ozônio/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
17.
Pak J Pharm Sci ; 33(1(Supplementary)): 281-285, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32122859

RESUMO

Uterine fibroids (UF) or leiomyomas can be presented in post-menopausal women. The present study was aimed to examine the inhibitory and protective (anti-proliferative and apoptotic) effect of the obovatol (OB) in human leiomyoma cells (HuLM). The cell proliferative activity was determined by MTT assay and inflammatory markers were measured. Followed by evaluating DNA fragmentation and apoptotic markers using the ELISA kit method. Also, the apoptosis regulatory proteins expressions were determined using the immunoblot technique. Treatment with increasing concentration of OB (25-200 µM) significantly lowered the cell proliferation rate as well as considerably reduced the values of various pro-inflammatory cytokines like IL-1ß, TNF-α, IL-6. Whereas, the levels of DNA fragmentation and apoptotic marker like caspase-3 and 9 were considerably elevated after co-culturing HuLM cells with OB. In addition, apoptosis regulatory proteins like Bcl2 and Bax were substantially down and up-regulated respectively, by OB in a dose-dependent fashion. The above data clearly showcase that OB possesses potent anti-proliferative (inhibitory) as well as apoptotic activity and may be recommended as a chemotherapeutic agent against UF and related conditions. However, further studies are required before recommended for treating UF subjects.


Assuntos
Compostos de Bifenilo/administração & dosagem , Citoproteção/efeitos dos fármacos , Leiomioma/patologia , Magnoliaceae , Éteres Fenílicos/administração & dosagem , Neoplasias Uterinas/patologia , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citoproteção/fisiologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Leiomioma/tratamento farmacológico , Neoplasias Uterinas/tratamento farmacológico
18.
Drug Dev Ind Pharm ; 45(9): 1547-1555, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31216904

RESUMO

Chinese herbs such as Flos magnoliae (FM) and Centipeda minima (CM) can be effective in treating allergic rhinitis (AR). However, there is little research on the therapeutic mechanism of these two drugs acting on AR at the same time. In order to systematically understand the mechanism of action of two drugs acting on AR at the same time, we searched various databases to obtain 31 components and 289 target proteins of FM, 25 components and 465 target proteins of CM. The interaction networks of FM, CM, and AR proteins were constructed by Cytoscape-v3.2.1 software. The core protein of two network intersections was obtained by using Venny 2.1.0. The R platform was used for the core target protein gene ontology (GO) comment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Thirteen common targets and seven acting pathways were obtained. The results of animal experiments showed that FM and CM volatile oil could effectively improve the symptoms of AR by regulating the common targets. In summary, this study successfully explained the potential therapeutic mechanism of FM and CM in the treatment of AR. At the same time, it indicates that the two drugs can be compatible as a new application.


Assuntos
Asteraceae/química , Medicamentos de Ervas Chinesas/farmacologia , Magnoliaceae/química , Óleos Voláteis/farmacologia , Rinite Alérgica/tratamento farmacológico , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Masculino , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Óleos Voláteis/uso terapêutico , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/imunologia , Ratos , Rinite Alérgica/diagnóstico , Rinite Alérgica/imunologia , Rinite Alérgica/patologia , Resultado do Tratamento
19.
Molecules ; 24(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641990

RESUMO

Magnolia zenii is a critically endangered species known from only 18 trees that survive on Baohua Mountain in Jiangsu province, China. Little information is available regarding its molecular biology, with no genomic study performed on M. zenii until now. We determined the complete plastid genome of M. zenii and identified microsatellites. Whole sequence alignment and phylogenetic analysis using BI and ML methods were also conducted. The plastome of M. zenii was 160,048 bp long with 39.2% GC content and included a pair of inverted repeats (IRs) of 26,596 bp that separated a large single-copy (LSC) region of 88,098 bp and a small single-copy (SSC) region of 18,757 bp. One hundred thirty genes were identified, of which 79 were protein-coding genes, 37 were transfer RNAs, and eight were ribosomal RNAs. Thirty seven simple sequence repeats (SSRs) were also identified. Comparative analyses of genome structure and sequence data of closely-related species revealed five mutation hotspots, useful for future phylogenetic research. Magnolia zenii was placed as sister to M. biondii with strong support in all analyses. Overall, this study providing M. zenii genomic resources will be beneficial for the evolutionary study and phylogenetic reconstruction of Magnoliaceae.


Assuntos
Genomas de Plastídeos , Genômica , Magnolia/genética , Magnoliaceae/genética , Composição de Bases , Códon , Biologia Computacional/métodos , Genes de Plantas , Genoma de Cloroplastos , Genômica/métodos , Repetições de Microssatélites , Filogenia
20.
Pak J Pharm Sci ; 32(1(Special)): 383-389, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30852474

RESUMO

.This study aimed to investigate the hypolipidemic and antioxidant activities of volatile oils from Michelia martini Levl. The antioxidant property of volatile oils from Michelia martini in vitro was investigated by establishment of various systems. High fat diet induced rats were used to assess the hypolipidemic and antioxidant activities of Michelia martini volatile oils in vivo. The level of total cholesterol, triglycerides, high density lipoprotein cholesterol, low density lipoprotein cholesterol, alanine transaminase, aspartate aminotransferase, alkaline phosphatase and gamma-glutamyl transpeptidase in serum, and the activities of catalase, malondialdehyde, super oxide dismutase and glutathione in liver of rats were assayed by standard procedures. Our results showed that Michelia martini exhibits strong hypolipidemic and antioxidant activities both in vitro and vivo. Our data were also supplemented with histopathological studies on liver tissues and aorta sections of rats.


Assuntos
Antioxidantes/farmacologia , Hipolipemiantes/farmacologia , Magnoliaceae/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Anfotericina B/toxicidade , Animais , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/química , Células CHO , Cricetulus , Dieta Hiperlipídica/efeitos adversos , Relação Dose-Resposta a Droga , Hiperlipidemias/sangue , Hiperlipidemias/prevenção & controle , Hipolipemiantes/isolamento & purificação , Lipídeos/sangue , Masculino , Óleos Voláteis/isolamento & purificação , Picratos/química , Folhas de Planta/química , Óleos de Plantas/isolamento & purificação , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA