RESUMO
Inhibition of protein kinase C (PKC) efficiently promoted the self-renewal of embryonic stem cells (ESCs). However, information about the function of PKC inhibition remains lacking. Here, RNA-sequencing showed that the addition of Go6983 significantly inhibited the expression of de novo methyltransferases (Dnmt3a and Dnmt3b) and their regulator Dnmt3l, resulting in global hypomethylation of DNA in mouse ESCs. Mechanistically, PR domain-containing 14 (Prdm14), a site-specific transcriptional activator, partially contributed to Go6983-mediated repression of Dnmt3 genes. Administration of Go6983 increased Prdm14 expression mainly through the inhibition of PKCδ. High constitutive expression of Prdm14 phenocopied the ability of Go6983 to maintain` mouse ESC stemness in the absence of self-renewal-promoting cytokines. In contrast, the knockdown of Prdm14 eliminated the response to PKC inhibition and substantially impaired the Go6983-induced resistance of mouse ESCs to differentiation. Furthermore, liquid chromatography-mass spectrometry profiling and Western blotting revealed low levels of Suv39h1 and Suv39h2 in Go6983-treated mouse ESCs. Suv39h enzymes are histone methyltransferases that recognize dimethylated and trimethylated histone H3K9 specifically and usually function as transcriptional repressors. Consistently, the inhibition of Suv39h1 by RNA interference or the addition of the selective inhibitor chaetocin increased Prdm14 expression. Moreover, chromatin immunoprecipitation assay showed that Go6983 treatment led to decreased enrichment of dimethylation and trimethylation of H3K9 at the Prdm14 promoter but increased RNA polymerase ⠡ binding affinity. Together, our results provide novel insights into the pivotal association between PKC inhibition-mediated self-renewal and epigenetic changes, which will help us better understand the regulatory network of stem cell pluripotency.
Assuntos
Proteínas de Ligação a DNA , Células-Tronco Embrionárias Murinas , Proteína Quinase C , Animais , Camundongos , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Indóis/farmacologia , Maleimidas/farmacologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/enzimologia , Células-Tronco Embrionárias Murinas/fisiologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Alzheimer's disease (AD) is a major cause of dementia and one of the most common chronic diseases affecting the aging population. Because AD is considered a public health priority, there is a critical need to discover novel and effective agents for the treatment of this condition. In view of the known contribution of up-regulated glutaminyl cyclase (QC) and glycogen synthase kinase-3ß (GSK-3ß) to the initiation of AD, we previously evaluated a series of dual inhibitors containing maleimide and imidazole motifs as potential anti-AD agents. Here, we assessed another series of hybrids containing maleimide and imidazole motifs to gain an in-depth understanding of the structure-activity relationship (SAR). Based on the primary screening, the introduction of 5-methyl imidazole at one side of the molecule did not enhance the QC-specific inhibitory activity of these hybrids (2, IC50 = 1.22 µM), although the potency was increased by 2' substitution on the maleimide motif at the other side of the molecule. Interestingly, compounds containing 5-methyl imidazole exhibited stronger GSK-3ß-specific inhibitory activity (2, IC50 = 0.0021 µM), and the electron-withdrawing group and 2' and 3' substitution were favorable. Further investigation of substitutions on the maleimide motif in compounds 14-35 revealed that QC-specific inhibition in the presence of piperidine was improved by introduction of a methoxy group (R2). Increasing the linker length and introduction of a methoxy group (R2) also increased the GSK-3ß-specific inhibitory potency. These findings were further confirmed by molecular docking analysis of 33 and 24 with QC and GSK-3ß. Overall, these hybrids exhibited enhanced inhibitory potency against both QC and GSK-3ß, highlighting an important strategy for improving the potency of hybrids as dual-targeting anti-AD agents.
Assuntos
Aminoaciltransferases , Glicogênio Sintase Quinase 3 beta , Imidazóis , Maleimidas , Relação Estrutura-Atividade , Maleimidas/química , Maleimidas/farmacologia , Maleimidas/síntese química , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Humanos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Doença de Alzheimer/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Relação Dose-Resposta a DrogaRESUMO
An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3ß pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.
Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Neoplasias Colorretais , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Maleimidas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Maleimidas/química , Maleimidas/síntese química , Maleimidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Animais , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Estrutura Molecular , Camundongos , Relação Dose-Resposta a Droga , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacosRESUMO
The co-mitogenic effects of the α1-adrenoceptor agonist phenylephrine on S-allyl-L-cysteine (SAC)-induced hepatocyte proliferation were examined in primary cultures of adult rat hepatocytes. The combination of phenylephrine (10-10-10-6 M) and SAC (10-6 M) exhibited a significant dose-dependent increase in the number of hepatocyte nuclei and viable cells compared to SAC alone. This combination also increased the progression of hepatocyte nuclei into the S-phase. The potentiating effect of phenylephrine on SAC-induced cell proliferation was counteracted by prazosin (an α1-adrenergic receptor antagonist) and GF109203X (selective protein kinase C (PKC) inhibitor). In addition, PMA (direct PKC activator) potentiated the proliferative effects of SAC similarly to phenylephrine. In essence, these findings suggest that PKC activity plays a crucial role in enhancing SAC-induced cell proliferation. Moreover, the effects of phenylephrine on SAC-induced Ras activity, Raf phosphorylation, and extracellular signal-regulated kinase 2 (ERK2) phosphorylation were investigated. Phenylephrine (or PMA) in combination with SAC did not augment Ras activity, but further increased ERK2 phosphorylation and its upstream B-Raf phosphorylation. These results indicate that PKC activation, triggered by stimulating adrenergic α1 receptors, further amplifies SAC-induced cell proliferation through enhanced ERK2 phosphorylation via increased B-Raf-specific phosphorylation in primary cultured hepatocytes.
Assuntos
Agonistas de Receptores Adrenérgicos alfa 1 , Proliferação de Células , Cisteína , Hepatócitos , Fenilefrina , Proteína Quinase C , Proteínas Proto-Oncogênicas B-raf , Animais , Fenilefrina/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteína Quinase C/metabolismo , Cisteína/farmacologia , Cisteína/análogos & derivados , Fosforilação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Masculino , Proteínas Proto-Oncogênicas B-raf/metabolismo , Prazosina/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Acetato de Tetradecanoilforbol/análogos & derivados , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Maleimidas/farmacologia , Ratos , Indóis/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Sinergismo Farmacológico , Ratos Sprague-Dawley , Mitógenos/farmacologiaRESUMO
In the present work, we report a new series of potent SARS-CoV-2 Main Protease (Mpro) inhibitors based on maleimide derivatives. The inhibitory activities were tested in an enzymatic assay using recombinant Mpro (3CL Protease from coronavirus SARS-CoV-2). Within the set of new Mpro inhibitors, 6e demonstrated the highest activity in the enzymatic assay with an IC50 value of 8.52 ± 0.44 µM. The IC50 value for Nirmatrelvir (PF-07321332, used as a reference) was 0.84 ± 0.37 µM. The cytotoxic properties were determined in the MTT assay using MRC-5 and HEK-293 cell lines. In the course of the investigation, we found that the newly obtained maleimide derivatives are not substantially cytotoxic (IC50 values for most compounds were above 200 µM).
Assuntos
COVID-19 , Humanos , Células HEK293 , SARS-CoV-2 , Maleimidas/farmacologia , Lactamas , Leucina , Nitrilas , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologiaRESUMO
Development of protein-protein interaction (PPI) inhibitors remains a major challenge. A significant number of PPIs are mediated by helical recognition epitopes; although peptides derived from such epitopes are attractive templates for inhibitor design, they may not readily adopt a bioactive conformation, are susceptible to proteolysis and rarely elicit optimal cell uptake properties. Constraining peptides has therefore emerged as a useful method to mitigate against these liabilities in the development of PPI inhibitors. Building on our recently reported method for constraining peptides by reaction of dibromomaleimide derivatives with two cysteines positioned in an i and i + 4 relationship, in this study, we showcase the power of the method for rapid identification of ideal constraining positions using a maleimide-staple scan based on a 19-mer sequence derived from the BAD BH3 domain. We found that the maleimide constraint had little or a detrimental impact on helicity and potency in most sequences, but successfully identified i, i + 4 positions where the maleimide constraint was tolerated. Analyses using modelling and molecular dynamics (MD) simulations revealed that the inactive constrained peptides likely lose interactions with the protein as a result of introducing the constraint.
Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Proteína bcl-X/metabolismo , Peptídeos/química , Epitopos/metabolismo , Maleimidas/farmacologia , Apoptose , Ligação ProteicaRESUMO
Maleimide-containing prodrugs can quickly and selectively react with circulating serum albumin following their injection in the bloodstream. The drug-albumin complex then benefits from longer blood circulation times and better tumor accumulation. Herein, we have applied this strategy to a previously reported highly phototoxic Ru polypyridyl complex-based photosensitizer to increase its accumulation at the tumor, reduce off-target cytotoxicity, and therefore improve its pharmacological profile. Specifically, two complexes were synthesized bearing a maleimide group: one complex with the maleimide directly incorporated into the bipyridyl ligand, and the other has a hydrophilic linker between the ligand and the maleimide group. Their interaction with albumin was studied in-depth, revealing their ability to efficiently bind both covalently and noncovalently to the plasma protein. A crucial finding is that the maleimide-functionalized complexes exhibited significantly lower cytotoxicity in noncancerous cells under dark conditions compared to the nonfunctionalized complex, which is a highly desirable property for a photosensitizer. The binding to albumin also led to a decrease in the phototoxicity of the Ru bioconjugates in comparison to the nonfunctionalized complex, probably due to a decreased cellular uptake. Unfortunately, this decrease in phototoxicity was not compensated by a dramatic increase in tumor accumulation, as was demonstrated in a tumor-bearing mouse model using inductively coupled plasma mass spectrometry (ICP-MS) studies. Consequently, this study provides valuable insight into the future design of in situ albumin-binding complexes for photodynamic therapy in order to maximize their effectiveness and realize their full potential.
Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Rutênio , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Rutênio/farmacologia , Rutênio/química , Ligantes , Albumina Sérica , Maleimidas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/químicaRESUMO
A series of alkynyl-containing maleimides with potent anti-tuberculosis (TB) activity was developed through a rigid group substitution strategy based on our previous study. Systematic optimization of the two side chains flanking the maleimide core led to new compounds with potent activity against Mycobacterium tuberculosis (MIC < 1 µg/mL) and low cytotoxicity (IC50 > 64 µg/mL). Among them, compound 29 not only possessed good activity against extensively drug-resistant TB and favorable hepatocyte stability, but also displayed good intracellular antimycobacterial activity in macrophages. This study lays a good foundation for identifying new alkynyl-containing maleimides as promising leads for treating drug-resistant TB.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/química , Testes de Sensibilidade Microbiana , Maleimidas/farmacologiaRESUMO
INTRODUCTION: Prostate smooth muscle contraction is promoted by receptor-induced activation of intracellular signaling pathways. The presumed involvement in etiology and medical treatment of lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) imparts a high clinical relevance to prostate smooth muscle contraction, which is contrasted by incomplete understanding at the molecular level. Involvement of protein kinase C (PKC) has been commonly assumed, but available studies were limited to nonhuman prostate smooth muscle or cell cultures. Here, we examined the effects of the PKC inhibitors Go6983 and GF109203x on contractions of human prostate tissues. METHODS: Prostate tissues were obtained from radical prostatectomy. Contractions were induced by electric field stimulation (EFS), α1 -adrenergic agonists (noradrenaline, phenylephrine, methoxamine), thromboxane A2 analog U46619, endothelin-1, or calcium chloride in an organ bath. RESULTS: GF109203X (500 nM) and Go6983 (300 nM) reduced EFS-, noradrenaline-, phenylephrine-, methoxamine-, and U46619-induced contractions of human prostate tissues, with maximum inhibitions approaching up to 55%. Using concentrations of 3 µM, GF109203X and Go6983 inhibited EFS- and noradrenaline-induced contractions, with similar effect sizes as 500 and 300 nM, respectively. Endothelin-1-induced contractions were not inhibited by GF109203X, and to neglectable extent by Go6983. After depolarization in calcium-free solution, calcium chloride-induced concentration-dependent contractions, which were inhibited by GF109203X and Go6983. CONCLUSIONS: GF109203X and Go6983 inhibit neurogenic, α1 -adrenergic, and thromboxane A2 -induced smooth muscle contractions in the human prostate, suggesting a role of PKC for human prostate smooth muscle contraction. The inhibition may by be imparted by inhibition of calcium sensitivity.
Assuntos
Indóis/farmacologia , Maleimidas/farmacologia , Hiperplasia Prostática , Proteína Quinase C , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/fisiopatologia , Próstata/metabolismo , Próstata/patologia , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/fisiopatologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Natural enediyne antibiotics are powerful DNA-cleavage agents due to the presence of the highly reactive hex-3-ene-1,5-diyne units. However, the complicated chemical structure and thermal instability make their synthesis, derivatization, and storage challenging. Heterocycle-fused enediynes, which exhibit strong antineoplastic activity, are promising analogues of natural enediynes for medicinal applications. To this end, a series of maleimide-based enediynes with macrocyclic lactone moieties were synthesized through the Sonagashira coupling reaction. Differential scanning calorimetry and electron paramagnetic resonance results showed that these macrocyclic enediynes exhibited a rather low onset temperature and the ability to generate radicals at physiological temperature. In addition, the structure-activity relationship of enediynes was analyzed by changing the ring size and the substituents on the propargyl group. Cellular experiments indicated that the diradicals produced by these enediynes efficiently cleaved DNA and disrupted the cell cycle distribution, and consequently induced tumor cell death via an apoptosis pathway at low half inhibitory concentrations. Computational studies suggested that the maleimide moiety promoted the propargyl-allenyl rearrangement of the cyclic enediyne, enabling the generation of diradical species through the Myers-Saito cyclization, and then abstracted hydrogen atoms from the H-donors.
Assuntos
Enedi-Inos , Lactonas , Antibióticos Antineoplásicos , Ciclização , DNA , Enedi-Inos/química , Enedi-Inos/farmacologia , Maleimidas/farmacologiaRESUMO
IL-10 is critical for Foxp3+ regulatory T cell (Tregs)-mediated immune suppression, but how to efficiently upregulate IL-10 production in Tregs remains unclear. In this article, we show that human IL-10+ FOXP3+-induced regulatory T cell (iTreg) generation can be dramatically promoted by inhibiting GSK3 activity. IL-10+ FOXP3+ iTregs induced by GSK3 inhibition exhibit classical features of immune-suppressive T cells. We further demonstrate that IL-10+ iTregs exhibit enhanced suppressive function in both IL-10-dependent and -independent manners. The enhanced suppressive function of IL-10+ Tregs is not due to a single factor such as IL-10, although IL-10 may mediate this enhanced suppressive function to some extent. Mechanistically, the increased transcriptional activity of IL-10 promoter and the enhanced expression of C-Maf and BLIMP1 coordinately facilitate IL-10 expression in human iTregs under GSK3 inhibition. Our study provides a new strategy to generate human immune-suppressive IL-10+ FOXP3+ Tregs for immunotherapies.
Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Interleucina-10/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Xenoenxertos , Humanos , Tolerância Imunológica , Indóis/farmacologia , Interleucina-10/genética , Ativação Linfocitária , Maleimidas/farmacologia , Camundongos , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-maf/genética , Ativação TranscricionalRESUMO
BACKGROUND: Oxidative stress in the intervertebral disc leads to nucleus pulposus (NP) degeneration by inducing cell apoptosis. However, the molecular mechanisms underlying this process remain unclear. Increasing evidence indicates that GSK-3ß is related to cell apoptosis induced by oxidative stress. In this study, we explored whether GSK-3ß inhibition protects human NP cell against apoptosis under oxidative stress. METHODS AND RESULTS: Immunofluorescence staining was used to show the expression of GSK-3ß in human NP cells (NPCs). Flow cytometry, mitochondrial staining and western blot (WB) were used to detect apoptosis of treated NPCs, changes of mitochondrial membrane potential and the expression of mitochondrial apoptosis-related proteins using GSK-3ß specific inhibitor SB216763. Co-Immunoprecipitation (Co-IP) was used to demonstrate the interaction between GSK-3ß and Bcl-2. We delineated the protective effect of GSK-3ß specific inhibitor SB216763 on human NPCs apoptosis induced by oxidative stress in vitro. Further, we showed SB216763 exert the protective effect by preservation of the mitochondrial membrane potential and inhibition of caspase 3/7 activity during oxidative injury. The detailed mechanism underlying the antiapoptotic effect of GSK-3ß inhibition was also studied by analyzing mitochondrial apoptosis pathway in vitro. CONCLUSIONS: We concluded that the GSK-3ß inhibitor SB216763 protected mitochondrial membrane potential to delay nucleus pulposus cell apoptosis by inhibiting the interaction between GSK-3ß and Bcl-2 and subsequently reducing cytochrome c(Cyto-C) release and caspase-3 activation. Together, inhibition of GSK-3ß using SB216763 in NPCs may be a favorable therapeutic strategy to slow intervertebral disc degeneration.
Assuntos
Glicogênio Sintase Quinase 3 beta , Núcleo Pulposo , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Acute lung injury (ALI) is an acute inflammatory disease, which severely impacts lung function with a high lethality rate. Chromone and maleimide are very important moieties of anti-inflammatory agents. Here, forty new chromone-maleimide hybrids were readily synthesized using a Heck-type coupling strategy in good yields and were screened for their anti-inflammatory activity. A majority of these hybrids showed high inhibitory potency against LPS-stimulated release of pro-inflammatory cytokines in macrophages. Preliminary structure-activity relationship studies led to the discovery of highly potent inhibitors. Five of them were found to inhibit lipopolysaccharide (LPS)-induced IL-6 and TNF-α release in a dose-dependent manner with IC50 values in the nanomolar rang. Furthermore, in vivo administration of 5e and 5g resulted in distinctly attenuated LPS-induced ALI via inhibiting the inflammation. Thus it is evident from our study that these novel chromone-maleimide hybrids present promising therapeutic potential for ALI.
Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Anti-Inflamatórios/efeitos adversos , Cromonas , Citocinas , Maleimidas/farmacologia , CamundongosRESUMO
Streptomyces sp. GET02.ST and Achromobacter sp. GET02.AC were isolated together from the gut of the wharf roach, Ligia exotica, inhabiting the intertidal zone of the west coast of Korea. The co-cultivation of these two strains significantly induced the production of two new metabolites, ligiamycins A (1) and B (2), which were barely detected in the single culture of Streptomyces sp. GET02.ST. The planar structures of ligiamycins A (1) and B (2) were elucidated as new decalins coupled with amino-maleimides by the analysis of various spectroscopic data, including nuclear magnetic resonance (NMR), ultraviolet (UV), and mass (MS) data. The assignment of two nitrogen atoms in amino-maleimide in 1 was accomplished based on 1H-15N heteroatom single quantum coherence spectroscopy (HSQC) NMR experiments. The relative configurations of the ligiamycins were determined using rotating frame Overhauser effect spectroscopy (ROESY) NMR data, and their absolute configurations were deduced by comparing their experimental and calculated optical rotations. Ligiamycin A (1) displayed antibacterial effects against Staphylococcus aureus and Salmonella enterica, while ligiamycin B (2) exhibited mild cell cytotoxicity against human colorectal cancer cells.
Assuntos
Antibacterianos , Antineoplásicos , Maleimidas , Naftalenos , Animais , Humanos , Achromobacter/metabolismo , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias Colorretais/tratamento farmacológico , Isópodes/microbiologia , Naftalenos/química , Naftalenos/isolamento & purificação , Naftalenos/farmacologia , Streptomyces/metabolismo , Maleimidas/química , Maleimidas/isolamento & purificação , Maleimidas/farmacologiaRESUMO
Natural compounds bearing maleimide rings are a series of secondary metabolites derived from fungi/marine microorganisms, which are characterized by a general structure -CO-N(R)-CO-, and the R group is normally substituted with alkyl or aryl groups. Maleimide compounds show various biological activities such as antibacterial, antifungal, and anticancer activity. In this review, the broad-spectrum antimicrobial activities of 15 maleimide compounds from natural sources and 32 artificially synthesized maleimides were summarized, especially against Candida albicans, Sclerotinia sclerotiorum, and Staphylococcus aureus. It highlights that maleimide scaffold has tremendous potential to be utilized in the development of novel antimicrobial agents.
Assuntos
Anti-Infecciosos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Candida albicans , Maleimidas/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Cardiac fibrosis is characterized by accumulation and activation of fibroblasts and excessive production of extracellular matrix, which results in myocardial stiffening and eventually leads to heart failure. Although previous work suggests that protein kinase C (PKC) isoforms play a role in cardiac fibrosis and remodeling, the results are conflicting. Moreover, the potential of targeting PKC with pharmacological tools to inhibit pathologic fibrosis has not been fully evaluated. Here we investigated the effects of selected PKC agonists and inhibitors on cardiac fibroblast (CF) phenotype, proliferation, and gene expression using primary adult mouse CFs, which spontaneously transdifferentiate into myofibroblasts in culture. A 48-hour exposure to the potent PKC activator phorbol 12-myristate 13-acetate (PMA) at 10 nM concentration reduced the intensity of α-smooth muscle actin staining by 56% and periostin mRNA levels by 60% compared with control. The decreases were inhibited with the pan-PKC inhibitor Gö6983 and the inhibitor of classical PKC isoforms Gö6976, suggesting that classical PKCs regulate CF transdifferentiation. PMA also induced a 33% decrease in 5-bromo-2'-deoxyuridine-positive CFs, which was inhibited with Gö6983 but not with Gö6976, indicating that novel PKC isoforms (nPKCs) regulate CF proliferation. Moreover, PMA downregulated the expression of collagen-encoding genes Col1a1 and Col3a1 nPKC-dependently, showing that PKC activation attenuates matrix synthesis in CFs. The partial PKC agonist isophthalate derivative bis(1-ethylpentyl) 5-(hydroxymethyl)isophthalate induced parallel changes in phenotype, cell cycle activity, and gene expression. In conclusion, our results reveal distinct PKC-dependent regulation of CF transdifferentiation and proliferation and suggest that PKC agonists exhibit potential as an antifibrotic treatment. SIGNIFICANCE STATEMENT: Cardiac fibrosis is a pathological process that contributes to the development of heart failure. The molecular mechanisms regulating fibrosis in the heart are, however, not fully understood, which hinders the development of new therapies. Here, we demonstrate that classical and novel protein kinase C (PKC) isoforms distinctly regulate cardiac fibroblast transdifferentiation and proliferation, the two central processes in fibrosis. Our results indicate that pharmacological PKC activation may be a promising strategy to inhibit myocardial fibrosis.
Assuntos
Carbazóis/farmacologia , Indóis/farmacologia , Maleimidas/farmacologia , Miocárdio/citologia , Miofibroblastos/citologia , Proteína Quinase C/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Actinas/metabolismo , Animais , Moléculas de Adesão Celular/genética , Proliferação de Células/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Cultura Primária de Células , Proteína Quinase C/antagonistas & inibidoresRESUMO
A central and critical structure in tuberculosis, the mycobacterial granuloma consists of highly organized immune cells, including macrophages that drive granuloma formation through a characteristic epithelioid transformation. Difficulties in imaging within intact animals and caveats associated with in vitro assembly models have severely limited the study and experimental manipulation of mature granulomas. Here we describe a new ex vivo culture technique, wherein mature, fully organized zebrafish granulomas are microdissected and maintained in three-dimensional (3D) culture. This approach enables high-resolution microscopy of granuloma macrophage dynamics, including epithelioid macrophage motility and granuloma consolidation, while retaining key bacterial and host characteristics. Using mass spectrometry, we find active production of key phosphotidylinositol species identified previously in human granulomas. We also describe a method to transfect isolated granulomas, enabling genetic manipulation, and provide proof-of-concept for host-directed small-molecule screens, identifying protein kinase C (PKC) signaling as an important regulator of granuloma macrophage organization.
Assuntos
Granuloma/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Macrófagos/patologia , Tuberculose/patologia , Animais , Animais Geneticamente Modificados , Granuloma/tratamento farmacológico , Granuloma/microbiologia , Indóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Maleimidas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Peixe-ZebraRESUMO
Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and ß are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple protein substrates in several key signaling pathways. To date, no agent targeting GSK3 has been approved for lymphoma therapy. We show that lymphoma cells abundantly express GSK3α and GSK3ß compared with normal B and T lymphocytes at the messenger RNA and protein levels. Utilizing a new GSK3 inhibitor 9-ING-41 and by genetic deletion of GSK3α and GSK3ß genes using CRISPR/CAS9 knockout, GSK3 was demonstrated to be functionally important to lymphoma cell growth and proliferation. GSK3ß binds to centrosomes and microtubules, and lymphoma cells treated with 9-ING-41 become arrested in mitotic prophase, supporting the notion that GSK3ß is necessary for the progression of mitosis. By analyzing recently published RNA sequencing data on 234 diffuse large B-cell lymphoma patients, we found that higher expression of GSK3α or GSK3ß correlates well with shorter overall survival. These data provide rationale for testing GSK3 inhibitors in lymphoma patient trials.
Assuntos
Quinase 3 da Glicogênio Sintase/genética , Linfoma/etiologia , Terapia de Alvo Molecular , Animais , Biomarcadores Tumorais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Modelos Animais de Doenças , Expressão Gênica , Marcação de Genes/métodos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Indóis/farmacologia , Linfoma/diagnóstico , Linfoma/mortalidade , Linfoma/terapia , Maleimidas/farmacologia , Camundongos , Camundongos Transgênicos , Mitose/efeitos dos fármacos , Mitose/genética , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Fuso Acromático/efeitos dos fármacos , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Hand-foot skin reaction (HFSR) is a common side effect caused by several tyrosine kinase inhibitors, including sunitinib. However, the nature of the cornifying factors related to the molecular biological mechanisms underlying HFSR remains poorly understood. We used human keratinocyte models to investigate the key cornifying factors for dermatological and biological abnormalities induced by sunitinib. On the basis of the results of microarray analysis using the three-dimensional (3D) human epidermal model, keratin (KRT)6A, serine protease inhibitor (SERPIN)B1, KRT5, and SERPIN Kazal-type 6 were selected as candidate genes related to HFSR. Sunitinib treatment significantly decreased the expression of SERPINB1 and KRT6A in the immunohistochemical staining of the 3D epidermal model. In PSVK1 cells, but not in normal human epidermal keratinocyte cells, both of which are human normal keratinocyte cell lines, sunitinib decreased the expression of KRT6A with a concomitant decrease in levels of phosphorylated extracellular signal-regulated kinases (ERK)1/2 and phosphorylated p38 mitogen-activated protein kinase (MAPK). Inhibitors of the ERK and p38 MAPK signal pathways also significantly decreased KRT6A expression. Sunitinib-induced decrease in KRT6A expression was suppressed by the inhibition of glycogen synthase kinase-3ß by enhancing ERK1/2 and p38 MAPK phosphorylation. Thus, sunitinib reduces the expression of KRT6A and SERPINB1 by inhibiting the ERK1/2 and p38 MAPK signalling pathways in the skin model. These changes in expression contribute to the pathology of HFSR.
Assuntos
Antineoplásicos/farmacologia , Epiderme/metabolismo , Queratina-6/metabolismo , Serpinas/metabolismo , Sunitinibe/farmacologia , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Queratina-5/metabolismo , Queratina-6/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Maleimidas/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Serinopeptidase do Tipo Kazal/metabolismo , Serpinas/genéticaRESUMO
An aberrant activity of growth factor receptors followed by excessive cell proliferation plays a significant role in pathogenesis of cholangitis. Therefore, inhibition of these processes could be a fruitful therapeutic strategy. The effects of multi-kinase inhibitor 1-(4-Cl-benzyl)-3-chloro-4-(CF3-phenylamino)-1H-pyrrole-2,5-dione (MI-1) on the hepatic and systemic manifestations of acute and chronic cholangitis in rats were addressed. MI-1 (2.7 mg/kg per day) was applied to male rats that experienced α-naphthylisothiocyanate-induced acute (3 days) or chronic (28 days) cholangitis. Liver autopsy samples, blood serum markers, and leukograms were studied. MI-1 localization in liver cells and its impact on viability of HepG2 (human hepatoma), HL60 (human leukemia), and NIH3T3 (normal murine fibroblasts) cell lines and lymphocytes of human peripheral blood (MTT, DNA fragmentation, DNA comet assays, Propidium Iodide staining) were assessed. Under both acute and chronic cholangitis, MI-1 substantially reduced liver injury, fibrosis, and inflammatory scores (by 46-86%) and normalized blood serum markers and leukograms. Moreover, these effects were preserved after a 28-day recovery period (without any treatment). MI-1 inhibited the HL60, HepG2 cells, and human lymphocytes viability (IC50 0.6, 9.5 and 8.3 µg/ml, respectively), while NIH3T3 cells were resistant to that. Additionally, HepG2 cells and lymphocytes being incubated with MI-1 demonstrated insignificant pro-apoptotic and pro-necrotic changes and DNA single-strand breaks, suggesting that MI-1 effects in liver might be partly caused by its cytotoxic action towards liver cells and lymphocytes. In conclusion, MI-1 attenuated the systemic inflammation and signs of acute and chronic cholangitis partly through cytotoxicity towards cells of hepatic and leukocytic origin.