RESUMO
To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.
Assuntos
Comunicação Celular/fisiologia , RNA/metabolismo , Adulto , Líquidos Corporais/química , Ácidos Nucleicos Livres/metabolismo , MicroRNA Circulante/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , SoftwareRESUMO
In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Assuntos
MicroRNA Circulante , MicroRNAs , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Placenta/metabolismo , MicroRNA Circulante/metabolismo , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Epigênese Genética , RNA Mensageiro/genéticaRESUMO
Expression of miRNAs is critical for the regulation of several cell functions including proliferation, migration, differentiation, and survival, as well as extracellular matrix (ECM) remodeling. The dynamic interplay between miRNAs, ECM macromolecules, and the tumor microenvironment plays critical roles in many aspects of human diseases such as metabolic disorders and cancers. Circulating and secreted miRNAs, via membrane vesicles, affect cell-cell communication and cellular metabolic pathways, underscoring their significance in tumor progression. The primary goal of this article is to highlight the importance of epigenetic regulatory factors, focusing on miRNA-mediated ECM reorganization and their functional relationships, and how matrix-mediated miRNAs affect tumor progression.
Assuntos
MicroRNA Circulante/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Microambiente Tumoral , Animais , Matriz Extracelular/patologia , Humanos , Neoplasias/patologiaRESUMO
BACKGROUND: The incidence of obesity, a known risk factor for several metabolic and chronic diseases, including numerous malignancies, has risen sharply in the world. Various clinical studies demonstrate that excessive Body Mass Index (BMI) may worsen the incidence, prognosis, and mortality rates of breast cancer. Thus, understanding the link tying up obesity and breast cancer onset and progression is critically important, as it can impact patients' survival and quality of life. Recently, circulating extracellular vesicle (EV) derived miRNAs have attracted much attention for their diagnostic, prognostic and therapeutic potential in oncology research. Although the potential role of EV-derived miRNAs in the early detection of breast cancer has been repeatedly mentioned, screening of miRNAs packaged within serum EVs has not yet been reported in patients with obesity. METHODS: Circulating EVs were isolated from normal weight (NW), and overweight/obese (OW/Ob) breast cancer patients and characterized by Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and protein marker expression. Evaluation of EV-associated miRNAs was conducted in a screening (RNA-seq) and a validation (qRT-PCR) cohort. Bioinformatic analysis was performed to uncover significantly enriched biological processes, molecular functions and pathways. ROC and Kaplain-Meier survival analyses were used for clinical significance. RESULTS: Comparison of serum EV-derived miRNAs from NW and OW/Ob patients detected seven differentially expressed miRNAs (let-7a-5p, miR-122-5p, miR-30d-5p, miR-126-3p, miR-27b-3p, miR-4772-3p, and miR-10a-5p) in the screening cohort. GO analysis revealed the enrichment of protein phosphorylation, intracellular signal transduction, signal transduction, and vesicle-mediated transport among the top biological processes. In addition, the target genes were significantly enriched in pathways related to PI3K/Akt, growth hormones, and insulin signalings, which are all involved in obesity-related diseases and/or breast cancer progression. In the validation cohort, qRT-PCR confirmed a significant down-regulation of EV-derived let-7a in the serum of OW/Ob breast cancer patients compared to NW patients. Let-7a levels also exhibited a negative correlation with BMI values. Importantly, decreased let-7a miRNA expression was associated with higher tumor grade and poor survival in patients with breast cancer. CONCLUSION: These results suggest that serum-EV derived miRNAs may reflect a differential profile in relation to a patient's BMI, which, once validated in larger cohorts of patients, could provide insights into novel specific biomarkers and innovative targets to prevent the progression of obesity-mediated breast cancer.
Assuntos
Neoplasias da Mama , MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , MicroRNA Circulante/metabolismo , Neoplasias da Mama/complicações , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Qualidade de Vida , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismoRESUMO
Drug-induced testicular injury (DITI) is one of the often-observed and challenging safety issues seen during drug development. Semen analysis and circulating hormones currently utilized have significant gaps in their ability to detect testicular damage accurately. In addition, no biomarkers enable a mechanistic understanding of the damage to the different regions of the testis, such as seminiferous tubules, Sertoli, and Leydig cells. MicroRNAs (miRNAs) are a class of non-coding RNAs that modulate gene expression post-transcriptionally and have been indicated to regulate a wide range of biological pathways. Circulating miRNAs can be measured in the body fluids due to tissue-specific cell injury/damage or toxicant exposure. Therefore, these circulating miRNAs have become attractive and promising non-invasive biomarkers for assessing drug-induced testicular injury, with several reports on their use as safety biomarkers for monitoring testicular damage in preclinical species. Leveraging emerging tools such as 'organs-on-chips' that can emulate the human organ's physiological environment and function is starting to enable biomarker discovery, validation, and clinical translation for regulatory qualification and implementation in drug development.
Assuntos
MicroRNA Circulante , MicroRNAs , Masculino , Humanos , Testículo/metabolismo , MicroRNA Circulante/metabolismo , MicroRNAs/genética , Biomarcadores/metabolismo , Células Intersticiais do Testículo/metabolismoRESUMO
Breast cancer (BC) is a multifactorial disease caused by an interaction between genetic predisposition and environmental exposures. MicroRNAs are a group of small non-coding RNA molecules, which seem to have a role either as tumor suppressor genes or oncogenes and seem to be related to cancer risk factors. We conducted a systematic review and meta-analysis to identify circulating microRNAs related to BC diagnosis, paying special attention to methodological problems in this research field. A meta-analysis was performed for microRNAs analyzed in at least three independent studies where sufficient data to make analysis were presented. Seventy-five studies were included in the systematic review. A meta-analysis was performed for microRNAs analyzed in at least three independent studies where sufficient data to make analysis were presented. Seven studies were included in the MIR21 and MIR155 meta-analysis, while four studies were included in the MIR10b metanalysis. The pooled sensitivity and specificity of MIR21 for BC diagnosis were 0.86 (95%CI 0.76-0.93) and 0.84 (95%CI 0.71-0.92), 0.83 (95%CI 0.72-0.91) and 0.90 (95%CI 0.69-0.97) for MIR155, and 0.56 (95%CI 0.32-0.71) and 0.95 (95%CI 0.88-0.98) for MIR10b, respectively. Several other microRNAs were found to be dysregulated, distinguishing BC patients from healthy controls. However, there was little consistency between included studies, making it difficult to identify specific microRNAs useful for diagnosis.
Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , MicroRNA Circulante , Feminino , Humanos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , MicroRNA Circulante/análise , MicroRNA Circulante/metabolismo , IncidênciaRESUMO
BACKGROUND: The use of doxorubicin is associated with an increased risk of acute and long-term cardiomyopathy. Despite the constantly growing number of cancer survivors, little is known about the transcriptional mechanisms which progress in the time leading to a severe cardiac outcome. It is also unclear whether long-term transcriptomic alterations related to doxorubicin use are similar to transcriptomic patterns present in patients suffering from other cardiomyopathies. METHODS: We have sequenced miRNA from total plasma and extracellular vesicles (EVs) from 66 acute lymphoblastic leukemia (ALL) survivors and 61 healthy controls (254 samples in total). We then analyzed processes regulated by differentially expressed circulating miRNAs and cross-validated results with the data of patients with clinically manifested cardiomyopathies. RESULTS: We found that especially miRNAs contained within EVs may be informative in terms of cardiomyopathy development and may regulate pathways related to neurotrophin signaling, transforming growth factor beta (TGFß) or epidermal growth factor receptors (ErbB). We identified vesicular miR-144-3p and miR-423-3p as the most variable between groups and significantly correlated with echocardiographic parameters and, respectively, for plasma: let-7g-5p and miR-16-2-3p. Moreover, vesicular miR-144-3p correlates with the highest number of echocardiographic parameters and is differentially expressed in the circulation of patients with dilated cardiomyopathy. We also found that distribution of particular miRNAs between of plasma and EVs (proportion between compartments) e.g., miR-184 in ALL, is altered, suggesting changes within secretory and miRNA sorting mechanisms. CONCLUSIONS: Our results show that transcriptomic changes resulting from doxorubicin induced myocardial injury are reflected in circulating miRNA levels and precede development of the late onset cardiomyopathy phenotype. Among miRNAs related to cardiac function, we found vesicular miR-144-3p and miR-423-3p, as well as let-7g-5p and miR-16-2-3p contained in the total plasma. Selection of source for such studies (plasma or EVs) is of critical importance, as distribution of some miRNA between plasma and EVs is altered in ALL survivors, in comparison to healthy people, which suggests that doxorubicin-induced changes include miRNA sorting and export to extracellular space.
Assuntos
MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Doxorrubicina/efeitos adversosRESUMO
Granulomatosis with polyangiitis is a chronic systemic inflammation of small vessels characterized by circulating anti-proteinase 3 antibodies. MicroRNAs are short transcripts specifically inhibiting protein translation. Neutrophils can release extracellular vesicles (EVs). In this study, we characterized profile of microRNA trafficked by EVs in GPA. Fifty patients with GPA were enrolled in the study, 25 at acute phase and 25 in remission. EVs were isolated from the blood serum, characterized by their number, size distribution. Following unbiased screening for microRNA expression, differentially expressed candidates were measured by quantitative real-time PCR. Circulating DNA-myeloperoxidase complexes and apoptosis-related transcripts in peripheral blood neutrophils were quantified. We identified four differentially expressed microRNAs from EVs in granulomatosis with polyangiitis (GPA). MirRs-223-3p, 664a-3p, and 200b-3p were overexpressed and miR-769-5p suppressed in the disease. A distinction between GPA and healthy controls was the best for miR-223-3p, whereas miR-664a-3p discriminated between active vs. remission of GPA. Correct classification of the disease based on multivariate discriminant analysis was between 92% for acute phase and 85% for all study participants. Bioinformatics tools identified genes transcripts potentially targeted by the microRNAs belonging to pathways of focal adhesion, mTOR signaling and neutrophil extracellular traps formation. Two microRNAs positively correlating with the disease activity were involved in neutrophil extracellular traps formation and apoptosis inhibition. A comprehensive characteristics of microRNAs trafficked in bloodstream inside EVs correlates well with our understanding of the mechanisms of GPA and suggests the importance of EVs in progression of the disease.
Assuntos
MicroRNA Circulante , Armadilhas Extracelulares , Vesículas Extracelulares , Granulomatose com Poliangiite , MicroRNAs , Humanos , MicroRNA Circulante/metabolismo , Neutrófilos , MicroRNAs/genética , Granulomatose com Poliangiite/genética , Inflamação/metabolismoRESUMO
BACKGROUND: The limitation of aortic size-based criteria is gradually recognized in the prediction of aortic events especially in bicuspid aortic valve (BAV) cohorts, while most aortic events happen in patients with proximal aortic diameters <50 mm. Circulating microRNAs (miRs) have been addressed as a novel tool to improve risk stratification in patients with different aortopathies. We aimed to elucidate the correlation between peripheral whole blood and aortic tissue miRs in order to prove the potential availability as a biomarker in the clinical routine. METHODS: All patients who received elective aortic valve repair/replacement ± proximal aortic replacement to BAV disease (n = 65, 2013-2018) were prospectively included. The expression of 10 miRs (miR-1, miR-17, miR-18a, miR-19a, miR-20a, miR-21, miR-106a, miR-133a, miR-143 and miR-145) was analyzed in the intraoperatively acquired aortic tissue as well as in the peripheral blood before the surgery. RESULTS: We found a significant correlation between circulating miRs in the peripheral blood and aortic tissue levels of miR-21 (r = 0.293, p = 0.02), miR-133a (r = 0.43, p = 0.02), miR-143 (r = 0.68, p < 0.001), and miR-145 (r = 0.68, p < 0.001). Further, the multivariate logistic regression analysis revealed an association between blood and aortic tissue miR-143 levels each other (Odds Ratio [OR] 1.29, 95% Confidence Interval [CI] 1.11-1.67, p = 0.02; OR 1.36, 95% CI 1.19-2.01, p = 0.03, respectively) and a blood/aortic miR-143 level to dilated aorta (OR 3.61, 95% CI 1.62-9.02, p = 0.01; OR 2.92, 95% CI 1.81-7.05, p = 0.02, respectively). CONCLUSIONS: Our study demonstrates a significant correlation between peripheral whole blood and aortic tissue miRs, confirming the hypothesis that circulating miRs may reflect remodeling processes in the proximal aorta in bicuspid aortopathy patients.
Assuntos
Doença da Válvula Aórtica Bicúspide , MicroRNA Circulante , Doenças das Valvas Cardíacas , MicroRNAs , Valva Aórtica/cirurgia , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/cirurgia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Background: Ultrafiltration failure remains one of the most severe complications of long-term peritoneal dialysis (PD), which results in death. This study aimed to characterize the circulating exosomal microRNA (miRNA) profiles associated with ultrafiltration failure and explore its underlying mechanisms. Methods: Exosomes were isolated from the peritoneal dialysis effluent (PDE) of patients with ultrafiltration failure or success using the ultracentrifugation method, and then transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot were used for exosome characterization. After that, the isolated exosomes were sent for small RNA sequencing, and eight differentially expressed miRNAs (DE-miRNAs) were chosen for RT-qPCR validation. Results: TEM, NTA, and western blot revealed that exosomes were successfully isolated. After sequencing, 70 DE-miRNAs involved in ultrafiltration were identified, including 41 upregulated ones and 29 downregulated ones. Functional analyses revealed that these DE-miRNAs were significantly enriched in pathways of cancer, ubiquitin-mediated proteolysis, axon orientation, and the Rap1 and Ras signaling pathways. In addition, the consistency rate of RT-qPCR and sequencing results was 75%, which indicated the relatively high reliability of the sequencing data. Conclusions: Our findings implied that these DE-miRNAs may be potential biomarkers of ultrafiltration failure, which would help us to discover novel therapeutic targets/pathways for ultrafiltration failure in patients with end-stage renal disease.
Assuntos
MicroRNA Circulante , Exossomos , MicroRNAs , Diálise Peritoneal , MicroRNA Circulante/metabolismo , Exossomos/genética , Exossomos/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Reprodutibilidade dos Testes , UltrafiltraçãoRESUMO
Several benefits can be acquired through physical exercise. Different classes of biomolecules are responsible for the cross-talk between distant organs. The secretome of skeletal muscles, and more widely the field of organokines, is ever-expanding. "Exerkine" has emerged as the umbrella term covering any humoral factors secreted into circulation by tissues in response to exercise. This review aims at describing the most interesting exerkines discovered in the last 3 years, which are paving the way for both physiological novel insights and potential medical strategies. The five exerkines identified all play a significant role in the healthy effect of exercise. Specifically: miR-1192, released by muscles and myocardium into circulation, by modulating cardioprotective effect in trained mice; miR-342-5p, located into exosomes from vascular endothelial cells, also a cardioprotective miRNA in trained young humans; apelin, released by muscles into circulation, involved in anti-inflammatory pathways and muscle regenerative capacity in rats; GDF-15, released into circulation from yet unknown source, whose effects can be observed on multiple organs in young men after a single bout of exercise; oxytocin, released by myoblasts and myotubes, with autocrine and paracrine functions in myotubes. The systemic transport by vesicles and the crosstalk between distant organs deserve a deep investigation. Sources, targets, transport mechanisms, biological roles, population samples, frequency, intensity, time and type of exercise should be considered for the characterization of existing and novel exerkines. The "exercise is medicine" framework should include exerkines in favor of novel insights for public health.
Assuntos
Apelina/metabolismo , Comunicação Autócrina , MicroRNA Circulante/metabolismo , Células Endoteliais/fisiologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Músculo Esquelético/fisiologia , Comunicação Parácrina , Regeneração , Animais , Humanos , Camundongos , RatosRESUMO
MicroRNAs (miRNAs) are small non-coding RNAs (typically consisting of 18-25 nucleotides) that negatively control expression of target genes at the post-transcriptional level. Owing to the biological significance of miRNAs, miRTarBase was developed to provide comprehensive information on experimentally validated miRNA-target interactions (MTIs). To date, the database has accumulated >13,404 validated MTIs from 11,021 articles from manual curations. In this update, a text-mining system was incorporated to enhance the recognition of MTI-related articles by adopting a scoring system. In addition, a variety of biological databases were integrated to provide information on the regulatory network of miRNAs and its expression in blood. Not only targets of miRNAs but also regulators of miRNAs are provided to users for investigating the up- and downstream regulations of miRNAs. Moreover, the number of MTIs with high-throughput experimental evidence increased remarkably (validated by CLIP-seq technology). In conclusion, these improvements promote the miRTarBase as one of the most comprehensively annotated and experimentally validated miRNA-target interaction databases. The updated version of miRTarBase is now available at http://miRTarBase.cuhk.edu.cn/.
Assuntos
Bases de Dados de Ácidos Nucleicos , MicroRNAs/metabolismo , MicroRNA Circulante/metabolismo , Mineração de Dados , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Interface Usuário-ComputadorRESUMO
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease worldwide, but a reliable non-invasive method to quantify liver steatosis in primary healthcare is not available. Circulating microRNAs have been proposed as biomarkers of severe/advanced NAFLD (steatohepatitis and fibrosis). However, the use of circulating miRNAs to quantitatively assess the % of liver fat in suspected NAFLD patients has not been investigated. We performed global miRNA sequencing in two sets of samples: human livers from organ donors (n = 20), and human sera from biopsy-proven NAFLD patients (n = 23), both with a wide range of steatosis quantified in their liver biopsies. Partial least squares (PLS) regression combined with recursive feature elimination (RFE) was used to select miRNAs associated with steatosis. Moreover, regression models with only 2 or 3 miRNAs, with high biological relevance, were built. Comprehensive microRNA sequencing of liver and serum samples resulted in two sets of abundantly expressed miRNAs (418 in liver and 351 in serum). Pearson correlation analyses indicated that 18% of miRNAs in liver and 14.5% in serum were significantly associated with the amount of liver fat. PLS-RFE models demonstrated that 50 was the number of miRNAs providing the lowest error in both liver and serum models predicting steatosis. Comparison of the two miRNA subsets showed 19 coincident miRNAs that were ranked according to biological significance (guide/passenger strand, relative abundance in liver and serum, number of predicted lipid metabolism target genes, correlation significance, etc.). Among them, miR-10a-5p, miR-98-5p, miR-19a-3p, miR-30e-5p, miR-32-5p and miR-145-5p showed the highest biological relevance. PLS regression models with serum levels of 2−3 of these miRNAs predicted the % of liver fat with errors <5%.
Assuntos
MicroRNA Circulante , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismoRESUMO
Oxidative stress and inflammation are associated with skeletal muscle function decline with ageing or disease or inadequate exercise and/or poor diet. Paradoxically, reactive oxygen species and inflammatory cytokines are key for mounting the muscular and systemic adaptive responses to endurance and resistance exercise. Both ageing and lifestyle-related metabolic dysfunction are strongly linked to exercise redox and hypertrophic insensitivity. The adaptive inability and consequent exercise intolerance may discourage people from physical training resulting in a vicious cycle of under-exercising, energy surplus, chronic mitochondrial stress, accelerated functional decline and increased susceptibility to serious diseases. Skeletal muscles are malleable and dynamic organs, rewiring their metabolism depending on the metabolic or mechanical stress resulting in a specific phenotype. Endogenous RNA silencing molecules, microRNAs, are regulators of these metabolic/phenotypic shifts in skeletal muscles. Skeletal muscle microRNA profiles at baseline and in response to exercise have been observed to differ between adult and older people, as well as trained vs. sedentary individuals. Likewise, the circulating microRNA blueprint varies based on age and training status. Therefore, microRNAs emerge as key regulators of metabolic health/capacity and hormetic adaptability. In this narrative review, we summarise the literature exploring the links between microRNAs and skeletal muscle, as well as systemic adaptation to exercise. We expand a mathematical model of microRNA burst during adaptation to exercise through supporting data from the literature. We describe a potential link between the microRNA-dependent regulation of redox-signalling sensitivity and the ability to mount a hypertrophic response to exercise or nutritional cues. We propose a hypothetical model of endurance exercise-induced microRNA "memory cloud" responsible for establishing a landscape conducive to aerobic as well as anabolic adaptation. We suggest that regular aerobic exercise, complimented by a healthy diet, in addition to promoting mitochondrial health and hypertrophic/insulin sensitivity, may also suppress the glycolytic phenotype and mTOR signalling through miRNAs which in turn promote systemic metabolic health.
Assuntos
MicroRNA Circulante , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , MicroRNA Circulante/metabolismo , Transdução de Sinais , Hipertrofia/metabolismoRESUMO
Exosomes may contribute to the pathogenesis of obesity through their action as communication mediators. As we have previously demonstrated, in obese adolescents, some circulating miRNAs modified the C-type natriuretic peptide (CNP) expression and were associated with changes in metabolic functions. At present no data are available on miRNA transport by exosomes in this condition. To verify and compare the presence and the expression of CNP/NPR-B/NPR-C, and some miRNAs (miR-33a-3p/miR-223-5p/miR-142-5p/miRNA-4454/miRNA-181a-5p/miRNA-199-5p), in circulating exosomes obtained from the same cohort of obese (O, n = 22) and normal-weight adolescents (N, n = 22). For the first time, we observed that exosomes carried CNP and its specific receptors only randomly both in O and N, suggesting that exosomes are not important carriers for the CNP system. On the contrary, exosomal miRNAs resulted ubiquitously and differentially expressed in O and N. O showed a significant decrease (p < 0.01) in the expression of all miRNAs except for miR-4454 and miR-142-5p. We have found significant correlations among miRNAs themselves and with some inflammatory/metabolic factors of obesity. These relationships may help in finding new biomarkers, allowing us to recognize, at an early stage, obese children and adolescents at high risk to develop the disease complications in adult life.
Assuntos
MicroRNA Circulante , Exossomos , MicroRNAs , Obesidade Infantil , Adolescente , Humanos , Biomarcadores/metabolismo , MicroRNA Circulante/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade Infantil/metabolismoRESUMO
MicroRNAs (miRNAs) play a key role in the regulation of genes for normal metabolism in the liver. Dysregulation of miRNAs is involved in the development and progression of non-alcoholic fatty liver disease (NAFLD). We aimed to explore changes in circulating miRNA expression in response to delta-tocotrienol (δT3) and alpha-tocopherol (αTF) supplementation and correlate them with relevant biochemical markers in patients with NAFLD. In total, 100 patients with NAFLD were randomized to either receive δT3 (n = 50) 300 mg or αTF (n = 50) 268 mg twice/day for 48 weeks. Plasma expression of miRNA-122, -21, -103a-2, -421, -375 and -34a were determined at baseline, 24 and 48 weeks of intervention using RT-qPCR. Both δT3 and αTF significantly downregulated expression of miRNA-122, -21, -103a-2, -421, -375 and -34a. Moreover, δT3 was more effective than αTF in reducing expression of miRNA-375 and -34a. A significant correlation was observed between miRNA expression and biochemical markers of hepatic steatosis, insulin resistance (IR), oxidative stress (OS), inflammation and apoptosis. δT3 and αTF exert hepato-protective effects by downregulating miRNAs involved in hepatic steatosis, IR, OS, inflammation and apoptosis in patients with NAFLD. Furthermore, δT3 has more pronounced effects than αTF in reducing miR-375 and miR-34a, which are linked to regulation of inflammation and apoptosis.
Assuntos
MicroRNA Circulante , Resistência à Insulina , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , MicroRNA Circulante/metabolismo , alfa-Tocoferol/farmacologia , alfa-Tocoferol/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Inflamação/metabolismo , Biomarcadores/metabolismoRESUMO
Objective To explore the expression profiles of circulating microRNA(miRNA)and potential markers for the diagnosis of adult fulminant myocarditis(FM). Methods The expression profiles of circulating miRNA were determined by microarray analysis and verified by real-time quantitative PCR.The key role of circulating miRNA in FM was determined via KEGG pathway enrichment.The correlations between miRNA and cardiac function parameters in patients with FM were analyzed.The receiver operating characteristic(ROC)curve was established to evaluate the sensitivity and specificity of circulating miRNA in the diagnosis of FM. Results Compared with healthy controls,the FM patients had up-regulated expression levels of miR-29b(t=18.925,P<0.001)and miR-125b(t=5.981,P=0.029)in the plasma.After treatment,the expression levels of miR-29b(t=12.943,P<0.001)and miR-125b(t=14.016,P<0.001)were significantly down-regulated.KEGG pathway enrichment showed that the targets of miR-29b were involved in inflammatory response and apoptosis pathways.The results of cell proliferation and apoptosis assay demonstrated the transfection of miR-29b mimic had a more significant inducing effect on cardiomyocyte apoptosis than that of miR-125b mimic(χ 2=6.168,P=0.047),whereas there was no significant difference in the inhibition of cell proliferation between the two groups(χ2=1.452,P=0.417).The expression levels of miR-29b and miR-125b were negatively correlated with left ventricular ejection fraction(r=-0.67,P=0.071;r=-0.49,P=0.003).They were positively correlated with cardiac troponin I level(r=0.61,P=0.019;r=0.52,P=0.016),interferon ß level(r=0.42,P=0.014;r=0.36,P=0.021),and myocardial edema area(r=0.86,P=0.005;r=0.73,P=0.013).The ROC curve analysis demonstrated that miR-29b had higher sensitivity for the diagnosis of FM(93.6% vs.89.2%;t=0.896,P=0.795)and specificity(72.4% vs.59.6%;t=9.478,P=0.002)than miR-125b. Conclusion The circulating miR-29b may be a potential biomarker for the diagnosis of FM.
Assuntos
MicroRNA Circulante , Miocardite , Adulto , Biomarcadores/metabolismo , MicroRNA Circulante/metabolismo , Humanos , MicroRNAs/metabolismo , Miocardite/diagnóstico , Volume Sistólico , Função Ventricular EsquerdaRESUMO
Lung cancer is the most aggressive tumour afflicting patients on a global scale. Extracellular vesicle (EV)-delivered microRNAs (miRs) have been reported to play critical roles in cancer development. The current study aimed to investigate the role of hypoxic bone marrow mesenchymal cell (BMSC)-derived EVs containing miR-328-3p in lung cancer. miR-328-3p expression was determined in a set of lung cancer tissues by RT-qPCR. BMSCs were infected with lentivirus-mediated miR-328-3p knock-down and then cultured in normoxic or hypoxic conditions, followed by isolation of EVs. Following ectopic expression and depletion experiments in lung cancer cells, the biological functions of miR-328-3p were analysed using CCK-8 assay, flow cytometry and Transwell assay. Xenograft in nude mice was performed to test the in vivo effects of miR-328-3p delivered by hypoxic BMSC-derived EVs on tumour growth of lung cancer. Finally, the expression of circulating miR-328-3p was detected in the serum of lung cancer patients. miR-328-3p was highly expressed in EVs derived from hypoxic BMSCs. miR-328-3p was delivered to lung cancer cells by hypoxic BMSC-derived EVs, thereby promoting lung cancer cell proliferation, invasion, migration and epithelial-mesenchymal transition. miR-328-3p targeted NF2 to inactivate the Hippo pathway. Moreover, EV-delivered miR-328-3p increased tumour growth in vivo. Additionally, circulating miR-328-3p was bioactive in the serum of lung cancer patients. Taken together, our results demonstrated that hypoxic BMSC-derived EVs could deliver miR-328-3p to lung cancer cells and that miR-328-3p targets the NF2 gene, thereby inhibiting the Hippo pathway to ultimately promote the occurrence and progression of lung cancer.
Assuntos
Progressão da Doença , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Neurofibromina 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Hipóxia Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Transição Epitelial-Mesenquimal/genética , Vesículas Extracelulares/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/sangue , Masculino , Camundongos Nus , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Regulação para Cima/genéticaRESUMO
Multiple myeloma (MM) is a refractory plasma cell tumor. In myeloma cells, the transcription factor IRF4, the master regulator of plasma cells, is aberrantly upregulated and plays an essential role in oncogenesis. IRF4 forms a positive feedback loop with MYC, leading to additional tumorigenic properties. In recent years, molecular targeted therapies have contributed to a significant improvement in the prognosis of MM. Nevertheless, almost all patients experience disease progression, which is thought to be a result of treatment resistance induced by various elements of the bone marrow microenvironment. Among these, the hypoxic response, one of the key processes for cellular homeostasis, induces hypoxia-adapted traits such as undifferentiation, altered metabolism, and dissemination, leading to drug resistance. These inductions are caused by ectopic gene expression changes mediated by the activation of hypoxia-inducible factors (HIFs). By contrast, the expression levels of IRF4 and MYC are markedly reduced by hypoxic stress. Notably, an anti-apoptotic capability is usually acquired under both normoxic and hypoxic conditions, but the mechanism is distinct. This fact strongly suggests that myeloma cells may survive by switching their dependent regulatory factors from IRF4 and MYC (normoxic bone marrow region) to HIF (hypoxic bone marrow microenvironment). Therefore, to achieve deep remission, combination therapeutic agents, which are complementarily effective against both IRF4-MYC-dominant and HIF-dominated fractions, may become an important therapeutic strategy for MM.
Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores Reguladores de Interferon/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Hipóxia Tumoral/fisiologia , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células da Medula Óssea/fisiologia , Desdiferenciação Celular , Hipóxia Celular/fisiologia , Movimento Celular/fisiologia , Microambiente Celular/fisiologia , MicroRNA Circulante/metabolismo , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/fisiologia , Retroalimentação Fisiológica , Glicólise/fisiologia , Hexoquinase/metabolismo , Homeostase , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores Imunológicos/uso terapêutico , Fatores Reguladores de Interferon/genética , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Terapia de Alvo Molecular/métodos , Mieloma Múltiplo/etiologia , Mieloma Múltiplo/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/fisiologia , Oxigênio , Pressão Parcial , Inibidores de Proteassoma/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/antagonistas & inibidores , Regulação para CimaRESUMO
Damage-associated molecular patterns (DAMPs) are endogenous molecules which foment inflammation and are associated with disorders in sepsis and cancer. Thus, therapeutically targeting DAMPs has potential to provide novel and effective treatments. When establishing anti-DAMP strategies, it is important not only to focus on the DAMPs as inflammatory mediators but also to take into account the underlying mechanisms of their release from cells and tissues. DAMPs can be released passively by membrane rupture due to necrosis/necroptosis, although the mechanisms of release appear to differ between the DAMPs. Other types of cell death, such as apoptosis, pyroptosis, ferroptosis and NETosis, can also contribute to DAMP release. In addition, some DAMPs can be exported actively from live cells by exocytosis of secretory lysosomes or exosomes, ectosomes, and activation of cell membrane channel pores. Here we review the shared and DAMP-specific mechanisms reported in the literature for high mobility group box 1, ATP, extracellular cold-inducible RNA-binding protein, histones, heat shock proteins, extracellular RNAs and cell-free DNA.