RESUMO
Rapid progress in algal biotechnology has triggered a growing interest in hydrogel-encapsulated microalgal cultivation, especially for the engineering of functional photosynthetic materials and biomass production. An overlooked characteristic of gel-encapsulated cultures is the emergence of cell aggregates, which are the result of the mechanical confinement of the cells. Such aggregates have a dramatic effect on the light management of gel-encapsulated photobioreactors and hence strongly affect the photosynthetic outcome. To evaluate such an effect, we experimentally studied the optical response of hydrogels containing algal aggregates and developed optical simulations to study the resultant light intensity profiles. The simulations are validated experimentally via transmittance measurements using an integrating sphere and aggregate volume analysis with confocal microscopy. Specifically, the heterogeneous distribution of cell aggregates in a hydrogel matrix can increase light penetration while alleviating photoinhibition more effectively than in a flat biofilm. Finally, we demonstrate that light harvesting efficiency can be further enhanced with the introduction of scattering particles within the hydrogel matrix, leading to a fourfold increase in biomass growth. Our study, therefore, highlights a strategy for the design of spatially efficient photosynthetic living materials that have important implications for the engineering of future algal cultivation systems.
Assuntos
Hidrogéis , Luz , Microalgas , Fotossíntese , Hidrogéis/química , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Biomassa , FotobiorreatoresRESUMO
Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2 of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y-1 of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y-1, seagrasses contribute ~23 Tg C y-1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y-1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2 y-1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.
Assuntos
Microalgas , Alga Marinha , Ecossistema , Orçamentos , Carbono , Mudança Climática , Camada de Gelo , FitoplânctonRESUMO
Phenotypic plasticity, the change in the phenotype of a given genotype in response to its environment of development, is a ubiquitous feature of life, enabling organisms to cope with variation in their environment. Theoretical studies predict that, under stationary environmental variation, the level of plasticity should evolve to match the predictability of selection at the timing of development. However, the extent to which patterns of evolution of plasticity for more integrated traits are mirrored by their underlying molecular mechanisms remains unclear, especially in response to well-characterized selective pressures exerted by environmental predictability. Here, we used experimental evolution with the microalgae Dunaliella salina under controlled environmental fluctuations, to test whether the evolution of phenotypic plasticity in responses to environmental predictability (as measured by the squared autocorrelation ρ2) occurred across biological levels, going from DNA methylation to gene expression to cell morphology. Transcriptomic analysis indicates clear effects of salinity and ρ2 × salinity interaction on gene expression, thus identifying sets of genes involved in plasticity and its evolution. These transcriptomic effects were independent of DNA methylation changes in cis. However, we did find ρ2-specific responses of DNA methylation to salinity change, albeit weaker than for gene expression. Overall, we found consistent evolution of reduced plasticity in less predictable environments for DNA methylation, gene expression, and cell morphology. Our results provide the first clear empirical signature of plasticity evolution at multiple levels in response to environmental predictability, and highlight the importance of experimental evolution to address predictions from evolutionary theory, as well as investigate the molecular basis of plasticity evolution.
Assuntos
Microalgas , Microalgas/genética , Microalgas/metabolismo , Fenótipo , Evolução Biológica , Metilação de DNA , Regulação da Expressão Gênica , Adaptação BiológicaRESUMO
Life on earth depends on photosynthetic primary producers that exploit sunlight to fix CO2 into biomass. Approximately half of global primary production is associated with microalgae living in aquatic environments. Microalgae also represent a promising source of biomass to complement crop cultivation, and they could contribute to the development of a more sustainable bioeconomy. Photosynthetic organisms evolved multiple mechanisms involved in the regulation of photosynthesis to respond to highly variable environmental conditions. While essential to avoid photodamage, regulation of photosynthesis results in dissipation of absorbed light energy, generating a complex trade-off between protection from stress and light-use efficiency. This work investigates the impact of the xanthophyll cycle, the light-induced reversible conversion of violaxanthin into zeaxanthin, on the protection from excess light and on biomass productivity in the marine microalgae of the genus Nannochloropsis. Zeaxanthin is shown to have an essential role in protection from excess light, contributing to the induction of nonphotochemical quenching and scavenging of reactive oxygen species. On the contrary, the overexpression of zeaxanthin epoxidase enables a faster reconversion of zeaxanthin to violaxanthin that is shown to be advantageous for biomass productivity in dense cultures in photobioreactors. These results demonstrate that zeaxanthin accumulation is critical to respond to strong illumination, but it may lead to unnecessary energy losses in light-limiting conditions and accelerating its reconversion to violaxanthin provides an advantage for biomass productivity in microalgae.
Assuntos
Microalgas , Biomassa , Zeaxantinas , XantofilasRESUMO
Marine microalgae are the primary producers of ω3 polyunsaturated fatty acids (PUFAs), such as octadecapentaenoic acid (OPA, 18:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) for food chains. However, the biosynthetic mechanisms of these PUFAs in the algae remain elusive. To study how these fatty acids are synthesized in microalgae, a series of radiolabeled precursors were used to trace the biosynthetic process of PUFAs in Emiliania huxleyi. Feeding the alga with 14C-labeled acetic acid in a time course showed that OPA was solely found in glycoglycerolipids such as monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) synthesized plastidically by sequential desaturations while DHA was exclusively found in phospholipids synthesized extraplastidically. Feeding the alga with 14C-labeled α-linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) showed that DHA was synthesized extraplastidically from fed ALA and LA, but not from OA, implying that the aerobic pathway of DHA biosynthesis is incomplete with missing a Δ12 desaturation step. The in vitro enzymatic assays with 14C-labeled malonyl-CoA showed that DHA was synthesized from acetic acid by a PUFA synthase. These results provide the first and conclusive biochemistry evidence that OPA is synthesized by a plastidic aerobic pathway through sequential desaturations with the last step of Δ3 desaturation, while DHA is synthesized by an extraplastidic anaerobic pathway catalyzed by a PUFA synthase in the microalga.
Assuntos
Ácidos Graxos Ômega-3 , Microalgas , Microalgas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/biossíntese , Haptófitas/metabolismoRESUMO
Carbon fixation relies on Rubisco and 10 additional enzymes in the Calvin-Benson-Bassham cycle. Epimerization of xylulose-5-phosphate (Xu5P) into ribulose-5-phosphate (Ru5P) contributes to the regeneration of ribulose-1,5-bisphosphate, the substrate of Rubisco. Ribulose-5-phosphate-3-epimerase (RPE, EC 5.1.3.1) catalyzes the formation of Ru5P, but it can also operate in the pentose-phosphate pathway by catalyzing the reverse reaction. Here, we describe the structural and biochemical properties of the recombinant RPE isoform 1 from Chlamydomonas (Chlamydomonas reinhardtii) (CrRPE1). The enzyme is a homo-hexamer that contains a zinc ion in the active site and exposes a catalytic pocket on the top of an α8ß8 triose isomerase-type barrel as observed in structurally solved RPE isoforms from both plant and non-plant sources. By optimizing and developing enzyme assays to monitor the reversible epimerization of Ru5P to Xu5P and vice versa, we determined the catalytic parameters that differ from those of other plant paralogs. Despite being identified as a putative target of multiple thiol-based redox modifications, CrRPE1 activity is not affected by both reductive and oxidative treatments, indicating that enzyme catalysis is insensitive to possible redox alterations of cysteine residues. We mapped phosphorylation sites on the crystal structure, and the specific location at the entrance of the catalytic cleft supports a phosphorylation-based regulatory mechanism. This work provides an accurate description of the structural features of CrRPE1 and an in-depth examination of its catalytic and regulatory properties highlighting the physiological relevance of this enzyme in the context of photosynthetic carbon fixation.
Assuntos
Chlamydomonas reinhardtii , Microalgas , Pentoses , Chlamydomonas reinhardtii/metabolismo , Microalgas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Modelos Moleculares , Cloroplastos/metabolismo , Racemases e Epimerases , FosfatosRESUMO
The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere. Here we review ten pathways for the utilization of carbon dioxide. Pathways that involve chemicals, fuels and microalgae might reduce emissions of carbon dioxide but have limited potential for its removal, whereas pathways that involve construction materials can both utilize and remove carbon dioxide. Land-based pathways can increase agricultural output and remove carbon dioxide. Our assessment suggests that each pathway could scale to over 0.5 gigatonnes of carbon dioxide utilization annually. However, barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways.
Assuntos
Dióxido de Carbono/economia , Dióxido de Carbono/isolamento & purificação , Sequestro de Carbono , Tecnologia/economia , Tecnologia/tendências , Dióxido de Carbono/metabolismo , Carvão Vegetal/metabolismo , Florestas , Microalgas/metabolismo , Fotossíntese , Solo/químicaRESUMO
Production of high-energy lipids by microalgae may provide a sustainable energy source that can help tackle climate change. However, microalgae engineered to produce more lipids usually grow slowly, leading to reduced overall yields. Unfortunately, culture vessels used to select cells based on growth while maintaining high biomass production, such as well plates, water-in-oil droplet emulsions, and nanowell arrays, do not provide production-relevant environments that cells experience in scaled-up cultures (e.g., bioreactors or outdoor cultivation farms). As a result, strains that are developed in the laboratory may not exhibit the same beneficial phenotypic behavior when transferred to industrial production. Here, we introduce PicoShells, picoliter-scale porous hydrogel compartments, that enable >100,000 individual cells to be compartmentalized, cultured in production-relevant environments, and selected based on growth and bioproduct accumulation traits using standard flow cytometers. PicoShells consist of a hollow inner cavity where cells are encapsulated and a porous outer shell that allows for continuous solution exchange with the external environment. PicoShells allow for cell growth directly in culture environments, such as shaking flasks and bioreactors. We experimentally demonstrate that Chlorella sp., Saccharomyces cerevisiae, and Chinese hamster ovary cells, used for bioproduction, grow to significantly larger colony sizes in PicoShells than in water-in-oil droplet emulsions (P < 0.05). We also demonstrate that PicoShells containing faster dividing and growing Chlorella clonal colonies can be selected using a fluorescence-activated cell sorter and regrown. Using the PicoShell process, we select a Chlorella population that accumulates chlorophyll 8% faster than does an unselected population after a single selection cycle.
Assuntos
Técnicas de Cultura de Células , Ensaios de Triagem em Larga Escala/métodos , Nanopartículas , Nanotecnologia , Animais , Biocombustíveis , Células CHO , Cricetulus , Citometria de Fluxo , Microalgas/metabolismo , Técnicas Analíticas MicrofluídicasRESUMO
The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.
Assuntos
Chlorella , Microalgas , Neoplasias , Animais , Camundongos , Hidrogéis , Glucose Oxidase , Fotossíntese , Hipóxia , Oxigênio , Imunoterapia , Alginatos , Microambiente TumoralRESUMO
Fishmeal and fish oil have been the main sources of protein and fatty acid for aquaculture fish. However, their increasing price and low sustainability have led the aquafeed industry to seek sustainable alternative feedstuffs to meet the nutritional requirements of fish and improve their health and performance. Plant proteins have been successfully used to replace fishery derivatives in aquafeeds, but the presence of anti-nutritional substances is a potential drawback of this approach. Thus, it has been reported that phytate breakdown can be caused by feed supplementation with exogenous phytase. The inclusion of microalgae has been proposed to improve gut functionality in fish fed diets with a high vegetable protein content. The aim of this study was to evaluate the effect on the growth and gut microbiota of European seabass (Dicentrarchus labrax) juveniles of a diet containing a blend of microalgae (Arthrospira platensis and Nannochloropsis gaditana) and different concentrations of phytase. An 83-day feeding trial was conducted, comprising four experimental diets with 2.5% microalgae and 500, 1,000, 2,000, or 10,000 phytase units (FTU)/kg feed and a microalgae- and phytase-free control diet. At the end of the trial, a significantly increased body weight was observed in fish fed the diet with the highest phytase concentration (10,000 FTU/kg) versus controls, although the gut bacterial composition did not differ from controls in alpha or beta diversity with either majority (Weighted UniFrac) or minority bacterial strains (Unweighted UniFrac). In comparison to the control group, the groups fed diets with 1,000 or 2,000 FTU/kg diets had a lower alpha diversity (Shannon's diversity index), while those fed diets with 500 FTU/kg or 1,000 FTU/kg showed distinct clusters in beta diversity (involving minority ASVs). According to these findings, the diet containing the 2.5% microalgae blend with 10,000 FTU/kg may be useful to increase the aquafeed quality and sustain the growth performance of juvenile European seabass.
Assuntos
6-Fitase , Ração Animal , Bass , Suplementos Nutricionais , Microbioma Gastrointestinal , Microalgas , Animais , 6-Fitase/metabolismo , Bass/crescimento & desenvolvimento , Bass/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ração Animal/análise , Aquicultura/métodosRESUMO
Microalgae represent a promising but yet underexplored production platform for biotechnology. The vast majority of studies on recombinant protein expression in algae have been conducted in a single species, the green alga Chlamydomonas reinhardtii. However, due to epigenetic silencing, transgene expression in Chlamydomonas is often inefficient. Here we have investigated parameters that govern efficient transgene expression in the red microalga Porphyridium purpureum. Porphyridium is unique in that the introduced transformation vectors are episomally maintained as autonomously replicating plasmids in the nucleus. We show that full codon optimization to the preferred codon usage in the Porphyridium genome confers superior transgene expression, not only at the level of protein accumulation, but also at the level of mRNA accumulation, indicating that high translation rates increase mRNA stability. Our optimized expression constructs resulted in YFP accumulation to unprecedented levels of up to 5% of the total soluble protein. We also designed expression cassettes that target foreign proteins to the secretory pathway and lead to efficient protein secretion into the culture medium, thus simplifying recombinant protein harvest and purification. Our study paves the way to the exploration of red microalgae as expression hosts in molecular farming for recombinant proteins and metabolites.
Assuntos
Chlamydomonas reinhardtii , Microalgas , Porphyridium , Porphyridium/genética , Biotecnologia , Estabilidade de RNA , Chlamydomonas reinhardtii/genética , Microalgas/genética , Proteínas Recombinantes/genéticaRESUMO
L-Lactate is a commodity chemical used in various fields. Microorganisms have produced L-lactate via lactic fermentation using saccharides derived from crops as carbon sources. Recently, L-lactate production using microalgae, whose carbon source is carbon dioxide, has been spotlighted because the prices of the crops have increased. A red alga Cyanidioschyzon merolae produce L-lactate via lactic fermentation under dark anaerobic conditions. The L-lactate titer of C. merolae is higher than those of other microalgae but lower than those of heterotrophic bacteria. Therefore, an increase in the L-lactate titer is required in C. merolae. L-Lactate dehydrogenase (L-LDH) catalyzes the reduction of pyruvate to L-lactate during lactic fermentation. C. merolae possesses five isozymes of L-LDH. The results of previous transcriptome analysis suggested that L-LDHs are the key enzymes in the lactic fermentation of C. merolae. However, their biochemical characteristics, such as catalytic efficiency and tolerance for metabolites, have not been revealed. We compared the amino acid sequences of C. merolae L-LDHs (CmLDHs) and characterized one of the isozymes, CmLDH1. BLAST analysis revealed that the sequence similarities of CmLDH1 and the other isozymes were above 99%. The catalytic efficiency of CmLDH1 under its optimum conditions was higher than those of L-LDHs of other organisms. ATP decreased the affinity and turnover number of CmLDH1 for NADH. These findings contribute to understanding the characteristics of L-LDHs of microalgae and the regulatory mechanisms of lactic fermentation in C. merolae.
Assuntos
Trifosfato de Adenosina , L-Lactato Desidrogenase , Ácido Pirúvico , Rodófitas , Rodófitas/enzimologia , Rodófitas/genética , Rodófitas/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Ácido Pirúvico/metabolismo , Trifosfato de Adenosina/metabolismo , Fermentação , Sequência de Aminoácidos , Ácido Láctico/metabolismo , Microalgas/metabolismo , Microalgas/genética , Microalgas/enzimologia , CatáliseRESUMO
Sphingolipids (SLs) are ubiquitous components of eukaryotic cell membranes and are found in some prokaryotic organisms and viruses. They are composed of a sphingoid backbone that may be acylated and glycosylated. Assembly of various sphingoid base, fatty acyl and glycosyl moieties results in highly diverse structures. The functional significance of variations in SL chemical diversity and abundance is still in the early stages of investigation. Among SL modifications, Δ8-desaturation of the sphingoid base occurs only in plants and fungi. In plants, SL Δ8-unsaturation is involved in cold hardiness. Our knowledge of the structure and functions of SLs in microalgae lags far behind that of animals, plants and fungi. Original SL structures have been reported from microalgae. However, functional studies are still missing. Ostreococcus tauri is a minimal microalga at the base of the green lineage and is therefore a key organism for understanding lipid evolution. In the present work, we achieved the detailed characterization of O. tauri SLs and unveiled unique glycosylceramides as sole complex SLs. The head groups are reminiscent of bacterial SLs, as they contain hexuronic acid residues and can be polyglycosylated. Ceramide backbones show a limited variety, and SL modification is restricted to Δ8-unsaturation. The Δ8-SL desaturase from O. tauri only produced E isomers. Expression of both Δ8-SL desaturase and Δ8-unsaturation of sphingolipids varied with temperature, with lower levels at 24°C than at 14°C. Overexpression of the Δ8-SL desaturase dramatically increases the level of Δ8 unsaturation at 24°C and is paralleled by a failure to increase cell size. Our work provides the first characterization of O. tauri SLs and functional evidence for the involvement of SL Δ8-unsaturation for temperature acclimation in microalgae, suggesting that this function is an ancestral feature in the green lineage.
Assuntos
Clorófitas , Esfingolipídeos , Temperatura , Esfingolipídeos/metabolismo , Clorófitas/metabolismo , Clorófitas/genética , Microalgas/metabolismoRESUMO
Marine microbes are important in biogeochemical cycling, but the nature and magnitude of their contributions are influenced by their associated viruses. In the presence of a lytic virus, cells that have evolved resistance to infection have an obvious fitness advantage over relatives that remain susceptible. However, susceptible cells remain extant in the wild, implying that the evolution of a fitness advantage in one dimension (virus resistance) must be accompanied by a fitness cost in another dimension. Identifying costs of resistance is challenging because fitness is context-dependent. We examined the context dependence of fitness costs in isolates of the picophytoplankton genus Micromonas and their co-occurring dsDNA viruses using experimental evolution. After generating 88 resistant lineages from two ancestral Micromonas strains, each challenged with one of four distinct viral strains, we found resistance led to a 46% decrease in mean growth rate under high irradiance and a 19% decrease under low. After a year in culture, the experimentally selected lines remained resistant, but fitness costs had attenuated. Our results suggest that the cost of resistance in Micromonas is dependent on environmental conditions and the duration of population adaptation, illustrating the dynamic nature of fitness costs of viral resistance among marine protists.
Assuntos
Aptidão Genética , Microalgas , Microalgas/virologia , Microalgas/genética , Vírus de DNA/genética , Clorófitas/virologia , Clorófitas/genéticaRESUMO
Microalgae play a crucial role in global carbon cycling as they convert carbon dioxide into various valuable macromolecules. Among them, Haematococcus pluvialis (H. pluvialis) is the richest natural source of astaxanthin (AXT), which is a valuable antioxidant, anti-inflammatory, and antiapoptosis agent. These benefits make AXT highly commercially valuable in pharmaceuticals, cosmetics, and nutritional industries. However, intrinsic genetic characteristics and extrinsic cultivation conditions influence biomass gains, leading to low productivity and extraction as the main techno-economic bottlenecks in this industry. Thus, detecting AXT in H. pluvialis is essential to determine the influence of multiple parameters on biocompound accumulation, enabling optimization of cultivation and enrichment of AXT-rich H. pluvialis cells. This work developed an opto-acousto-fluidic microplatform for detection, analysis, and sorting of microalgae. Via label-free monitoring and extraction of sample-induced ultrasonic signals, a photoacoustic microscopic system was proposed to provide a full-field visualization of AXT's content and distribution inside H. pluvialis cells. When employed as on-chip image-based flow cytometry, our microplatform can also offer high-throughput measurements of intracellular AXT in real time, which demonstrates similar results to conventional spectrophotometry methods and further reveals the heterogeneity of AXT content at the single-cell level. In addition, a solenoid valve-pump dual-mode cell sorter was integrated for effective sorting of cells with a maximum working frequency of 0.77 Hz, reducing the fluid response time by 50% in rising and 40-fold in recovery. The H. pluvialis cells which have more AXT accumulation (>30 µm in diameter) were 4.38-fold enriched with almost no dead empty and small green cells. According to the results, automated and reliable photoacoustics-activated cell sorting (PA-ACS) can screen AXT-rich cells and remove impurities at the terminal stage of cultivation, thereby increasing the effectiveness and purity of AXT extraction. The proposed system can be further adopted to enrich strains and mutants for the production of biofuels or other rare organic substances such as ß-carotene and lutein.
Assuntos
Clorofíceas , Microalgas , Luteína , Análise Espectral , Movimento CelularRESUMO
Microalgae metabolite analysis is fundamental for the rational design of metabolic engineering strategies for the biosynthesis of high-value products. Mass spectrometry (MS) has been utilized for single-cell microalgae analysis. However, limitations in the detection throughput and polarities of detectable substances make it difficult to realize high-throughput screening of high-performance microalgae. Herein, a plasma-assisted label-free mass cytometry, named as PACyESI-MS, was proposed combining the advantages of orthogonal hybrid ionization and high-throughput MS analysis, which realized rapid metabolite detection of single microalgae. The cell detection throughput of PACyESI-MS was up to 52 cells/min. Dozens of the critical primary and secondary metabolites within single microalgae were detected simultaneously, including pigments, lipids, and energy metabolites. Furthermore, metabolite changes of Chlamydomonas reinhardtii and Haematococcus pluvialis under nitrogen deficiency stress were studied. Discrimination of Chlamydomonas under different nutrient conditions was realized using single-cell metabolite profiles obtained by PACyESI-MS. The relationships between the accumulation of bioactive astaxanthin and changes in functional primary metabolites of Haematococcus were investigated. It was demonstrated that PACyESI-MS can detect the flexible change of metabolites in single microalgae cells under different nutritional conditions and during the synthesis of high-value products, which is expected to become an important tool for the design of metabolic engineering-based high-performance microalgae factories.
Assuntos
Chlamydomonas reinhardtii , Microalgas , Microalgas/metabolismo , Microalgas/química , Chlamydomonas reinhardtii/metabolismo , Espectrometria de Massas/métodos , Ensaios de Triagem em Larga Escala , Análise de Célula Única/métodos , Clorofíceas/metabolismoRESUMO
Microalgae are increasingly playing a significant role in many areas of research and development. Recent studies have demonstrated their ability to aid wound healing by their ability to generate oxygen, aiding the healing process. Bearing this in mind, the capability to spray/spin deposit microalgae in suspension (solution) or compartmentalize living microalgae within architectures such as fibers/scaffolds and beads, would have significance as healing mechanisms for addressing a wide range of wounds. Reconstructing microalgae-bearing architectures as either scaffolds or beads could be generated via electric field (bio-electrospraying and cell electrospinning) and non-electric field (aerodynamically assisted bio-jetting/threading) driven technologies. However, before studying the biomechanical properties of the generated living architectures, the microalgae exposed to these techniques must be interrogated from a molecular level upward first, to establish these techniques, have no negative effects brought on the processed microalgae. Therefore these studies, demonstrate the ability of both these jetting and threading technologies to directly handle living microalgae, in suspension or within a polymeric suspension, safely, and form algae-bearing architectures such as beads and fibers/scaffolds.
Assuntos
MicroalgasRESUMO
MAIN CONCLUSION: PPI analysis deepens our knowledge in critical processes like carbon fixation and nutrient sensing. Moreover, signaling networks, including pathways like MAPK/ERK and TOR, provide valuable information in how microalgae respond to environmental changes and stress. Additionally, species-species interaction networks for microalgae provide a comprehensive understanding of how different species interact within their environments. This review examines recent advancements in the study of biological networks within microalgae, with a focus on the intricate interactions that define these organisms. It emphasizes how network biology, an interdisciplinary field, offers valuable insights into microalgae functions through various methodologies. Crucial approaches, such as protein-protein interaction (PPI) mapping utilizing yeast two-hybrid screening and mass spectrometry, are essential for comprehending cellular processes and optimizing functions, such as photosynthesis and fatty acid biosynthesis. The application of advanced computational methods and information mining has significantly improved PPI analysis, revealing networks involved in critical processes like carbon fixation and nutrient sensing. The review also encompasses transcriptional networks, which play a role in gene regulation and stress responses, as well as metabolic networks represented by genome-scale metabolic models (GEMs), which aid in strain optimization and the prediction of metabolic outcomes. Furthermore, signaling networks, including pathways like MAPK/ERK and TOR, are crucial for understanding how microalgae respond to environmental changes and stress. Additionally, species-species interaction networks for microalgae provide a comprehensive understanding of how different species interact within their environments. The integration of these network biology approaches has deepened our understanding of microalgal interactions, paving the way for more efficient cultivation and new industrial applications.
Assuntos
Microalgas , Microalgas/metabolismo , Microalgas/fisiologia , Microalgas/genética , Transdução de Sinais , Redes e Vias Metabólicas , Redes Reguladoras de Genes , Estresse Fisiológico , Fotossíntese , Mapas de Interação de ProteínasRESUMO
MAIN CONCLUSION: Nitrogen stress altered important lipid parameters and related genes in Chlorella pyrenoidosa via ROS and Ca2+ signaling. The mutual interference between ROS and Ca2+ signaling was also uncovered. The changed mechanisms of lipid parameters (especially lipid classes and unsaturation of fatty acids) in microalgae are not completely well known under nitrogen stress. Therefore, Chlorella pyrenoidosa was exposed to 0, 0.5, 1 and 1.5 g L-1 NaNO3 for 4 days. Then, the physiological and biochemical changes were measured. It was shown that the total lipid contents, neutral lipid ratios as well as their related genes (accD and DGAT) increased obviously while the polar lipid ratios, degrees of unsaturation as well as their related genes (PGP and desC) decreased significantly in nitrogen stress groups. The obvious correlations supported that gene expressions should be the necessary pathways to regulate the lipid changes in C. pyrenoidosa under nitrogen stress. The changes in ROS and Ca2+ signaling as well as their significant correlations with corresponding genes and lipid parameters were analyzed. The results suggested that ROS and Ca2+ may regulate these gene expressions and lipid changes in C. pyrenoidosa under nitrogen stress conditions. This was verified by the subordinate tests with an ROS inhibitor and calcium reagents. It also uncovered the clues of mutual interference between ROS and Ca2+ signaling. To summarize, this study revealed the signaling pathways of important lipid changes in microalgae under N stress.
Assuntos
Chlorella , Nitrogênio , Espécies Reativas de Oxigênio , Estresse Fisiológico , Chlorella/metabolismo , Chlorella/genética , Chlorella/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Nitrogênio/metabolismo , Metabolismo dos Lipídeos/genética , Cálcio/metabolismo , Lipídeos , Sinalização do Cálcio , Transdução de Sinais , Microalgas/metabolismo , Microalgas/genéticaRESUMO
Valorization of microalgae into high-value products and drop-in chemicals can reduce our dependence on non-renewable fossil fuels in an environmentally sustainable way. Among the valuable products, medium-chain carboxylic acids (MCCAs) and alcohols are attractive building blocks as fuel precursors. However, the biosynthetic mechanisms of MCCAs and alcohols in anaerobic microalgae fermentation and the regulating role of pH on the microbial structure and metabolism interaction among different functional groups have never been documented. In this work, we systematically investigated the roles of pH (5, 7, and 10) on the production of MCCAs and alcohols in anaerobic microalgae fermentation. The gene-centric and genome-centric metagenomes were employed to uncover the dynamics and metabolic network of the key players in the microbial communities. The results indicated that the pH significantly changed the product spectrum. The maximum production rate of alcohol was obtained at pH 5, while pH 7 was more beneficial for MCCA production. Metagenomic analysis reveals that this differential performance under different pH is attributed to the transformation of microbial guild and metabolism regulated by pH. The composition of various functional groups for MCCA and alcohol production also varies at different pH levels. Finally, a metabolic network was proposed to reveal the microbial interactions at different pH levels and thus provide insights into bioconversion of microalgae to high-value biofuels.IMPORTANCECarboxylate platforms encompass a biosynthesis process involving a mixed and undefined culture, enabling the conversion of microalgae, rich in carbohydrates and protein, into valuable fuels and mitigating the risks associated with algae blooms. However, there is little known about the effects of pH on the metabolic pathways of chain elongation and alcohol production in anaerobic microalgae fermentation. Moreover, convoluted and interdependent microbial interactions encumber efforts to characterize how organics and electrons flow among microbiome members. In this work, we compared metabolic differences among three different pH levels (5, 7, and 10) in anaerobic microalgae fermentation. In addition, genome-centric metagenomic analysis was conducted to reveal the microbial interaction for medium-chain carboxylic acid and alcohol production.