Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 971
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(1): 88-101.e16, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29909986

RESUMO

In colorectal cancer patients, a high density of cytotoxic CD8+ T cells in tumors is associated with better prognosis. Using a Stat3 loss-of-function approach in two wnt/ß-catenin-dependent autochthonous models of sporadic intestinal tumorigenesis, we unravel a complex intracellular process in intestinal epithelial cells (IECs) that controls the induction of a CD8+ T cell based adaptive immune response. Elevated mitophagy in IECs causes iron(II)-accumulation in epithelial lysosomes, in turn, triggering lysosomal membrane permeabilization. Subsequent release of proteases into the cytoplasm augments MHC class I presentation and activation of CD8+ T cells via cross-dressing of dendritic cells. Thus, our findings highlight a so-far-unrecognized link between mitochondrial function, lysosomal integrity, and MHC class I presentation in IECs and suggest that therapies triggering mitophagy or inducing LMP in IECs may prove successful in shifting the balance toward anti-tumor immunity in colorectal cancer.


Assuntos
Imunidade Adaptativa , Mitofagia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Azoximetano/toxicidade , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Permeabilidade da Membrana Celular , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Compostos Ferrosos/metabolismo , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitofagia/efeitos dos fármacos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Taxa de Sobrevida
2.
J Biol Chem ; 300(8): 107543, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992440

RESUMO

The pathogenesis of Parkinson's disease (PD) has been associated with mitochondrial dysfunction. Given that the PINK1/Parkin pathway governs mitochondrial quality control by inducing mitophagy to remove damaged mitochondria, therapeutic approaches to activate PINK1/Parkin-mediated mitophagy have the potential in the treatment of PD. Here, we have identified a new small molecule, BL-918, as an inducer of mitophagy via activating the PINK1/Parkin pathway. BL-918 triggers PINK1 accumulation and Parkin mitochondrial translocation to initiate PINK1/Parkin-mediated mitophagy. We found that mitochondrial membrane potential and mitochondrial permeability transition pore were involved in BL-918-induced PINK1/Parkin pathway activation. Moreover, we showed that BL-918 mitigated PD progression in MPTP-induced PD mice in a PINK1-dependent manner. Our results unravel a new activator of the PINK1/Parkin signaling pathway and provide a potential strategy for the treatment of PD and other diseases with dysfunctional mitochondria.


Assuntos
Mitocôndrias , Mitofagia , Doença de Parkinson , Proteínas Quinases , Transdução de Sinais , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Animais , Camundongos , Mitofagia/efeitos dos fármacos , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Progressão da Doença , Fenilacetatos
3.
FASEB J ; 38(15): e23838, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39082250

RESUMO

EXPRESSION OF CONCERN: I. Ramesh, J. C. Campos, P. Lee, Y. Song, G. Hernandez, J. Sin, K. C. Tucker, H. Saadaeijahromi, M. Gurney, J. C. B. Ferreira, and A. M. Andres, "Mitophagy Protects Against Statin-Mediated Skeletal Muscle Toxicity," The FASEB Journal 33, no. 11 (2019): 11857-11869, https://doi.org/10.1096/fj.201900807RR. This Expression of Concern is for the above article, published online on August 23, 2019, in Wiley Online Library (wileyonlinelibrary.com) and has been published by agreement between the journal Editor-in-Chief, Loren E. Wold; the Federation of American Societies for Experimental Biology; and Wiley Periodicals LLC. The Expression of Concern has been published due to concerns raised by a third party regarding a duplication between the COX-IV panel of Figure 3C and the COX-IV panel of Figure 5D. The authors have been informed about the concerns, but due to the time elapsed since publication, they could not provide the original raw data. Consequently, the journal team could not verify the validity of these figures describing different experimental conditions and could not exclude that these image duplications affect the overall conclusions of the article. Therefore, the journal has decided to issue an Expression of Concern to inform and alert the readers.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Mitofagia , Músculo Esquelético , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Animais , Mitofagia/efeitos dos fármacos , Camundongos , Humanos
4.
FASEB J ; 38(12): e23723, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38865198

RESUMO

Hypoxia-induced inflammation and apoptosis are important pathophysiological features of heat stroke-induced acute kidney injury (HS-AKI). Hypoxia-inducible factor (HIF) is a key protein that regulates cell adaptation to hypoxia. HIF-prolyl hydroxylase inhibitor (HIF-PHI) stabilizes HIF to increase cell adaptation to hypoxia. Herein, we reported that HIF-PHI pretreatment significantly improved renal function, enhanced thermotolerance, and increased the survival rate of mice in the context of HS. Moreover, HIF-PHI could alleviate HS-induced mitochondrial damage, inflammation, and apoptosis in renal tubular epithelial cells (RTECs) by enhancing mitophagy in vitro and in vivo. By contrast, mitophagy inhibitors Mdivi-1, 3-MA, and Baf-A1 reversed the renoprotective effects of HIF-PHI. Mechanistically, HIF-PHI protects RTECs from inflammation and apoptosis by enhancing Bcl-2 adenovirus E18 19-kDa-interacting protein 3 (BNIP3)-mediated mitophagy, while genetic ablation of BNIP3 attenuated HIF-PHI-induced mitophagy and abolished HIF-PHI-mediated renal protection. Thus, our results indicated that HIF-PHI protects renal function by upregulating BNIP3-mediated mitophagy to improve HS-induced inflammation and apoptosis of RTECs, suggesting HIF-PHI as a promising therapeutic agent to treat HS-AKI.


Assuntos
Injúria Renal Aguda , Golpe de Calor , Proteínas de Membrana , Mitofagia , Inibidores de Prolil-Hidrolase , Animais , Masculino , Camundongos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/etiologia , Apoptose/efeitos dos fármacos , Golpe de Calor/complicações , Golpe de Calor/tratamento farmacológico , Golpe de Calor/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitofagia/efeitos dos fármacos , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico
5.
FASEB J ; 38(13): e23701, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941193

RESUMO

Zearalenone (ZEN) is a mycotoxin known for its estrogen-like effects, which can disrupt the normal physiological function of endometrial cells and potentially lead to abortion in female animals. However, the precise mechanism by which ZEN regulates endometrial function remains unclear. In this study, we found that the binding receptor estrogen receptors for ZEN is extensively expressed across various segments of the uterus and within endometrial cells, and a certain concentration of ZEN treatment reduced the proliferation capacity of goat endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs). Meanwhile, cell cycle analysis revealed that ZEN treatment leaded to cell cycle arrest in goat EECs and ESCs. To explore the underlying mechanism, we investigated the mitochondrial quality control systems and observed that ZEN triggered excessive mitochondrial fission and disturbed the balance of mitochondrial fusion-fission dynamics, impaired mitochondrial biogenesis, increased mitochondrial unfolded protein response and mitophagy in goat EECs and ESCs. Additionally, ZEN treatment reduced the activities of mitochondrial respiratory chain complexes, heightened the production of hydrogen peroxide and reactive oxygen species, and caused cellular oxidative stress and mitochondrial dysfunction. These results suggest that ZEN has adverse effects on goat endometrium cells by disrupting the mitochondrial quality control system and affecting cell cycle and proliferation. Understanding the underlying molecular pathways involved in ZEN-induced mitochondrial dysfunction and its consequences on cell function will provide critical insights into the reproductive toxicity of ZEN and contribute to safeguarding the health and wellbeing of animals and humans exposed to this mycotoxin.


Assuntos
Proliferação de Células , Endométrio , Cabras , Mitocôndrias , Zearalenona , Animais , Feminino , Endométrio/citologia , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Zearalenona/toxicidade , Zearalenona/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Cultivadas , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/citologia
6.
Mol Cell ; 66(1): 141-153.e6, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388439

RESUMO

Mitochondria play an integral role in cell death, autophagy, immunity, and inflammation. We previously showed that Nur77, an orphan nuclear receptor, induces apoptosis by targeting mitochondria. Here, we report that celastrol, a potent anti-inflammatory pentacyclic triterpene, binds Nur77 to inhibit inflammation and induce autophagy in a Nur77-dependent manner. Celastrol promotes Nur77 translocation from the nucleus to mitochondria, where it interacts with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase important for inflammatory signaling. The interaction is mediated by an LxxLL motif in TRAF2 and results not only in the inhibition of TRAF2 ubiquitination but also in Lys63-linked Nur77 ubiquitination. Under inflammatory conditions, ubiquitinated Nur77 resides at mitochondria, rendering them sensitive to autophagy, an event involving Nur77 interaction with p62/SQSTM1. Together, our results identify Nur77 as a critical intracellular target for celastrol and unravel a mechanism of Nur77-dependent clearance of inflamed mitochondria to alleviate inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Triterpenos/farmacologia , Ubiquitinação/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Anti-Inflamatórios/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Triterpenos Pentacíclicos , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/genética , Transfecção , Triterpenos/metabolismo
7.
J Lipid Res ; 65(10): 100639, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236859

RESUMO

Male obesity is a pandemic health issue and can disrupt testicular steroidogenesis. Here, we explored the mechanism by which a high-fat diet (HFD) induced steroidogenic inhibition. As expected, HFD induced lipid droplet accumulation and reduced the expression of StAR, P450scc, and 3ß-HSD, three steroidogenic enzymes, in mouse testes. Palmitic acid (PA), a saturated fatty acid usually used to trigger lipotoxicity in vitro, induced greater accumulation of lipid droplets and the downregulation of steroidogenic enzymes in TM3 cells. Mechanistically, both HFD and PA disturbed mitochondrial fusion/fission dynamics and then induced mitochondrial dysfunction and mitophagy inhibition in mouse Leydig cells. Additionally, mitochondrial fusion promoter M1 attenuated PA-induced imbalance of mitochondrial dynamics, mitophagy inhibition, mitochondrial reactive oxygen species (ROS) production, and mitochondrial dysfunction in TM3 cells. Mitofusin 2 (Mfn2) knock-down further aggravated the PA-induced imbalance of mitochondrial dynamics, mitochondrial ROS production, and mitochondrial dysfunction in TM3 cells. Importantly, M1 rescued PA-induced downregulation of steroidogenic enzymes, whereas Mfn2 knock-down further aggravated PA-induced downregulation of steroidogenic enzymes in TM3 cells. Overall, our results provide laboratory evidence that mitochondrial dysfunction and mitophagy inhibition caused by dysregulation of mitochondrial fusion may be involved in HFD-induced steroidogenesis inhibition in mouse Leydig cells.


Assuntos
Dieta Hiperlipídica , Dinâmica Mitocondrial , Mitofagia , Animais , Mitofagia/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Dinâmica Mitocondrial/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/patologia , Espécies Reativas de Oxigênio/metabolismo , Esteroides/biossíntese , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ácido Palmítico/farmacologia , Linhagem Celular
8.
J Cell Mol Med ; 28(18): e70074, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39333694

RESUMO

Despite extensive progress in the knowledge and understanding of cardiovascular diseases and significant advances in pharmacological treatments and procedural interventions, cardiovascular diseases (CVD) remain the leading cause of death globally. Mitochondrial dynamics refers to the repetitive cycle of fission and fusion of the mitochondrial network. Fission and fusion balance regulate mitochondrial shape and influence physiology, quality and homeostasis. Mitophagy is a process that eliminates aberrant mitochondria. Melatonin (Mel) is a pineal-synthesized hormone with a range of pharmacological properties. Numerous nonclinical trials have demonstrated that Mel provides cardioprotection against ischemia/reperfusion, cardiomyopathies, atherosclerosis and cardiotoxicity. Recently, interest has grown in how mitochondrial dynamics contribute to melatonin cardioprotective effects. This review assesses the literature on the protective effects of Mel against CVD via the regulation of mitochondrial dynamics and mitophagy in both in-vivo and in-vitro studies. The signalling pathways underlying its cardioprotective effects were reviewed. Mel modulated mitochondrial dynamics and mitophagy proteins by upregulation of mitofusin, inhibition of DRP1 and regulation of mitophagy-related proteins. The evidence supports a significant role of Mel in mitochondrial dynamics and mitophagy quality control in CVD.


Assuntos
Doenças Cardiovasculares , Melatonina , Dinâmica Mitocondrial , Mitofagia , Melatonina/farmacologia , Mitofagia/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/prevenção & controle , Cardiotônicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
9.
J Cell Mol Med ; 28(12): e18455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898772

RESUMO

Cancer-related fatigue (CRF) significantly impacts the quality of life of cancer patients. This study investigates the therapeutic potential of Shenqi Fuzheng injection (SFI) in managing CRF, focusing on its mechanistic action in skeletal muscle. We utilized a CRF mouse model to examine the effects of SFI on physical endurance, monitoring activity levels, swimming times and rest periods. Proteomic analysis of the gastrocnemius muscle was performed using isobaric tags and liquid chromatography-tandem mass spectrometry to map the muscle proteome changes post-SFI treatment. Mitochondrial function in skeletal muscle was assessed via ATP bioluminescence assay. Furthermore, the regulatory role of the hypoxia inducible factor 1 subunit alpha (HIF-1α) signalling pathway in mediating SFI's effects was explored through western blotting. In CRF-induced C2C12 myoblasts, we evaluated cell viability (CCK-8 assay), apoptosis (flow cytometry) and mitophagy (electron microscopy). The study also employed pulldown, luciferase and chromatin immunoprecipitation assays to elucidate the molecular mechanisms underlying SFI's action, particularly focusing on the transcriptional regulation of PINK1 through HIF-1α binding at the PINK1 promoter region. Our findings reveal that SFI enhances physical mobility, reduces fatigue symptoms and exerts protective effects on skeletal muscles by mitigating mitochondrial damage and augmenting antioxidative responses. SFI promotes cell viability and induces mitophagy while decreasing apoptosis, primarily through the modulation of HIF-1α, PINK1 and p62 proteins. These results underscore SFI's efficacy in enhancing mitochondrial autophagy, thereby offering a promising approach for ameliorating CRF. The study not only provides insight into SFI's potential therapeutic mechanisms but also establishes a foundation for further exploration of SFI interventions in CRF management.


Assuntos
Medicamentos de Ervas Chinesas , Fadiga , Subunidade alfa do Fator 1 Induzível por Hipóxia , Mitofagia , Músculo Esquelético , Neoplasias , Ubiquitinação , Animais , Mitofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Ubiquitinação/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Fadiga/etiologia , Masculino , Apoptose/efeitos dos fármacos , Humanos , Proteômica/métodos , Modelos Animais de Doenças , Linhagem Celular
10.
J Cell Mol Med ; 28(12): e18407, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894630

RESUMO

Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.


Assuntos
Berberina , Proteína Forkhead Box O3 , Hipóxia , Transdução de Sinais , Sirtuínas , Berberina/farmacologia , Berberina/uso terapêutico , Animais , Sirtuínas/metabolismo , Sirtuínas/genética , Transdução de Sinais/efeitos dos fármacos , Hipóxia/metabolismo , Camundongos , Masculino , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Modelos Animais de Doenças
11.
Cancer Sci ; 115(8): 2565-2577, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38932521

RESUMO

Cisplatin (CDDP) is a commonly used chemotherapeutic for osteosarcoma (OS) patients, and drug resistance remains as a major hurdle to undermine the treatment outcome. Here, we investigated the potential involvement of FoxG1 and BNIP3 in CDDP resistance of OS cells. FoxG1 and BNIP3 expression levels were detected in the CDDP-sensitive and CDDP-resistant OS tumors and cell lines. Mitophagy was observed through transmission electron microscope analysis. The sensitivity to CDDP in OS cells upon FoxG1 overexpression was examined in cell and animal models. We found that FoxG1 and BNIP3 showed significant downregulation in the CDDP-resistant OS tumor samples and cell lines. CDDP-resistant OS tumor specimens and cells displayed impaired mitophagy. FoxG1 overexpression promoted BNIP3 expression, enhanced mitophagy in CDDP-resistant OS cells, and resensitized the resistant cells to CDDP treatment in vitro and in vivo. Our data highlighted the role of the FoxG1/BNIP3 axis in regulating mitophagy and dictating CDDP resistance in OS cells, suggesting targeting FoxG1/BNIP3-dependent mitophagy as a potential strategy to overcome CDDP resistance in OS.


Assuntos
Neoplasias Ósseas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Forkhead , Proteínas de Membrana , Mitofagia , Proteínas do Tecido Nervoso , Osteossarcoma , Proteínas Proto-Oncogênicas , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Mitofagia/efeitos dos fármacos , Cisplatino/farmacologia , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Animais , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Linhagem Celular Tumoral , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Feminino , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
12.
Mol Med ; 30(1): 72, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822247

RESUMO

BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.


Assuntos
Bleomicina , DNA Glicosilases , Modelos Animais de Doenças , Macrófagos , Mitofagia , Proteínas Quinases , Fibrose Pulmonar , Animais , Mitofagia/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Camundongos , Macrófagos/metabolismo , Proteínas Quinases/metabolismo , Bleomicina/efeitos adversos , Masculino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ativação de Macrófagos , Humanos , Quinazolinonas
13.
Mol Med ; 30(1): 15, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254035

RESUMO

BACKGROUND: In heart failure (HF), mitochondrial dysfunction and metabolic remodeling lead to a reduction in energy productivity and aggravate cardiomyocyte injury. Supplementation with α-ketoglutarate (AKG) alleviated myocardial hypertrophy and fibrosis in mice with HF and improved cardiac insufficiency. However, the myocardial protective mechanism of AKG remains unclear. We verified the hypothesis that AKG improves mitochondrial function by upregulating NAD+ levels and activating silent information regulator 2 homolog 1 (SIRT1) in cardiomyocytes. METHODS: In vivo, 2% AKG was added to the drinking water of mice undergoing transverse aortic constriction (TAC) surgery. Echocardiography and biopsy were performed to evaluate cardiac function and pathological changes. Myocardial metabolomics was analyzed by liquid chromatography‒mass spectrometry (LC‒MS/MS) at 8 weeks after surgery. In vitro, the expression of SIRT1 or PINK1 proteins was inhibited by selective inhibitors and siRNA in cardiomyocytes stimulated with angiotensin II (AngII) and AKG. NAD+ levels were detected using an NAD test kit. Mitophagy and ferroptosis levels were evaluated by Western blotting, qPCR, JC-1 staining and lipid peroxidation analysis. RESULTS: AKG supplementation after TAC surgery could alleviate myocardial hypertrophy and fibrosis and improve cardiac function in mice. Metabolites of the malate-aspartate shuttle (MAS) were increased, but the TCA cycle and fatty acid metabolism pathway could be inhibited in the myocardium of TAC mice after AKG supplementation. Decreased NAD+ levels and SIRT1 protein expression were observed in heart of mice and AngII-treated cardiomyocytes. After AKG treatment, these changes were reversed, and increased mitophagy, inhibited ferroptosis, and alleviated damage in cardiomyocytes were observed. When the expression of SIRT1 was inhibited by a selective inhibitor and siRNA, the protective effect of AKG was suppressed. CONCLUSION: Supplementation with AKG can improve myocardial hypertrophy, fibrosis and chronic cardiac insufficiency caused by pressure overload. By increasing the level of NAD+, the SIRT-PINK1 and SIRT1-GPX4 signaling pathways are activated to promote mitophagy and inhibit ferroptosis in cardiomyocytes, which ultimately alleviates cardiomyocyte damage.


Assuntos
Estenose da Valva Aórtica , Ferroptose , Insuficiência Cardíaca , Ácidos Cetoglutáricos , Mitofagia , Angiotensina II , Cromatografia Líquida , Ferroptose/efeitos dos fármacos , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Hipertrofia , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/uso terapêutico , Mitofagia/efeitos dos fármacos , Miócitos Cardíacos , NAD , Proteínas Quinases , RNA Interferente Pequeno , Sirtuína 1 , Espectrometria de Massas em Tandem , Animais , Camundongos
14.
Mol Med ; 30(1): 58, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720283

RESUMO

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Assuntos
Proteínas Quinases Ativadas por AMP , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1 , Mitofagia , Transdução de Sinais , Calcificação Vascular , Animais , Mitofagia/efeitos dos fármacos , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Calcificação Vascular/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Camundongos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Exenatida/farmacologia , Exenatida/uso terapêutico , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
15.
Biochem Biophys Res Commun ; 720: 150118, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776757

RESUMO

Tectorigenin (TEC) as a plant extract has the advantage of low side effects on metabolic dysfunction-associated steatohepatitis (MASH) treatment. Our previous study have shown that tRNA-derived RNA fragments (tRFs) associated with autophagy and pyroptosis in MASH, but whether TEC can mitigate MASH through tRFs-mediated mitophagy is not fully understood. This study aims to investigate whether TEC relies on tRFs to adjust the crosstalk of hepatocyte mitophagy with pyroptosis in MASH. Immunofluorescence results of PINK1 and PRKN with MitoTracker Green-labeled mitochondria verified that TEC enhanced mitophagy. Additionally, TEC inhibited pyroptosis, as reflected by the level of GSDME, NLRP3, IL-1ß, and IL-18 decreased after TEC treatment, while the effect of pyroptosis inhibition by TEC was abrogated by Pink1 silencing. We found that the upregulation expression of tRF-3040b caused by MASH was suppressed by TEC. The promotion of mitophagy and the suppression of pyroptosis induced by TEC were abrogated by tRF-3040b mimics. TEC reduced lipid deposition, inflammation, and pyroptosis, and promoted mitophagy in mice, but tRF-3040b agomir inhibited these effects. In summary, our findings provided that TEC significantly reduced the expression of tRF-3040b to enhance mitophagy, thereby inhibiting pyroptosis in MASH. We elucidated a powerful theoretical basis and provided safe and effective potential drugs for MASH with the prevention and treatment.


Assuntos
Regulação para Baixo , Isoflavonas , Camundongos Endogâmicos C57BL , Mitofagia , Piroptose , Piroptose/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Animais , Camundongos , Masculino , Isoflavonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Humanos
16.
Biochem Biophys Res Commun ; 712-713: 149899, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38653003

RESUMO

Quercetin, a naturally occurring flavonoid, has been investigated for its potential anti-cancer effects in various types of cancer, including hepatocellular carcinoma (HCC). However, its suppressing effect on reactive oxygen species (ROS) production might limited its anti-cancer effects. In this study, we aimed to explore the interplay among quercetin, mitochondrial dynamics and mitophagy and whether mitophagy-inhibition synergistically enhances the anti-tumor effects of quercetin. Huh7 and Hep3B cells were utilized for in vitro and in vivo studies. Results showed that quercetin treatment significantly increased the expression of mitochondrial fusion genes (MFN1 and MFN2) and decreased the expression of fission genes (DRP1 and FIS1) in Huh7 and Hep3B cells, leading to a more fused and elongated mitochondrial network. Quercetin upregulated the expression of key mitophagy regulators, PINK1 and PARK2, and enhanced the colocalization of mitochondria with lysosomes, indicating increased mitophagy. Knockdown of PINK1, PARK2, or SIRT1 attenuated quercetin-induced mitophagy and reduction of intracellular ROS levels. Quercetin treatment upregulates SIRT1 expression, which subsequently enhances PINK1 and PARK2 expression in Huh7 and Hep3B cells. In vivo experiments using Hep3B xenograft models revealed that the combination of quercetin with the mitophagy inhibitor hydroxychloroquine or SIRT1 knockdown significantly enhanced the anticancer effects of quercetin, as evidenced by reduced tumor size and weight, increased necrosis and apoptosis, and decreased proliferation in tumor tissues. These findings suggest that quercetin-induced mitochondrial fusion and Pink1/Parkin-dependent mitophagy may negatively influence its anti-cancer effects in HCC. Targeting mitophagy may enhance the therapeutic potential of quercetin in HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Mitofagia , Proteínas Quinases , Quercetina , Ubiquitina-Proteína Ligases , Quercetina/farmacologia , Mitofagia/efeitos dos fármacos , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Animais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Camundongos , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
17.
Small ; 20(32): e2310675, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38488710

RESUMO

Acute pancreatitis (AP) is a potentially life-threatening inflammatory disease that can lead to the development of systemic inflammatory response syndrome and its progression to severe acute pancreatitis. Hence, there is an urgent need for the rational design of highly efficient antioxidants to treat AP. Herein, an optimized Cu-based metal-organic framework (MOF) nanozyme with exceptional antioxidant activity is introduced, designed to effectively alleviate AP, by engineering the metal coordination centers in MN2Cl2 (M = Co, Ni, Cu). Specifically, the Cu MOF, which benefits from a Cu active center similar to that of natural superoxide dismutase (SOD), exhibited at least four times higher SOD-like activity than the Ni/Co MOF. Theoretical analyses further demonstrate that the CuN2Cl2 site not only has a moderate adsorption effect on the substrate molecule •OOH but also reduces the dissociation energy of the product H2O2. Additionally, the Cu MOF nanozyme possesses the excellent catalase-like activity and •OH removal ability. Consequently, the Cu MOF with broad-spectrum antioxidant activity can efficiently scavenge reactive oxygen species to alleviate arginine-induced AP. More importantly, it can also mitigate apoptosis and necrosis of acinar cells by activating the PINK1/PARK2-mediated mitophagy pathway. This study highlights the distinctive functions of tunable MOF nanozymes and their potential bio-applications.


Assuntos
Estruturas Metalorgânicas , Pancreatite , Estruturas Metalorgânicas/química , Pancreatite/tratamento farmacológico , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Domínio Catalítico , Cobre/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Superóxido Dismutase/metabolismo , Superóxido Dismutase/química , Mitofagia/efeitos dos fármacos
18.
J Transl Med ; 22(1): 436, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720350

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) represents a form of cerebrovascular event characterized by a notable mortality and morbidity rate. Fibroblast growth factor 21 (FGF21), a versatile hormone predominantly synthesized by the hepatic tissue, has emerged as a promising neuroprotective agent. Nevertheless, the precise impacts and underlying mechanisms of FGF21 in the context of SAH remain enigmatic. METHODS: To elucidate the role of FGF21 in inhibiting the microglial cGAS-STING pathway and providing protection against SAH-induced cerebral injury, a series of cellular and molecular techniques, including western blot analysis, real-time polymerase chain reaction, immunohistochemistry, RNA sequencing, and behavioral assays, were employed. RESULTS: Administration of recombinant fibroblast growth factor 21 (rFGF21) effectively mitigated neural apoptosis, improved cerebral edema, and attenuated neurological impairments post-SAH. Transcriptomic analysis revealed that SAH triggered the upregulation of numerous genes linked to innate immunity, particularly those involved in the type I interferon (IFN-I) pathway and microglial function, which were notably suppressed upon adjunctive rFGF21 treatment. Mechanistically, rFGF21 intervention facilitated mitophagy in an AMP-activated protein kinase (AMPK)-dependent manner, thereby preventing mitochondrial DNA (mtDNA) release into the cytoplasm and dampening the activation of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Conditional knockout of STING in microglia markedly ameliorated the inflammatory response and mitigated secondary brain injuries post-SAH. CONCLUSION: Our results present the initial evidence that FGF21 confers a protective effect against neuroinflammation-associated brain damage subsequent to SAH. Mechanistically, we have elucidated a novel pathway by which FGF21 exerts this neuroprotection through inhibition of the cGAS-STING signaling cascade.


Assuntos
Fatores de Crescimento de Fibroblastos , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Mitofagia , Doenças Neuroinflamatórias , Nucleotidiltransferases , Transdução de Sinais , Hemorragia Subaracnóidea , Animais , Proteínas de Membrana/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , Mitofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Masculino , Camundongos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , Apoptose/efeitos dos fármacos
19.
Plant Cell Environ ; 47(11): 4259-4274, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38946254

RESUMO

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.


Assuntos
Cardiolipinas , Doenças das Plantas , Cardiolipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Virulência , Oryza/microbiologia , Mitofagia/efeitos dos fármacos , Antifúngicos/farmacologia , Fosforilação , Ascomicetos
20.
Toxicol Appl Pharmacol ; 486: 116952, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38705399

RESUMO

The incidence of contrast-induced acute kidney injury (CI-AKI) has escalated to become the third most prevalent cause of hospital-acquired AKI, with a lack of efficacious interventions. Berberine (BBR) possesses diverse pharmacological effects and exhibits renoprotective properties; however, limited knowledge exists regarding its impact on CI-AKI. Therefore, our study aimed to investigate the protective effects and underlying mechanisms of BBR on CI-AKI in a mice model, focusing on the nucleotide-binding oligomerization domain-like pyrin domain-containing protein 3 (NLRP3) inflammasome and mitophagy. The CI-AKI mice model was established by administering NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg), indomethacin (10 mg/kg), and iohexol (11 g/kg) following water deprivation. A pretreatment of 100 mg/kg of BBR was orally administered to the mice for two weeks. Renal injury markers, damage-associated molecular patterns (DAMPs), renal histopathology, mitochondrial morphology, autophagosomes, and potential mechanisms were investigated. BBR effectively reduced levels of renal injury biomarkers such as serum cystatin C, urea nitrogen, and creatinine, downregulated the protein level of kidney injury molecule 1 (KIM1), and mitigated renal histomorphological damage. Moreover, BBR reduced DAMPs, including high mobility group box-1 (HMGB1), heat shock protein 70 (HSP70), and uric acid (UA). It also alleviated oxidative stress and inflammatory factors such as monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß). Furthermore, the activation of NLRP3 inflammasome was attenuated in the BBR pretreatment group, as evidenced by both mRNA and protein levels. Electron microscopy and western blotting examination revealed that BBR mitigated mitochondrial damage and enhanced mitophagy. Additionally, BBR increased the P-AMPK/AMPK ratio. These findings indicated that BBR exerted a protective effect against CI-AKI by suppressing NLRP3 inflammasome activation and modulating mitophagy, providing a potential therapeutic strategy for its prevention.


Assuntos
Injúria Renal Aguda , Berberina , Meios de Contraste , Modelos Animais de Doenças , Inflamassomos , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Masculino , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Berberina/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA