Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 115(1): e22085, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288497

RESUMO

Amino acids (AAs) are an abundant class of nectar solutes, and they are involved in the nectar attractiveness to flower visitors. Among the various AAs, proline is the most abundant proteogenic AA, and γ-amino butyric acid (GABA) and ß-alanine are the two most abundant non-proteogenic AAs. These three AAs are known to affect insect physiology, being involved in flight metabolism and neurotransmission. The aim of this study was to investigate the effects of artificial diets enriched with either ß-alanine, GABA, or proline on consumption, survival, and hemolymph composition in honey bees belonging to two different ages and with different metabolism (i.e., newly emerged and foragers). Differences in feed intake among diets were not observed, while a diet enriched with ß-alanine improved the survival rate of newly emerged honey bees compared to the control group. Variations in the hemolymph AA concentrations occurred only in newly emerged honey bees, according to the diet and the time of hemolymph sampling. A greater susceptibility of young honey bees to enriched diets than older honey bees was observed. The variations in the concentrations of hemolymph AAs reflect either the accumulation of dietary AAs or the existence of metabolic pathways that may lead to the conversion of dietary AAs into different ones. This investigation could be an initial contribution to studying the complex dynamics that regulate hemolymph AA composition and its effect on honey bee physiology.


Assuntos
Aminoácidos , Néctar de Plantas , Abelhas , Animais , Aminoácidos/metabolismo , Néctar de Plantas/análise , Néctar de Plantas/metabolismo , Hemolinfa/metabolismo , Dieta , beta-Alanina/análise , beta-Alanina/metabolismo , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo , Prolina/análise , Prolina/metabolismo
2.
Ann Bot ; 132(1): 1-14, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37220889

RESUMO

BACKGROUND: Plants often use floral displays to attract mutualists and prevent antagonist attacks. Chemical displays detectable from a distance include attractive or repellent floral volatile organic compounds (FVOCs). Locally, visitors perceive contact chemicals including nutrients but also deterrent or toxic constituents of pollen and nectar. The FVOC and pollen chemical composition can vary intra- and interspecifically. For certain pollinator and florivore species, responses to these compounds are studied in specific plant systems, yet we lack a synthesis of general patterns comparing these two groups and insights into potential correlations between FVOC and pollen chemodiversity. SCOPE: We reviewed how FVOCs and non-volatile floral chemical displays, i.e. pollen nutrients and toxins, vary in composition and affect the detection by and behaviour of insect visitors. Moreover, we used meta-analyses to evaluate the detection of and responses to FVOCs by pollinators vs. florivores within the same plant genera. We also tested whether the chemodiversity of FVOCs, pollen nutrients and toxins is correlated, hence mutually informative. KEY RESULTS: According to available data, florivores could detect more FVOCs than pollinators. Frequently tested FVOCs were often reported as pollinator-attractive and florivore-repellent. Among FVOCs tested on both visitor groups, there was a higher number of attractive than repellent compounds. FVOC and pollen toxin richness were negatively correlated, indicating trade-offs, whereas a marginal positive correlation between the amount of pollen protein and toxin richness was observed. CONCLUSIONS: Plants face critical trade-offs, because floral chemicals mediate similar information to both mutualists and antagonists, particularly through attractive FVOCs, with fewer repellent FVOCs. Furthermore, florivores might detect more FVOCs, whose richness is correlated with the chemical richness of rewards. Chemodiversity of FVOCs is potentially informative of reward traits. To gain a better understanding of the ecological processes shaping floral chemical displays, more research is needed on floral antagonists of diverse plant species and on the role of floral chemodiversity in visitor responses.


Assuntos
Polinização , Compostos Orgânicos Voláteis , Animais , Polinização/fisiologia , Flores/fisiologia , Néctar de Plantas/análise , Insetos , Pólen/fisiologia , Compostos Orgânicos Voláteis/metabolismo
3.
Microb Ecol ; 86(1): 377-391, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35930073

RESUMO

The floral nectar of angiosperms harbors a variety of microorganisms that depend predominantly on animal visitors for their dispersal. Although some members of the genus Acinetobacter and all currently known species of Rosenbergiella are thought to be adapted to thrive in nectar, there is limited information about the response of these bacteria to variation in the chemical characteristics of floral nectar. We investigated the growth performance of a diverse collection of Acinetobacter (n = 43) and Rosenbergiella (n = 45) isolates obtained from floral nectar and the digestive tract of flower-visiting bees in a set of 12 artificial nectars differing in sugar content (15% w/v or 50% w/v), nitrogen content (3.48/1.67 ppm or 348/167 ppm of total nitrogen/amino nitrogen), and sugar composition (only sucrose, 1/3 sucrose + 1/3 glucose + 1/3 fructose, or 1/2 glucose + 1/2 fructose). Growth was only observed in four of the 12 artificial nectars. Those containing elevated sugar concentration (50% w/v) and low nitrogen content (3.48/1.67 ppm) were limiting for bacterial growth. Furthermore, phylogenetic analyses revealed that the ability of the bacteria to grow in different types of nectar is highly conserved between closely related isolates and genotypes, but this conservatism rapidly vanishes deeper in phylogeny. Overall, these results demonstrate that the ability of Acinetobacter spp. and Rosenbergiella spp. to grow in floral nectar largely depends on nectar chemistry and bacterial phylogeny.


Assuntos
Néctar de Plantas , Açúcares , Abelhas , Animais , Néctar de Plantas/análise , Néctar de Plantas/química , Néctar de Plantas/fisiologia , Filogenia , Açúcares/análise , Carboidratos/análise , Flores/microbiologia , Glucose , Sacarose/análise , Frutose/análise , Enterobacteriaceae/genética
4.
BMC Plant Biol ; 22(1): 196, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418038

RESUMO

BACKGROUND: The flowers of some species of orchids produce nectar as a reward for pollination, the process of transferring pollen from flower to flower. Epipactis albensis is an obligatory autogamous species, does not require the presence of insects for pollination, nevertheless, it has not lost the ability to produce nectar, the chemical composition of which we examined by gas chromatography-mass spectrometry (GC-MS) method for identification of potential insect attractants. RESULTS: During five years of field research, we did not observe any true pollinating insects visiting the flowers of this species, only accidental insects as ants and aphids. As a result of our studies, we find that this self-pollinating orchid produces in nectar inter alia aliphatic saturated and unsaturated aldehydes such as nonanal (pelargonal) and 2-pentenal as well as aromatic ones (i.e., syringaldehyde, hyacinthin). The nectar is low in alkenes, which may explain the absence of pollinating insects. Moreover, vanillin and eugenol derivatives, well-known as important scent compounds were also identified, but the list of chemical compounds is much poorer compared with a closely related species, insect-pollinating E. helleborine. CONCLUSION: Autogamy is a reproductive mechanism employed by many flowering plants, including the orchid genus Epipactis, as an adaptation to growing in habitats where pollinating insects are rarely observed due to the lack of nectar-producing plants they feed on. The production of numerous chemical attractants by self-pollinated E. albensis confirms the evolutionary secondary process, i.e., transition from ancestral insect-pollinating species to obligatory autogamous.


Assuntos
Orchidaceae , Animais , Flores/química , Insetos , Orchidaceae/química , Feromônios/análise , Néctar de Plantas/análise , Polinização
5.
BMC Plant Biol ; 22(1): 575, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496375

RESUMO

BACKGROUND: Orchids have evolved various strategies that aim to ensure their reproduction success. These may include the production of rewards for pollinators, or on the contrary, deception. Specific sets of features such as flower morphology, color, nectar, and odor presence (or lack thereof) are considered to determine suitability for pollination by different groups of animals. Stingless bees are thought to be the primary pollinators of the orchids of the Neotropical subtribe Maxillariinae. However, almost black flowered Brasiliorchis schunkeana at first glance presents floral adaptations that may suggest another pollination syndrome-sapromyophily. RESULTS: A few traces of secretion were noticed on the glabrous lip callus and lip apex built by conical to villiform papillae (SEM analysis). Histochemical studies revealed huge amounts of lipids in the epidermis, subepidermis, and some parenchyma cells (SBB test) with various stages of lipids accumulation between cells. Further TEM analysis showed a heterogeneous (lipoid and phenolic) nature of secretion. The dense osmiophilic cytoplasm contained organelles (RER, free ribosomes, dictyosomes, plastids with plastoglobuli, nucleus) and vesicles migrating to plasmalemma. The vesicles, osmiophilic globules, and flocculent material were visible in periplasmic space. The central vacuole possessed osmiophilic phenolic content and flocculent material. GC-MS analysis revealed in floral extract the presence of 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione (77.06%) and 2,5-di-tert-butyl-1,4-benzoquinone (16.65%). Both compounds are known for their biological activity. CONCLUSIONS: The juxtaposition of results led us to the conclusion that the labellar tissue produces lipoid and phenolic material, which is responsible for the glossiness and rotten herring scent. This type of secretion could be classified as a phenolic resin. The chemical analysis revealed the presence of five semiochemicals that are known to be attractants for some Diptera, which together with the rest of the results constitutes a strong premise that representatives of this order could be potential pollinators of B. schunkeana. Field observations however are still needed to confirm this pollination syndrome.


Assuntos
Anti-Infecciosos , Orchidaceae , Animais , Orchidaceae/anatomia & histologia , Polinização , Flores/anatomia & histologia , Néctar de Plantas/análise
6.
Nature ; 530(7588): 85-8, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842058

RESUMO

There is considerable concern over declines in insect pollinator communities and potential impacts on the pollination of crops and wildflowers. Among the multiple pressures facing pollinators, decreasing floral resources due to habitat loss and degradation has been suggested as a key contributing factor. However, a lack of quantitative data has hampered testing for historical changes in floral resources. Here we show that overall floral rewards can be estimated at a national scale by combining vegetation surveys and direct nectar measurements. We find evidence for substantial losses in nectar resources in England and Wales between the 1930s and 1970s; however, total nectar provision in Great Britain as a whole had stabilized by 1978, and increased from 1998 to 2007. These findings concur with trends in pollinator diversity, which declined in the mid-twentieth century but stabilized more recently. The diversity of nectar sources declined from 1978 to 1990 and thereafter in some habitats, with four plant species accounting for over 50% of national nectar provision in 2007. Calcareous grassland, broadleaved woodland and neutral grassland are the habitats that produce the greatest amount of nectar per unit area from the most diverse sources, whereas arable land is the poorest with respect to amount of nectar per unit area and diversity of nectar sources. Although agri-environment schemes add resources to arable landscapes, their national contribution is low. Owing to their large area, improved grasslands could add substantially to national nectar provision if they were managed to increase floral resource provision. This national-scale assessment of floral resource provision affords new insights into the links between plant and pollinator declines, and offers considerable opportunities for conservation.


Assuntos
Biodiversidade , Flores/química , Flores/crescimento & desenvolvimento , Néctar de Plantas/análise , Plantas/química , Plantas/classificação , Animais , Flores/classificação , Pradaria , Insetos/fisiologia , Medicago/química , Medicago/crescimento & desenvolvimento , Plantas/metabolismo , Polinização , Especificidade da Espécie , Reino Unido
7.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830045

RESUMO

The aim of this study was to determine the level of reproductive success (RS) in natural and anthropogenic populations of generalist orchid Epipactis palustris and its dependence on flower structure and nectar composition, i.e., amino acids and sugars. We found that both pollinaria removal and female reproductive success were high and similar in all populations, despite differences in flower traits and nectar chemistry. Flower structures were weakly correlated with parameters of RS. Nectar traits were more important in shaping RS; although, we noted differentiated selection on nectar components in distinct populations. Individuals in natural populations produced nectar with a larger amount of sugars and amino acids. The sucrose to (fructose and glucose) ratio in natural populations was close to 1, while in anthropogenic ones, a clear domination of fructose and glucose was noted. Our results indicate that the flower traits and nectar composition of E. palustris reflect its generalist character and meet the requirements of a wide range of pollinators, differing according to body sizes, mouth apparatus, and dietary needs. Simultaneously, differentiation of nectar chemistry suggests a variation of pollinator assemblages in particular populations or domination of their some groups. To our knowledge, a comparison of nectar chemistry between natural and anthropogenic populations of orchids is reported for the first time in this paper.


Assuntos
Flores/anatomia & histologia , Flores/química , Orchidaceae/anatomia & histologia , Orchidaceae/química , Néctar de Plantas/química , Reprodução , Aminoácidos/análise , Aminoácidos/metabolismo , Efeitos Antropogênicos , Néctar de Plantas/análise , Polinização , Análise Espaço-Temporal , Açúcares/análise , Açúcares/metabolismo
8.
New Phytol ; 222(3): 1624-1637, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30613998

RESUMO

Volatile emissions may play a key role in structuring pollination systems of plants with morphologically unspecialised flowers. Here we test for pollination by small mammals in Eucomis regia and investigate whether its floral scent differs markedly from fly- and wasp-pollinated congeners and attracts mammals. We measured floral traits of E. regia and made comparisons with insect-pollinated congeners. We observed floral visitors and examined fur and faeces of live-trapped mammals for pollen. We determined the contributions of different floral visitors to seed set with selective exclusion and established the breeding system with controlled pollination experiments. Using bioassays, we examined whether mammals are attracted by the floral scent and are effective agents of pollen transfer. Eucomis regia differs from closely related insect-pollinated species mainly in floral scent, with morphology, colour and nectar properties being similar. We found that mice and elephant-shrews pollinate E. regia, which is self-incompatible and reliant on vertebrates for seed production. Mammals are strongly attracted to the overall floral scent, which contains unusual sulphur compounds, including methional (which imparts the distinctive potato-like scent and which was shown to be attractive to small mammals). The results highlight the important role of scent chemistry in shifts between insect and mammal pollination systems.


Assuntos
Evolução Biológica , Lilium/fisiologia , Mamíferos/fisiologia , Odorantes/análise , Polinização/fisiologia , Animais , Cruzamento , Comportamento de Escolha , Flores/anatomia & histologia , Flores/fisiologia , Geografia , Insetos , Camundongos , Pigmentação , Néctar de Plantas/análise , Pólen/fisiologia , Sementes/fisiologia , Musaranhos , África do Sul , Compostos Orgânicos Voláteis/análise
9.
Ann Bot ; 123(2): 247-261, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30032269

RESUMO

Background: Floral nectar is an important determinant of plant-pollinator interactions and an integral component of pollination syndromes, suggesting it is under pollinator-mediated selection. However, compared to floral display traits, we know little about the evolutionary ecology of nectar. Combining a literature review with a meta-analysis approach, we summarize the evidence for heritable variation in nectar traits and link this variation to pollinator response and plant fitness. We further review associations between nectar traits and floral signals and discuss them in the context of honest signalling and targets of selection. Scope: Although nectar is strongly influenced by environmental factors, heritable variation in nectar production rate has been documented in several populations (mean h2 = 0.31). Almost nothing is known about heritability of other nectar traits, such as sugar and amino acid concentrations. Only a handful of studies have quantified selection on nectar traits, and few find statistically significant selection. Pollinator responses to nectar traits indicate they may drive selection, but studies tying pollinator preferences to plant fitness are lacking. So far, only one study conclusively identified pollinators as selective agents on a nectar trait, and the role of microbes, herbivores, nectar robbers and abiotic factors in nectar evolution is largely hypothetical. Finally, there is a trend for positive correlations among floral cues and nectar traits, indicating honest signalling of rewards. Conclusions: Important progress can be made by studies that quantify current selection on nectar in natural populations, as well as experimental approaches that identify the target traits and selective agents involved. Signal-reward associations suggest that correlational selection may shape evolution of nectar traits, and studies exploring these more complex forms of natural selection are needed. Many questions about nectar evolution remain unanswered, making this a field ripe for future research.


Assuntos
Evolução Biológica , Néctar de Plantas/genética , Seleção Genética , Animais , Flores/fisiologia , Variação Genética , Néctar de Plantas/análise , Característica Quantitativa Herdável
10.
Ann Bot ; 123(1): 213-220, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169570

RESUMO

Background and Aims: Bird pollination is rare among species in the genus Utricularia, and has evolved independently in two lineages of this genus. In Western Australia, the Western Spinebill, Acanthorhynchus superciliosus, visits flowers of Utricularia menziesii (section Pleiochasia: subgenus Polypompholyx). This study aimed to examine the micromorphology of U. menziesii flowers to assess traits that might be linked to its pollination strategy. Methods: Light microscopy, histochemistry and scanning electron microscopy were used. Nectar sugar composition was analysed using high-performance liquid chromatography. Key Results: The flowers of U. menziesii fulfil many criteria that characterize bird-pollinated flowers: red colour, a large, tough nectary spur that can withstand contact with a hard beak, lack of visual nectar guides and fragrance. Trichomes at the palate and throat may act as tactile signals. Spur nectary trichomes did not form clearly visible patches, but were more frequently distributed along vascular bundles, and were small and sessile. Each trichome comprised a single basal cell, a unicellular short pedestal cell (barrier cell) and a multicelled head. These trichomes were much smaller than those of the U. vulgaris allies. Hexose-dominated nectar was detected in flower spurs. Fructose and glucose were present in equal quantities (43 ± 3.6 and 42 ± 3.6 g L-1). Sucrose was only detected in one sample, essentially at the limit of detection for the method used. This type of nectar is common in flowers pollinated by passerine perching birds. Conclusions: The architecture of nectary trichomes in U. menziesii was similar to that of capitate trichomes of insect-pollinated species in this genus; thus, the most important specializations to bird pollination were flower colour (red), and both spur shape and size modification. Bird pollination is probably a recent innovation in the genus Utricularia, subgenus Polypompholyx, and is likely to have evolved from bee-pollinated ancestors.


Assuntos
Flores/anatomia & histologia , Lamiales/anatomia & histologia , Polinização , Animais , Flores/fisiologia , Flores/ultraestrutura , Cadeia Alimentar , Lamiales/fisiologia , Lamiales/ultraestrutura , Microscopia Eletrônica de Varredura , Néctar de Plantas/análise , Aves Canoras/fisiologia , Austrália Ocidental
11.
BMC Plant Biol ; 18(1): 179, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180799

RESUMO

BACKGROUND: Nectar gain and loss are important flower transitions observed in angiosperms, and are particularly common in orchids. To understand such transitions, the availability of detailed anatomical data and species-level phylogenies are crucial. We investigated the evolution of food deception in Epidendrum, one of the largest orchid genera, using genus phylogeny to map transitions between nectar gain and loss among different clades. Associations between anatomical and histochemical changes and nectar gain and loss were examined using fresh material available from 27 species. The evolution of nectar presence/absence in Epidendrum species was investigated in a phylogenetic framework of 47 species, using one nuclear and five plastid DNA regions available from GenBank and sequenced in this study. RESULTS: The presence or absence of nectar was strongly associated with changes in the inner epidermal tissues of nectaries. Nectar-secreting species have unornamented epidermal tissue, in contrast to the unicellular trichomes found on the epidermis of food deceptive species. Bayesian tests confirmed that transitions occurred preferentially from nectar presence to nectar absence across the Epidendrum phylogeny. In addition, independent nectar loss events were found across the phylogeny, suggesting a lack of constraint for these transitions. CONCLUSIONS: Ornamented nectaries may play an important role in the deceptive pollination strategy by secreting volatile organic compounds and providing tactile stimuli to pollinators. The recurrent and apparently irreversible pattern of nectar loss in Epidendrum suggests that food deception may constitute an alternative evolutionarily stable strategy, as observed in other orchid groups.


Assuntos
Evolução Biológica , Orchidaceae/anatomia & histologia , Orchidaceae/fisiologia , Néctar de Plantas/análise , Polinização , DNA de Cloroplastos/genética , DNA de Plantas/genética , Cadeia Alimentar , Orchidaceae/genética , Filogenia
12.
Glob Chang Biol ; 24(7): 3226-3235, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29652102

RESUMO

Climate change is predicted to result in increased occurrence and intensity of drought in many regions worldwide. By increasing plant physiological stress, drought is likely to affect the floral resources (flowers, nectar and pollen) that are available to pollinators. However, little is known about impacts of drought at the community level, nor whether plant community functional composition influences these impacts. To address these knowledge gaps, we investigated the impacts of drought on floral resources in calcareous grassland. Drought was simulated using rain shelters and the impacts were explored at multiple scales and on four different experimental plant communities varying in functional trait composition. First, we investigated the effects of drought on nectar production of three common wildflower species (Lathyrus pratensis, Onobrychis viciifolia and Prunella vulgaris). In the drought treatment, L. pratensis and P. vulgaris had a lower proportion of flowers containing nectar and O. viciifolia had fewer flowers per raceme. Second, we measured the effects of drought on the diversity and abundance of floral resources across plant communities. Drought reduced the abundance of floral units for all plant communities, irrespective of functional composition, and reduced floral species richness for two of the communities. Functional diversity did not confer greater resistance to drought in terms of maintaining floral resources, probably because the effects of drought were ubiquitous across component plant communities. The findings indicate that drought has a substantial impact on the availability of floral resources in calcareous grassland, which will have consequences for pollinator behaviour and populations.


Assuntos
Secas , Flores/fisiologia , Polinização/fisiologia , Estresse Fisiológico/fisiologia , Animais , Biodiversidade , Flores/classificação , Pradaria , Néctar de Plantas/análise , Pólen
13.
Ecol Appl ; 28(5): 1182-1196, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29528528

RESUMO

Honey bees require nectar and pollen from flowers: nectar for energy and pollen for growth. The demand for nectar and pollen varies during the year, with more pollen needed in spring for colony population growth and more nectar needed in summer to sustain the maximum colony size and collect surplus nectar stores for winter. Sufficient bee forage is therefore necessary to ensure a healthy bee colony. Land-use changes can reduce the availability of floral resources suitable for bees, thereby increasing the susceptibility of bees to other stressors such as disease and pesticides. In contrast, land-based management decisions to protect or plant bee forage can enhance pollen and nectar supply to bees while meeting other goals such as riparian planting for water-quality improvement. Commercial demand for honey can also put pressure on floral resources through over-crowding of hives. To help understand and manage floral resources for bees, we developed a spatial model for mapping monthly nectar and pollen production from maps of land cover. Based on monthly estimated production data we mapped potential monthly supply of nectar and pollen to a given apiary location in the landscape. This is done by summing the total production within the foraging range of the apiary while subtracting the estimated nectar converted to energy for collection. Ratios of estimated supply over theoretical hive demand may then be used to infer a potential landscape carrying capacity to sustain hives. This model framework is quantitative and spatial, utilizing estimated flight energy costs for nectar foraging. It can contribute to management decisions such as where apiaries could be placed in the landscape depending on floral resources and where nectar limited areas may be located. It can contribute to planning areas for bee protection or planting such as in riparian vegetation. This would aid managed bee health, wild pollinator protection, and honey production. We demonstrate the methods in a case study in New Zealand where there is a growing demand for manuka (Leptospermum scoparium) honey production.


Assuntos
Abelhas/fisiologia , Flores/química , Néctar de Plantas/análise , Pólen , Animais , Modelos Biológicos , Nova Zelândia , Polinização , Estações do Ano
14.
Ann Bot ; 120(5): 765-774, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28673028

RESUMO

Background and Aims: The most widespread form of protective mutualisms is represented by plants bearing extrafloral nectaries (EFNs) that attract ants and other arthropods for indirect defence. Another, but less common, form of sugary secretion for indirect defence occurs in galls induced by cynipid wasps. Until now, such galls have been reported only for cynipid wasps that infest oak trees in the northern hemisphere. This study provides the first evidence of galls that exude sugary secretions in the southern hemisphere and asks whether they can be considered as analogues of plants' EFNs. Methods: The ecology and anatomy of galls and the chemical composition of the secretion were investigated in north-western Argentina, in natural populations of the host trees Prosopis chilensis and P. flexuosa . To examine whether ants protect the galls from natural enemies, ant exclusion experiments were conducted in the field. Key Results: The galls produce large amounts of sucrose-rich, nectar-like secretions. No typical nectary and sub-nectary parenchymatic tissues or secretory trichomes can be observed; instead there is a dense vascularization with phloem elements reaching the gall periphery. At least six species of ants, but also vespid wasps, Diptera and Coleoptera, consumed the gall secretions. The ant exclusion experiment showed that when ants tended galls, no differences were found in the rate of successful emergence of gall wasps or in the rate of parasitism and inquiline infestation compared with ant-excluded galls. Conclusions: The gall sugary secretion is not analogous to extrafloral nectar because no nectar-producing structure is associated with it, but is functionally equivalent to arthropod honeydew because it provides indirect defence to the plant parasite. As in other facultative mutualisms mediated by sugary secretions, the gall secretion triggers a complex multispecies interaction, in which the outcome of individual pair-wise interactions depends on the ecological context in which they take place.


Assuntos
Formigas/fisiologia , Oviposição , Néctar de Plantas/metabolismo , Prosopis/fisiologia , Simbiose , Vespas/fisiologia , Animais , Argentina , Néctar de Plantas/análise , Prosopis/química , Açúcares/metabolismo , Árvores/química , Árvores/fisiologia
15.
Environ Microbiol ; 18(6): 1850-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26337395

RESUMO

Identifying the ecological processes that underlie the distribution and abundance of species in microbial communities is a central issue in microbial ecology and evolution. Classical trade-off based niche theories of resource competition predict that co-occurrence in microbial communities is more likely when the residing species show trait divergence and complementary resource use. We tested the prediction that niche differentiation explained the co-occurrence of two yeast species (Metschnikowia reukaufii and M. gruessii) in floral nectar. Assessment of the phenotypic landscape showed that both species displayed a significantly different physiological profile. Comparison of utilization profiles in single versus mixed cultures indicated that these two species did not compete for most carbon and nitrogen sources. In mixed cultures, M. reukaufii grew better in sucrose solutions and in the presence of the antimicrobial compound digitonin than when grown as pure culture. M. gruessii, on the other hand, grew better in mixed cultures in glucose and fructose solutions. Overall, these results provide clear evidence that M. reukaufii and M. gruessii frequently co-occur in nectar and that they differ in their phenotypic response to variation in environmental conditions, suggesting that niche differentiation and resource partitioning are important mechanisms contributing to species co-occurrence in nectar yeast communities.


Assuntos
Flores/microbiologia , Metschnikowia/isolamento & purificação , Néctar de Plantas/análise , Biodiversidade , Metschnikowia/classificação , Metschnikowia/genética , Fenótipo
16.
Am J Bot ; 103(10): 1819-1828, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27765776

RESUMO

PREMISE OF THE STUDY: Floral evolution is frequently ascribed to selection by pollinators, but may also be shaped by antagonists. However, remarkably few studies have examined geographic mosaics in resistance to floral antagonists or the consequences for other floral interactions. METHODS: Gelsemium sempervirens experiences frequent nectar robbing in northern Georgia, but rarely in southern Georgia. We conducted common-garden experiments in both locations using genotypes from each region and measured robbing, pollinator attraction, floral attractive and defensive traits, and plant reproduction. KEY RESULTS: Nectar robbing was more than four times higher in the north vs. south, and pollinator visits did not differ between gardens. Across both gardens, northern genotypes were half as likely to be nectar-robbed but received half as many pollinator visits as southern genotypes, suggesting evolution of resistance to robbing at a cost of reduced pollinator attraction. Plant-level traits, such as height and number of flowers, were more closely associated with resistance to robbing than floral size, shape, or chemistry. Northern genotypes had lower female and estimated male reproduction compared to southern genotypes at both locations, which could be due to costs of resistance to nectar robbing, or costs of adaptations to other biotic or abiotic differences between regions. CONCLUSIONS: Our study indicates that geographic variation can play a strong role structuring interactions with floral antagonists and mutualists and provides evidence consistent with the hypothesis that local resistance to nectar robbing imposes costs in terms of decreased pollinator attraction and reproduction.


Assuntos
Evolução Biológica , Gelsemium/fisiologia , Insetos/fisiologia , Polinização , Simbiose , Distribuição Animal , Animais , Flores/fisiologia , Georgia , Néctar de Plantas/análise
17.
Exp Appl Acarol ; 69(4): 403-11, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27115500

RESUMO

Members of several genera of mites from the family Melicharidae (Mesostigmata) use hummingbirds as transport host to move from flower to flower, where they feed on pollen and nectar. The factors that influence hummingbird flower mite abundance on host plant flowers are not currently known. Here we tested whether hummingbird flower mite abundance on an artificial nectar source is determined by number of hummingbird visits, nectar energy content or species richness of visiting hummingbirds. We conducted experiments employing hummingbird feeders with sucrose solutions of low, medium, and high energy concentrations, placed in a xeric shrubland. In the first experiment, we recorded the number of visiting hummingbirds and the number of visiting hummingbird species, as well as the abundance of hummingbird flower mites on each feeder. Feeders with the highest sucrose concentration had the most hummingbird visits and the highest flower mite abundances; however, there was no significant effect of hummingbird species richness on mite abundance. In the second experiment, we recorded flower mite abundance on feeders after we standardized the number of hummingbird visits to them. Abundance of flower mites did not differ significantly between feeders when we controlled for hummingbird visits. Our results suggest that nectar energy concentration determines hummingbird visits, which in turn determines flower mite abundance in our feeders. Our results do not support the hypothesis that mites descend from hummingbird nostrils more on richer nectar sources; however, it does not preclude the possibility that flower mites select for nectar concentration at other spatial and temporal scales.


Assuntos
Aves/fisiologia , Comportamento Alimentar , Métodos de Alimentação/instrumentação , Ácaros/fisiologia , Simbiose , Distribuição Animal , Animais , Feminino , Masculino , México , Néctar de Plantas/análise , Densidade Demográfica
18.
J Plant Physiol ; 293: 154184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38295538

RESUMO

Euphorbia resinifera O. Berg is a plant endemic to the Northern and Central regions of Morocco known since the ancient Roman and Greek times for secreting a poisonous latex containing resiniferatoxin. However, E. resinifera pseudo-inflorescences called cyathia are devoid of laticifers and, therefore, do not secrete latex. Instead, they exudate nectar that local honey bees collect and craft into honey. Honey and cyathium water extracts find a broad range of applications in the traditional medicine of Northern Africa as ointments and water decoctions. Moreover, E. resinifera monofloral honey has received the Protected Geographic Indication certification for its outstanding qualities. Given the relevance of E. resinifera cyathia for bee nutrition, honey production, and the health benefit of cyathium-derived products, this study aimed to screen metabolites synthesized and accumulated in its pseudo-inflorescences. Our analyses revealed that E. resinifera cyathia accumulate primary metabolites in considerable abundance, including hexoses, amino acids and vitamins that honey bees may collect from nectar and craft into honey. Cyathia also synthesize volatile organic compounds of the class of benzenoids and terpenes, which are emitted by flowers pollinated by honey bees and bumblebees. Many specialized metabolites, including carotenoids, flavonoids, and polyamines, were also detected, which, while protecting the reproductive organs against abiotic stresses, also confer antioxidant properties to water decoctions. In conclusion, our analyses revealed that E. resinifera cyathia are a great source of antioxidant molecules and a good food source for the local foraging honeybees, revealing the central role of the flowers from this species in mediating interactions with local pollinators and the conferral of medicinal properties to plant extracts.


Assuntos
Euphorbia , Néctar de Plantas , Animais , Néctar de Plantas/análise , Néctar de Plantas/metabolismo , Euphorbia/metabolismo , Látex/análise , Látex/metabolismo , Antioxidantes/metabolismo , Flores/metabolismo , Água/metabolismo
19.
Plant J ; 70(3): 377-88, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22151247

RESUMO

MYB transcription factors have important roles during floral organ development. In this study, we generated myb305 RNAi knockdown tobacco plants and studied the role of MYB305 in the growth of the floral nectary. We have previously shown the MYB305 regulates the expression of flavonoid metabolic genes as well as of nectar proteins (nectarins); however, the myb305 plants showed other floral phenotypes that we investigate in these studies. The nectaries of myb305 plants show juvenile character at late stages of development and secrete reduced levels of nectar. Because starch metabolism is intimately involved in nectar secretion and is strongly regulated during normal nectary development, we examined the accumulation of starch in the nectaries of the myb305 plants. The myb305 plants accumulated lower levels of starch in their nectaries than did wild-type plants. The reduced starch correlated with the reduced expression of the ATP-glucose pyrophosphorylase (small subunit) gene in nectaries of the myb305 plants during the starch biosynthetic phase. Expression of genes encoding several starch-degrading enzymes including ß-amylase, isoamylase 3, and α-amylase was also reduced in the myb305 plants. In addition to regulating nectarin and flavonoid metabolic gene expression, these results suggest that MYB305 may also function in the tobacco nectary maturation program by controlling the expression of starch metabolic genes.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Nicotiana/genética , Néctar de Plantas/metabolismo , Amido/metabolismo , Fatores de Transcrição/genética , Sítios de Ligação , Metabolismo dos Carboidratos/genética , Flavonoides/análise , Flavonoides/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Glucose-1-Fosfato Adenililtransferase/genética , Isoamilase/genética , Fenótipo , Néctar de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Interferência de RNA , Amido/análise , Nicotiana/enzimologia , Nicotiana/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , alfa-Amilases/genética , beta Caroteno/análise , beta Caroteno/metabolismo , beta-Amilase/genética
20.
Am Nat ; 181(1): 137-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23234851

RESUMO

Plant-pollinator interactions are great model systems to investigate mutualistic relationships. We compared pollinator effectiveness between facultative and obligate nectar-feeding bats to determine how foraging specialization influences mutualistic interactions in a bat-adapted cactus. We predicted that a specialized nectarivorous bat would deliver more pollen than an opportunistic nectar-feeding bat because of specialized adaptations to nectar feeding that indicate close association with their food plants. Counter to our predictions, the opportunistic Antrozous pallidus delivered significantly more pollen grains per visit than the specialized Leptonycteris yerbabuenae. Higher pollinator effectiveness, based on visitation rates and pollen deposition levels, varied between species by site, and although A. pallidus visits flowers much less frequently than L. yerbabuenae over all sites, it is likely an effective and reliable pollinator of Pachycereus pringlei in Baja, Mexico. Our results suggest that morphological adaptations and dietary specialization on nectar do not necessarily confer advantages for pollination over less specialized plant visitors and highlight the reciprocally exploitative nature of mutualisms.


Assuntos
Cactaceae/fisiologia , Quirópteros/fisiologia , Comportamento Alimentar , Polinização , Animais , Quirópteros/anatomia & histologia , Flores/fisiologia , Cadeia Alimentar , México , Néctar de Plantas/análise , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA