Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 578
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 151(2): 372-83, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063126

RESUMO

Mammalian two-pore channel proteins (TPC1, TPC2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double-knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P(2) and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na(+), not K(+), as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes and may explain the specificity of PI(3,5)P(2) in regulating the fusogenic potential of intracellular organelles.


Assuntos
Canais de Cálcio/metabolismo , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Linhagem Celular , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Knockout , NADP/análogos & derivados , NADP/metabolismo , Canais de Sódio/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(32): e2320153121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074274

RESUMO

Two-pore channels are pathophysiologically important Na+- and Ca2+-permeable channels expressed in lysosomes and other acidic organelles. Unlike most other ion channels, their permeability is malleable and ligand-tuned such that when gated by the signaling lipid PI(3,5)P2, they are more Na+-selective than when gated by the Ca2+ mobilizing messenger nicotinic acid adenine dinucleotide phosphate. However, the structural basis that underlies such plasticity and single-channel behavior more generally remains poorly understood. A recent Cryo-electron microscopy (cryo-EM) structure of TPC2 bound to PI(3,5)P2 in a proposed open-channel conformation provided an opportunity to address this via molecular dynamics (MD) simulation. To our surprise, simulations designed to compute conductance through this structure revealed almost no Na+ permeation events even at very high transmembrane voltages. However further MD simulations identified a spontaneous transition to a dramatically different conformation of the selectivity filter that involved expansion and a flip in the orientation of two core asparagine residues. This alternative filter conformation was remarkably stable and allowed Na+ to flow through the channel leading to a conductance estimate that was in very good agreement with direct single-channel measurements. Furthermore, this conformation was more permeable for Na+ over Ca2+. Our results have important ramifications not just for understanding the control of ion selectivity in TPC2 channels but also more broadly in terms of how ion channels discriminate ions.


Assuntos
Canais de Cálcio , Cálcio , Lisossomos , Simulação de Dinâmica Molecular , Sódio , Lisossomos/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/química , Humanos , Sódio/metabolismo , Cálcio/metabolismo , Microscopia Crioeletrônica/métodos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/química , Conformação Proteica , Ativação do Canal Iônico/fisiologia , NADP/análogos & derivados
3.
Trends Biochem Sci ; 47(3): 235-249, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34810081

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from endosomes and lysosomes by activating ion channels called two-pore channels (TPCs). However, no NAADP-binding site has been identified on TPCs. Rather, NAADP activates TPCs indirectly by engaging NAADP-binding proteins (NAADP-BPs) that form part of the TPC complex. After a decade of searching, two different NAADP-BPs were recently identified: Jupiter microtubule associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12). These discoveries bridge the gap between NAADP generation and NAADP activation of TPCs, providing new opportunity to understand and manipulate the NAADP-signaling pathway. The unmasking of these NAADP-BPs will catalyze future studies to define the molecular choreography of NAADP action.


Assuntos
Canais de Cálcio , Proteínas de Transporte , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Transporte/metabolismo , Lisossomos/metabolismo , NADP/análogos & derivados , NADP/metabolismo
4.
EMBO J ; 39(14): e104058, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32510172

RESUMO

Macrophages clear pathogens by phagocytosis and lysosomes that fuse with phagosomes are traditionally regarded as to a source of membranes and luminal degradative enzymes. Here, we reveal that endo-lysosomes act as platforms for a new phagocytic signalling pathway in which FcγR activation recruits the second messenger NAADP and thereby promotes the opening of Ca2+ -permeable two-pore channels (TPCs). Remarkably, phagocytosis is driven by these local endo-lysosomal Ca2+ nanodomains rather than global cytoplasmic or ER Ca2+ signals. Motile endolysosomes contact nascent phagosomes to promote phagocytosis, whereas endo-lysosome immobilization prevents it. We show that TPC-released Ca2+ rapidly activates calcineurin, which in turn dephosphorylates and activates the GTPase dynamin-2. Finally, we find that different endo-lysosomal Ca2+ channels play diverse roles, with TPCs providing a universal phagocytic signal for a wide range of particles and TRPML1 being only required for phagocytosis of large targets.


Assuntos
Calcineurina/metabolismo , Dinamina II/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , NADP/análogos & derivados , Fagocitose , Animais , Calcineurina/genética , Dinamina II/genética , Endossomos/genética , Lisossomos/genética , Camundongos , Camundongos Knockout , NADP/metabolismo
5.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398657

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP), identified as one of the most potent calcium-mobilizing second messengers, has been studied in different eukaryotic cell types, including lymphocytes. Although aspects of NAADP-mediated calcium release in lymphocytes are still under debate, the organelles pertaining to NAADP-mediated calcium release are often characterized as acidic and related to lysosomes. Although NAADP-mediated calcium release in different subsets of T cells, including naïve, effector and natural regulatory T cells, has been studied, it has not been widely studied in memory CD4+ T cells, which show a different calcium flux profile. Using a pharmacological approach, the effect of Ned-19, an NAADP pathway antagonist, on the involvement of NAADP in TCR activation in murine memory CD4+ T cells and their downstream effector functions, such as proliferation and cytokine production, was studied. According to this study, Ned-19 inhibited TCR-mediated calcium flux and its downstream effector functions in primary memory CD4+ T cells. The study also revealed that both extracellular and intracellular calcium stores, including endoplasmic reticulum and lysosome-like acidic calcium stores, contribute to the TCR-mediated calcium flux in memory CD4+ T cells. NAADP-AM, a cell permeable analogue of NAADP, was shown to release calcium in memory CD4+ T cells and calcium flux was inhibited by Ned-19.


Assuntos
Sinalização do Cálcio , Cálcio , NADP/análogos & derivados , Camundongos , Animais , Cálcio/metabolismo , NADP/metabolismo , Linfócitos T Reguladores/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
6.
Biochem Biophys Res Commun ; 621: 168-175, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35841763

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a signaling molecule that can induce calcium release from intracellular acidic stores. However, proteins that bind to NAADP are understudied. Here, we identify aspartate dehydrogenase domain-containing protein (ASPDH) as an NAADP-binding protein through biochemical purification from pig livers. Isothermal titration calorimetry (ITC) experiment using the recombinantly expressed protein shows a 1:1 binding stoichiometry and a Kd of 455 nM between NAADP and mouse ASPDH. In contrast, recombinantly expressed Jupiter microtubule-associated homolog 2 (JPT2) and SM-like protein LSM12, two proteins previously identified as NAADP-receptors, show no binding in ITC experiments.


Assuntos
Sinalização do Cálcio , Proteínas de Transporte , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Carboxiliases/metabolismo , Proteínas de Transporte/metabolismo , Camundongos , NADP/análogos & derivados , NADP/metabolismo , Suínos
7.
Circ Res ; 127(7): e166-e183, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588751

RESUMO

RATIONALE: Ca2+ signaling is a key and ubiquitous actor of cell organization and its modulation controls many cellular responses. SERCAs (sarco-endoplasmic reticulum Ca2+-ATPases) pump Ca2+ into internal stores that play a major role in the cytosolic Ca2+ concentration rise upon cell activation. Platelets exhibit 2 types of SERCAs, SERCA2b and SERCA3 (SERCA3 deficient mice), which may exert specific roles, yet ill-defined. We have recently shown that Ca2+ mobilization from SERCA3-dependent stores was required for full platelet activation in weak stimulation conditions. OBJECTIVE: To uncover the signaling mechanisms associated with Ca2+ mobilization from SERCA3-dependent stores leading to ADP secretion. METHODS AND RESULTS: Using platelets from wild-type or Serca3-deficient mice, we demonstrated that an early (within 5-10 s following stimulation) secretion of ADP specifically dependent on SERCA3 stored Ca2+ is exclusively mobilized by nicotinic acid adenosine dinucleotide-phosphate (NAADP): both Ca2+ mobilization from SERCA3-dependent stores and primary ADP secretion are blocked by the NAADP receptor antagonist Ned-19, and reciprocally both are stimulated by permeant NAADP. In contrast, Ca2+ mobilization from SERCA3-dependent stores and primary ADP secretion were unaffected by inhibition of the production of IP3 (inositol-1,4,5-trisphosphate) by phospholipase-C and accordingly were not stimulated by permeant IP3. CONCLUSIONS: Upon activation, an NAADP/SERCA3 Ca2+ mobilization pathway initiates an early ADP secretion, potentiating platelet activation, and a secondary wave of ADP secretion driven by both an IP3/SERCA2b-dependent Ca2+ stores pathway and the NAADP/SERCA3 pathway. This does not exclude that Ca2+ mobilized from SERCA3 stores may also enhance platelet global reactivity to agonists. Because of its modulating effect on platelet activation, this NAADP-SERCA3 pathway may be a relevant target for anti-thrombotic therapy. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Difosfato de Adenosina/sangue , Comunicação Autócrina , Plaquetas/enzimologia , Sinalização do Cálcio , NADP/análogos & derivados , Ativação Plaquetária , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/sangue , Animais , Comunicação Autócrina/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Humanos , Inositol 1,4,5-Trifosfato/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADP/sangue , Ativação Plaquetária/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Via Secretória , Trombina/farmacologia , Tromboxano A2/sangue , Fatores de Tempo
8.
J Cell Mol Med ; 25(15): 7485-7499, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34263977

RESUMO

Pulmonary arterial hypertension (PAH) is a form of obstructive vascular disease. Chronic hypoxic exposure leads to excessive proliferation of pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. This condition can potentially be aggravated by [Ca2+ ] i mobilization. In the present study, hypoxia exposure of rat's model was established. Two-pore segment channels (TPCs) silencing was achieved in rats' models by injecting Lsh-TPC1 or Lsh-TPC2. The effects of TPC1/2 silencing on PAH were evaluated by H&E staining detecting pulmonary artery wall thickness and ELISA assay kit detecting NAADP concentrations in lung tissues. TPC1/2 silencing was achieved in PASMCs and PAECs, and cell proliferation was detected by MTT and BrdU incorporation assays. As the results shown, NAADP-activated [Ca2+ ]i shows to be mediated via two-pore segment channels (TPCs) in PASMCs, with TPC1 being the dominant subtype. NAADP generation and TPC1/2 mRNA and protein levels were elevated in the hypoxia-induced rat PAH model; NAADP was positively correlated with TPC1 and TPC2 expression, respectively. In vivo, Lsh-TPC1 or Lsh-TPC2 infection significantly improved the mean pulmonary artery pressure and PAH morphology. In vitro, TPC1 silencing inhibited NAADP-AM-induced PASMC proliferation and [Ca2+ ]i in PASMCs, whereas TPC2 silencing had minor effects during this process; TPC2 silencing attenuated NAADP-AM- induced [Ca2+ ]i and ECM in endothelial cells, whereas TPC1 silencing barely ensued any physiological changes. In conclusion, TPC1/2 might provide a unifying mechanism within pulmonary arterial hypertension, which can potentially be regarded as a therapeutic target.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , NADP/análogos & derivados , Animais , Canais de Cálcio/genética , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADP/metabolismo , Ratos , Ratos Wistar
9.
J Biol Chem ; 295(25): 8514-8523, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371395

RESUMO

The suppressor of T-cell receptor (TCR) signaling (Sts) proteins Sts-1 and Sts-2 suppress receptor-mediated signaling pathways in various immune cells, including the TCR pathway in T cells and the Dectin-1 signaling pathway in phagocytes. As multidomain enzymes, they contain an N-terminal ubiquitin-association domain, a central Src homology 3 domain, and a C-terminal histidine phosphatase domain. Recently, a 2-histidine (2H) phosphoesterase motif was identified within the N-terminal portion of Sts. The 2H phosphoesterase motif defines an evolutionarily ancient protein domain present in several enzymes that hydrolyze cyclic phosphate bonds on different substrates, including cyclic nucleotides. It is characterized by two invariant histidine residues that play a critical role in catalytic activity. Consistent with its assignment as a phosphoesterase, we demonstrate here that the Sts-1 2H phosphoesterase domain displays catalytic, saturable phosphodiesterase activity toward the dinucleotide 2',3'-cyclic NADP. The enzyme exhibited a high degree of substrate specificity and selectively generated the 3'-nucleotide as the sole product. Sts-1 also had phosphodiesterase catalytic activity toward a 5-mer RNA oligonucleotide containing a 2',3'-cyclic phosphate group at its 3' terminus. To investigate the functional significance of Sts-1 2H phosphoesterase activity, we generated His-to-Ala variants and examined their ability to negatively regulate cellular signaling pathways. Substitution of either conserved histidine compromised the ability of Sts-1 to suppress signaling pathways downstream of both the TCR and the Dectin-1 receptor. Our results identify a heretofore unknown cellular enzyme activity associated with Sts-1 and indicate that this catalytic activity is linked to specific cell-signaling outcomes.


Assuntos
Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Motivos de Aminoácidos , Animais , Domínio Catalítico , Humanos , Interferon gama/metabolismo , Cinética , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , NADP/análogos & derivados , NADP/metabolismo , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Linfócitos T/citologia , Linfócitos T/metabolismo
10.
J Cell Physiol ; 236(1): 688-705, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32583526

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most recently discovered Ca2+ -releasing messenger that increases the intracellular Ca2+ concentration by mobilizing the lysosomal Ca2+ store through two-pore channels 1 (TPC1) and 2 (TPC2). NAADP-induced lysosomal Ca2+ release regulates multiple endothelial functions, including nitric oxide release and proliferation. A sizeable acidic Ca2+ pool endowed with TPC1 is also present in human endothelial colony-forming cells (ECFCs), which represent the only known truly endothelial precursors. Herein, we sought to explore the role of the lysosomal Ca2+ store and TPC1 in circulating ECFCs by harnessing Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe ß-naphthylamide, and nigericin, which dissipates the proton gradient which drives Ca2+ sequestration by acidic organelles, caused endogenous Ca2+ release in the presence of a replete inositol-1,4,5-trisphosphate (InsP3 )-sensitive endoplasmic reticulum (ER) Ca2+ pool. Likewise, the amount of ER releasable Ca2+ was reduced by disrupting lysosomal Ca2+ content. Liposomal delivery of NAADP induced a transient Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store and by pharmacological and genetic blockade of TPC1. Pharmacological manipulation revealed that NAADP-induced Ca2+ release also required ER-embedded InsP3 receptors. Finally, NAADP-induced lysosomal Ca2+ release was found to trigger vascular endothelial growth factor-induced intracellular Ca2+ oscillations and proliferation, while it did not contribute to adenosine-5'-trisphosphate-induced Ca2+ signaling. These findings demonstrated that NAADP-induced TPC1-mediated Ca2+ release can selectively be recruited to induce the Ca2+ response to specific cues in circulating ECFCs.


Assuntos
Canais de Cálcio/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , NADP/análogos & derivados , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Linhagem Celular , Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , NADP/metabolismo , NADP/farmacologia , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
FASEB J ; 34(9): 12565-12576, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32717131

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing second messenger whose formation has remained elusive. In vitro, CD38-mediated NAADP synthesis requires an acidic pH and a nonphysiological concentration of nicotinic acid (NA). We discovered that CD38 catalyzes synthesis of NAADP by exchanging the nicotinamide moiety of nicotinamide adenine dinucleotide phosphate (NADP+ ) for the NA group of nicotinic acid adenine dinucleotide (NAAD) inside endolysosomes of interleukin 8 (IL8)-treated lymphokine-activated killer (LAK) cells. Upon IL8 stimulation, cytosolic NADP+ is transported to acidified endolysosomes via connexin 43 (Cx43) and gated by cAMP-EPAC-RAP1-PP2A signaling. CD38 then performs a base-exchange reaction with the donor NA group deriving from NAAD, produced by newly described endolysosomal activities of NA phosphoribosyltransferase (NAPRT) and NMN adenyltransferase (NMNAT) 3. Thus, the membrane organization of endolysosomal CD38, a signal-mediated transport system for NADP+ and luminal NAD+ biosynthetic enzymes integrate signals from a chemokine and cAMP to specify the spatiotemporal mobilization of Ca2+ to drive cell migration.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Sinalização do Cálcio , Movimento Celular , Interleucina-8/farmacologia , Células Matadoras Ativadas por Linfocina/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , NADP/análogos & derivados , Animais , Células Cultivadas , Células Matadoras Ativadas por Linfocina/citologia , Camundongos , Camundongos Endogâmicos C57BL , NADP/metabolismo
12.
Bioorg Med Chem ; 30: 115901, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321420

RESUMO

Nicotinamide adenine dinucleotide phosphate (NADP) is an indispensable metabolic co-substrate and nicotinic acid adenine dinucleotide phosphate (NAADP) is an important Ca2+ releasing intracellular second messenger. Exploration of the NADP and NAADP interactome often requires the synthesis of NADP derivatives substituted on the adenosine nucleoside. The introduction of the 2'-phosphate of NADP makes the synthesis of substituted NADP derivatives difficult. We have employed recombinant human NAD kinase expressed in E. coli as an enzymatic reagent to convert readily available synthetic NAD derivatives to NADP analogs, which were subsequently transformed into NAADP derivatives using enzyme catalyzed pyridine base exchange. 8-Ethynyl-NADP, 8-ethynyl-NAADP and 5-N3-8-ethynyl-NAADP were synthesized starting from a protected 8-ethynyladenosine using a combination of chemical and enzymatic steps and the NAADP derivatives shown to be recognized by the sea urchin NAADP receptor at low concentration. Our methodology will enable researchers to produce mono- and bi-substituted NADP and NAADP analogs that can be applied in proteomic studies to identify NADP and NAADP binding proteins.


Assuntos
Adenina/química , NADP/análogos & derivados , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , NADP/síntese química , NADP/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ouriços-do-Mar , Relação Estrutura-Atividade
13.
Trends Biochem Sci ; 41(6): 475-477, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27156118

RESUMO

Two-pore channels (TPCs) are intracellular Ca(2+)-permeable ion channels that are expressed on acidic Ca(2+) stores. They are co-regulated by voltage and Ca(2+) in plant vacuoles and by the second messenger NAADP in animal endo-lysosomes. Two new studies of plant TPC structures reveal essential features of their architecture and provide mechanistic insight into their workings.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Canais de Cálcio/química , Cálcio/metabolismo , NADP/análogos & derivados , Vacúolos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cristalografia por Raios X , Endossomos/metabolismo , Expressão Gênica , Ativação do Canal Iônico , Lisossomos/metabolismo , NADP/química , NADP/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Vacúolos/química
14.
Dev Biol ; 445(2): 211-225, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30447180

RESUMO

We recently demonstrated the requirement of two-pore channel type 2 (TPC2)-mediated Ca2+ release during slow muscle cell differentiation and motor circuit maturation in intact zebrafish embryos. However, the upstream trigger(s) of TPC2/Ca2+ signaling during these developmental processes remains unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing messenger, which is suggested to target TPC2 in mediating the release of Ca2+ from acidic vesicles. Here, we report the molecular cloning of the zebrafish ADP ribosyl cyclase (ARC) homolog (i.e., ARC1-like), which is a putative enzyme for generating NAADP. We characterized the expression of the arc1-like transcript and the NAADP levels between ~ 16 h post-fertilization (hpf) and ~ 48 hpf in whole zebrafish embryos. We showed that if ARC1-like (when fused with either EGFP or tdTomato) was overexpressed it localized in the plasma membrane, and associated with intracellular organelles, such as the acidic vesicles, Golgi complex and sarcoplasmic reticulum, in primary muscle cell cultures. Morpholino (MO)-mediated knockdown of arc1-like or pharmacological inhibition of ARC1-like (via treatment with nicotinamide), led to an attenuation of Ca2+ signaling and disruption of slow muscle cell development. In addition, the injection of arc1-like mRNA into ARC1-like morphants partially rescued the Ca2+ signals and slow muscle cell development. Together, our data might suggest a link between ARC1-like, NAADP, TPC2 and Ca2+ signaling during zebrafish myogenesis.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , NADP/análogos & derivados , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Técnicas de Silenciamento de Genes , Células Musculares/metabolismo , Desenvolvimento Muscular , NADP/metabolismo , Niacinamida/farmacologia , Retículo Sarcoplasmático/metabolismo , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
15.
J Biol Chem ; 294(52): 19831-19843, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31672920

RESUMO

Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are two structurally distinct messengers that mobilize the endoplasmic and endolysosomal Ca2+ stores, respectively. Both are synthesized by the CD38 molecule (CD38), which has long been thought to be a type II membrane protein whose catalytic domain, intriguingly, faces to the outside of the cell. Accordingly, for more than 20 years, it has remained unresolved how CD38 can use cytosolic substrates such as NAD and NADP to produce messengers that target intracellular Ca2+ stores. The discovery of type III CD38, whose catalytic domain faces the cytosol, has now begun to clarify this topological conundrum. This article reviews the ideas and clues leading to the discovery of the type III CD38; highlights an innovative approach for uncovering its natural existence; and discusses the regulators of its activity, folding, and degradation. We also review the compartmentalization of cADPR and NAADP biogenesis. We further discuss the possible mechanisms that promote type III CD38 expression and appraise a proposal of a Ca2+-signaling mechanism based on substrate limitation and product translocation. The surprising finding of another enzyme that produces cADPR and NAADP, sterile α and TIR motif-containing 1 (SARM1), is described. SARM1 regulates axonal degeneration and has no sequence similarity with CD38 but can catalyze the same set of multireactions and has the same cytosolic orientation as the type III CD38. The intriguing finding that SARM1 is activated by nicotinamide mononucleotide to produce cADPR and NAADP suggests that it may function as a regulated Ca2+-signaling enzyme like CD38.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Sinalização do Cálcio , ADP-Ribose Cíclica/metabolismo , NADP/análogos & derivados , ADP-Ribosil Ciclase 1/química , ADP-Ribosil Ciclase 1/genética , Animais , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , NADP/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo
16.
J Cell Physiol ; 235(2): 1515-1530, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31310018

RESUMO

The neuromodulator histamine is able to vasorelax in human cerebral, meningeal and temporal arteries via endothelial histamine 1 receptors (H1 Rs) which result in the downstream production of nitric oxide (NO), the most powerful vasodilator transmitter in the brain. Although endothelial Ca 2+ signals drive histamine-induced NO release throughout the peripheral circulation, the mechanism by which histamine evokes NO production in human cerebrovascular endothelial cells is still unknown. Herein, we exploited the human cerebral microvascular endothelial cell line, hCMEC/D3, to assess the role of intracellular Ca 2+ signaling in histamine-induced NO release. To achieve this goal, hCMEC/D3 cells were loaded with the Ca 2+ - and NO-sensitive dyes, Fura-2/AM and DAF-FM/AM, respectively. Histamine elicited repetitive oscillations in intracellular Ca 2+ concentration in hCMEC/D3 cells throughout a concentration range spanning from 1 pM up to 300 µM. The oscillatory Ca 2+ response was suppressed by the inhibition of H 1 Rs with pyrilamine, whereas H 1 R was abundantly expressed at the protein level. We further found that histamine-induced intracellular Ca 2+ oscillations were initiated by endogenous Ca 2+ mobilization through inositol-1,4,5-trisphosphate- and nicotinic acid dinucleotide phosphate-sensitive channels and maintained over time by store-operated Ca 2+ entry. In addition, histamine evoked robust NO release that was prevented by interfering with the accompanying intracellular Ca 2+ oscillations, thereby confirming that the endothelial NO synthase is recruited by Ca 2+ spikes also in hCMEC/D3 cells. These data provide the first evidence that histamine evokes NO production from human cerebrovascular endothelial cells through intracellular Ca 2+ oscillations, thereby shedding novel light on the mechanisms by which this neuromodulator controls cerebral blood flow.


Assuntos
Encéfalo/irrigação sanguínea , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Histamina/farmacologia , Microvasos/citologia , Óxido Nítrico/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , NADP/análogos & derivados , NADP/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
17.
Molecules ; 25(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942537

RESUMO

Ca2+-mobilizing adenine nucleotide second messengers cyclic adenosine diphosphoribose, (cADPR), nicotinic acid adenine dinucleotide phosphate (NAADP), adenosine diphosphoribose (ADPR), and 2'deoxy-ADPR were discovered since the late 1980s. They either release Ca2+ from endogenous Ca2+ stores, e.g., endoplasmic reticulum or acidic organelles, or evoke Ca2+ entry by directly activating a Ca2+ channel in the plasma membrane. For 25 years, Professor Barry Potter has been one of the major medicinal chemists in this topical area, designing and contributing numerous analogues to develop structure-activity relationships (SAR) as a basis for tool development in biochemistry and cell biology and for lead development in proof-of-concept studies in disease models. With this review, I wish to acknowledge our 25-year-long collaboration on Ca2+-mobilizing adenine nucleotide second messengers as a major part of Professor Potter's scientific lifetime achievements on the occasion of his retirement in 2020.


Assuntos
Nucleotídeos de Adenina/metabolismo , Cálcio/metabolismo , Nucleotídeos de Adenina/química , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Humanos , NADP/análogos & derivados , NADP/química , NADP/metabolismo , Sistemas do Segundo Mensageiro , Relação Estrutura-Atividade , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
Dev Biol ; 438(1): 57-68, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29577882

RESUMO

During the development of the early spinal circuitry in zebrafish, spontaneous Ca2+ transients in the primary motor neurons (PMNs) are reported to transform from being slow and uncorrelated, to being rapid, synchronized and patterned. In this study, we demonstrated that in intact zebrafish, Ca2+ release via two-pore channel type 2 (TPC2) from acidic stores/endolysosomes is required for the establishment of synchronized activity in the PMNs. Using the SAIGFF213A;UAS:GCaMP7a double-transgenic zebrafish line, Ca2+ transients were visualized in the caudal PMNs (CaPs). TPC2 inhibition via molecular, genetic or pharmacological means attenuated the CaP Ca2+ transients, and decreased the normal ipsilateral correlation and contralateral anti-correlation, indicating a disruption in normal spinal circuitry maturation. Furthermore, treatment with MS-222 resulted in a complete (but reversible) inhibition of the CaP Ca2+ transients, as well as a significant decrease in the concentration of the Ca2+ mobilizing messenger, nicotinic acid adenine diphosphate (NAADP) in whole embryo extract. Together, our new data suggest a novel function for NAADP/TPC2-mediated Ca2+ signaling in the development, coordination, and maturation of the spinal network in zebrafish embryos.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neurônios Motores/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Técnicas de Cultura de Células , Imuno-Histoquímica , NADP/análogos & derivados , NADP/metabolismo , Peixe-Zebra/metabolismo
19.
J Biol Chem ; 293(21): 8151-8160, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632067

RESUMO

Nicotinic acid adenosine dinucleotide phosphate (NAADP) is a Ca2+-mobilizing second messenger that regulates a wide range of biological activities. However, the mechanism of its biogenesis remains controversial. CD38 is the only enzyme known to catalyze NAADP synthesis from NADP and nicotinic acid. CD38-mediated catalysis requires an acidic pH, suggesting that NAADP may be produced in acidic endolysosomes, but this hypothesis is untested. In this study, using human cell lines, we specifically directed CD38 to the endolysosomal system and assessed cellular NAADP production. First, we found that nanobodies targeting various epitopes on the C-terminal domain of CD38 could bind to cell surface-localized CD38 and induce its endocytosis. We also found that CD38 internalization occurred via a clathrin-dependent pathway, delivered CD38 to the endolysosome, and elevated intracellular NAADP levels. We also created a CD38 variant for lysosome-specific expression, which not only withstood the degradative environment in the lysosome, but was also much more active than WT CD38 in elevating cellular NAADP levels. Supplementing CD38-expressing cells with nicotinic acid substantially increased cellular NAADP levels. These results demonstrate that endolysosomal CD38 can produce NAADP in human cells. They further suggest that CD38's compartmentalization to the lysosome may allow for its regulation via substrate access, rather than enzyme activation, thereby providing a reliable mechanism for regulating cellular NAADP production.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Cálcio/metabolismo , Endocitose , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , NADP/análogos & derivados , ADP-Ribosil Ciclase 1/genética , Sinalização do Cálcio , Células HEK293 , Células HeLa , Humanos , Glicoproteínas de Membrana/genética , NADP/metabolismo , Niacina/farmacologia , Anticorpos de Domínio Único/administração & dosagem , Vasodilatadores/farmacologia
20.
J Cell Physiol ; 234(4): 3538-3554, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30451297

RESUMO

The neurotransmitter glutamate increases cerebral blood flow by activating postsynaptic neurons and presynaptic glial cells within the neurovascular unit. Glutamate does so by causing an increase in intracellular Ca2+ concentration ([Ca2+ ]i ) in the target cells, which activates the Ca2+ /Calmodulin-dependent nitric oxide (NO) synthase to release NO. It is unclear whether brain endothelial cells also sense glutamate through an elevation in [Ca2+ ]i and NO production. The current study assessed whether and how glutamate drives Ca2+ -dependent NO release in bEND5 cells, an established model of brain endothelial cells. We found that glutamate induced a dose-dependent oscillatory increase in [Ca2+ ]i , which was maximally activated at 200 µM and inhibited by α-methyl-4-carboxyphenylglycine, a selective blocker of Group 1 metabotropic glutamate receptors. Glutamate-induced intracellular Ca2+ oscillations were triggered by rhythmic endogenous Ca2+ mobilization and maintained over time by extracellular Ca2+ entry. Pharmacological manipulation revealed that glutamate-induced endogenous Ca2+ release was mediated by InsP3 -sensitive receptors and nicotinic acid adenine dinucleotide phosphate (NAADP) gated two-pore channel 1. Constitutive store-operated Ca2+ entry mediated Ca2+ entry during ongoing Ca2+ oscillations. Finally, glutamate evoked a robust, although delayed increase in NO levels, which was blocked by pharmacologically inhibition of the accompanying intracellular Ca2+ signals. Of note, glutamate induced Ca2+ -dependent NO release also in hCMEC/D3 cells, an established model of human brain microvascular endothelial cells. This investigation demonstrates for the first time that metabotropic glutamate-induced intracellular Ca2+ oscillations and NO release have the potential to impact on neurovascular coupling in the brain.


Assuntos
Encéfalo/irrigação sanguínea , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Inositol 1,4,5-Trifosfato/metabolismo , NADP/análogos & derivados , Acoplamento Neurovascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Humanos , Camundongos , NADP/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA