Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.606
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 36: 247-277, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29328785

RESUMO

The liver is a key, frontline immune tissue. Ideally positioned to detect pathogens entering the body via the gut, the liver appears designed to detect, capture, and clear bacteria, viruses, and macromolecules. Containing the largest collection of phagocytic cells in the body, this organ is an important barrier between us and the outside world. Importantly, as portal blood also transports a large number of foreign but harmless molecules (e.g., food antigens), the liver's default immune status is anti-inflammatory or immunotolerant; however, under appropriate conditions, the liver is able to mount a rapid and robust immune response. This balance between immunity and tolerance is essential to liver function. Excessive inflammation in the absence of infection leads to sterile liver injury, tissue damage, and remodeling; insufficient immunity allows for chronic infection and cancer. Dynamic interactions between the numerous populations of immune cells in the liver are key to maintaining this balance and overall tissue health.


Assuntos
Fenômenos do Sistema Imunitário , Fígado/imunologia , Fígado/metabolismo , Imunidade Adaptativa , Animais , Hepatite Viral Humana/imunologia , Hepatite Viral Humana/metabolismo , Hepatite Viral Humana/virologia , Humanos , Tolerância Imunológica , Imunidade Inata , Fígado/irrigação sanguínea , Fígado/citologia , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia
2.
Annu Rev Biochem ; 93(1): 367-387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594929

RESUMO

Lysosomes are the degradative endpoints of material delivered by endocytosis and autophagy and are therefore particularly prone to damage. Membrane permeabilization or full rupture of lysosomal or late endosomal compartments is highly deleterious because it threatens cellular homeostasis and can elicit cell death and inflammatory signaling. Cells have developed a complex response to endo-lysosomal damage that largely consists of three branches. Initially, a number of repair pathways are activated to restore the integrity of the lysosomal membrane. If repair fails or if damage is too extensive, lysosomes are isolated and degraded by a form of selective autophagy termed lysophagy. Meanwhile, an mTORC1-governed signaling cascade drives biogenesis and regeneration of new lysosomal components to reestablish the full lysosomal capacity of the cell. This damage response is vital to counteract the effects of various conditions, including neurodegeneration and infection, and can constitute a critical vulnerability in cancer cells.


Assuntos
Autofagia , Endossomos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Lisossomos/metabolismo , Humanos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Endossomos/metabolismo , Endocitose , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética
3.
Annu Rev Biochem ; 93(1): 289-316, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38316136

RESUMO

RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).


Assuntos
Transdução de Sinais , Quinases raf , Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/genética , Proteínas ras/química , Quinases raf/metabolismo , Quinases raf/genética , Animais , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética
4.
Cell ; 187(9): 2126-2128, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670070

RESUMO

The landscape of the intratumoral microbiome in tumor metastases is largely unchartered. In this issue of Cell, Voest et al. profiled the tumor metastasis-associated microbiome in a pancancer cohort of 4,160 biopsies from 26 cancer types. This dataset offers a useful resource for understanding the role of the microbiome in metastatic cancers.


Assuntos
Microbiota , Metástase Neoplásica , Humanos , Neoplasias/patologia , Neoplasias/microbiologia
5.
Cell ; 187(17): 4458-4487, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178829

RESUMO

Multiphoton fluorescence microscopy (MPFM) has been a game-changer for optical imaging, particularly for studying biological tissues deep within living organisms. MPFM overcomes the strong scattering of light in heterogeneous tissue by utilizing nonlinear excitation that confines fluorescence emission mostly to the microscope focal volume. This enables high-resolution imaging deep within intact tissue and has opened new avenues for structural and functional studies. MPFM has found widespread applications and has led to numerous scientific discoveries and insights into complex biological processes. Today, MPFM is an indispensable tool in many research communities. Its versatility and effectiveness make it a go-to technique for researchers investigating biological phenomena at the cellular and subcellular levels in their native environments. In this Review, the principles, implementations, capabilities, and limitations of MPFM are presented. Three application areas of MPFM, neuroscience, cancer biology, and immunology, are reviewed in detail and serve as examples for applying MPFM to biological research.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Humanos , Animais , Neoplasias/diagnóstico por imagem , Neoplasias/patologia
6.
Cell ; 187(15): 3824-3828, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059359

RESUMO

If you are a scientist and you only know one thing about tumor metabolism, it's likely the Warburg effect. But who was Otto Warburg, and how did his discoveries regarding the metabolism of tumors shape our current thinking about the metabolic needs of cancer cells?


Assuntos
Neoplasias , Efeito Warburg em Oncologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , História do Século XX , Glicólise , História do Século XXI , Animais
7.
Cell ; 187(16): 4150-4175, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121846

RESUMO

Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.


Assuntos
Senescência Celular , Humanos , Animais , Biomarcadores/metabolismo , Guias como Assunto , Neoplasias/patologia
8.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552609

RESUMO

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Assuntos
Neoplasias , Humanos , Carcinogênese , Microbiota , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Obesidade/complicações , Qualidade de Vida
9.
Cell ; 187(6): 1422-1439.e24, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38447573

RESUMO

Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across cancer types. However, given their short half-life, it remains challenging to explore how neutrophils adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity, with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the antigen-presenting program was associated with favorable survival in most cancers and could be evoked by leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary, these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic opportunities such as antigen-presenting neutrophil delivery.


Assuntos
Apresentação de Antígeno , Neoplasias , Neutrófilos , Animais , Humanos , Camundongos , Antígenos de Neoplasias , Leucina/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neutrófilos/metabolismo , Linfócitos T , Análise da Expressão Gênica de Célula Única
10.
Cell ; 187(12): 2907-2918, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848676

RESUMO

Cancer is a disease that stems from a fundamental liability inherent to multicellular life forms in which an individual cell is capable of reneging on the interests of the collective organism. Although cancer is commonly described as an evolutionary process, a less appreciated aspect of tumorigenesis may be the constraints imposed by the organism's developmental programs. Recent work from single-cell transcriptomic analyses across a range of cancer types has revealed the recurrence, plasticity, and co-option of distinct cellular states among cancer cell populations. Here, we note that across diverse cancer types, the observed cell states are proximate within the developmental hierarchy of the cell of origin. We thus posit a model by which cancer cell states are directly constrained by the organism's "developmental map." According to this model, a population of cancer cells traverses the developmental map, thereby generating a heterogeneous set of states whose interactions underpin emergent tumor behavior.


Assuntos
Modelos Biológicos , Neoplasias , Animais , Humanos , Carcinogênese/patologia , Carcinogênese/genética , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Análise de Célula Única , Transcriptoma/genética , Células-Tronco Neoplásicas/patologia
11.
Cell ; 187(14): 3602-3618.e20, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38823389

RESUMO

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.


Assuntos
Neoplasias , Nucleotídeos de Purina , Purinas , Animais , Camundongos , Purinas/metabolismo , Purinas/biossíntese , Neoplasias/metabolismo , Neoplasias/patologia , Nucleotídeos de Purina/metabolismo , Humanos , Inosina/metabolismo , Hipoxantina/metabolismo , Camundongos Endogâmicos C57BL , Adenina/metabolismo , Linhagem Celular Tumoral , Feminino
12.
Cell ; 187(21): 6035-6054.e27, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39305902

RESUMO

m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.


Assuntos
Proteína Centromérica A , Centrômero , Centrômero/metabolismo , Humanos , Proteína Centromérica A/metabolismo , Proteína Centromérica A/genética , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Mitose , RNA/metabolismo , Proliferação de Células , Epigênese Genética , Segregação de Cromossomos , Proteínas Cromossômicas não Histona/metabolismo
13.
Cell ; 187(9): 2324-2335.e19, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38599211

RESUMO

Microbial communities are resident to multiple niches of the human body and are important modulators of the host immune system and responses to anticancer therapies. Recent studies have shown that complex microbial communities are present within primary tumors. To investigate the presence and relevance of the microbiome in metastases, we integrated mapping and assembly-based metagenomics, genomics, transcriptomics, and clinical data of 4,160 metastatic tumor biopsies. We identified organ-specific tropisms of microbes, enrichments of anaerobic bacteria in hypoxic tumors, associations between microbial diversity and tumor-infiltrating neutrophils, and the association of Fusobacterium with resistance to immune checkpoint blockade (ICB) in lung cancer. Furthermore, longitudinal tumor sampling revealed temporal evolution of the microbial communities and identified bacteria depleted upon ICB. Together, we generated a pan-cancer resource of the metastatic tumor microbiome that may contribute to advancing treatment strategies.


Assuntos
Microbiota , Metástase Neoplásica , Neoplasias , Humanos , Neoplasias/microbiologia , Neoplasias/patologia , Metagenômica/métodos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neutrófilos/imunologia , Microambiente Tumoral , Bactérias/genética , Bactérias/classificação
14.
Cell ; 187(17): 4790-4811.e22, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047727

RESUMO

Characterizing the compositional and phenotypic characteristics of tumor-infiltrating B cells (TIBs) is important for advancing our understanding of their role in cancer development. Here, we establish a comprehensive resource of human B cells by integrating single-cell RNA sequencing data of B cells from 649 patients across 19 major cancer types. We demonstrate substantial heterogeneity in their total abundance and subtype composition and observe immunoglobulin G (IgG)-skewness of antibody-secreting cell isotypes. Moreover, we identify stress-response memory B cells and tumor-associated atypical B cells (TAABs), two tumor-enriched subpopulations with prognostic potential, shared in a pan-cancer manner. In particular, TAABs, characterized by a high clonal expansion level and proliferative capacity as well as by close interactions with activated CD4 T cells in tumors, are predictive of immunotherapy response. Our integrative resource depicts distinct clinically relevant TIB subsets, laying a foundation for further exploration of functional commonality and diversity of B cells in cancer.


Assuntos
Neoplasias , Análise de Célula Única , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Fenótipo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoterapia , Prognóstico
15.
Cell ; 187(21): 6055-6070.e22, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39181133

RESUMO

Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis. Inactivation of the FA pathway suppresses chromosome shattering during mitosis without impacting interphase-associated defects within micronuclei. Mono-ubiquitination of FANCI-FANCD2 by the FA core complex promotes its mitotic engagement with under-replicated micronuclear chromosomes. The structure-selective SLX4-XPF-ERCC1 endonuclease subsequently induces large-scale nucleolytic cleavage of persistent DNA replication intermediates, which stimulates POLD3-dependent mitotic DNA synthesis to prime shattered fragments for reassembly in the ensuing cell cycle. Notably, FA-pathway-induced chromothripsis generates complex genomic rearrangements and extrachromosomal DNA that confer acquired resistance to anti-cancer therapies. Our findings demonstrate how pathological activation of a central DNA repair mechanism paradoxically triggers cancer genome evolution through chromothripsis.


Assuntos
Cromotripsia , Resistencia a Medicamentos Antineoplásicos , Anemia de Fanconi , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Mitose , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Sistemas CRISPR-Cas/genética , Replicação do DNA , Recombinases/metabolismo , Reparo do DNA , Linhagem Celular Tumoral , Endonucleases/metabolismo , Endonucleases/genética , Quebras de DNA de Cadeia Dupla , Animais , Camundongos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ubiquitinação
16.
Cell ; 186(2): 235-237, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669470

RESUMO

Stochastic processes, such as genetic instability and microenvironment evolution, drive tumor heterogeneity, thereby creating the chaotic appearance of tumors in histopathology. In this issue of Cell, Lin et al. reveal that tumors are surprisingly spatially organized from a molecular to tissue scale, indicating that cancers evolve as autonomously patterned systems.


Assuntos
Neoplasias , Dinâmica não Linear , Humanos , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral
17.
Cell ; 186(8): 1627-1651, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36924769

RESUMO

Macrophages are versatile and heterogeneous innate immune cells undertaking central functions in balancing immune responses and tissue repair to maintain homeostasis. This plasticity, once co-opted by malignant outgrowth, orchestrates manifold reciprocal interactions within the tumor microenvironment, fueling the evolution of the cancer ecosystem. Here, we review the multilayered sources of influence that jointly underpin and longitudinally shape tumor-associated macrophage (TAM) phenotypic states in solid neoplasms. We discuss how, in response to these signals, TAMs steer tumor evolution in the context of natural selection, biological dispersion, and treatment resistance. A number of research frontiers to be tackled are laid down in this review to therapeutically exploit the complex roles of TAMs in cancer. Building upon knowledge obtained from currently applied TAM-targeting strategies and using next generation technologies, we propose conceptual advances and novel therapeutic avenues to rewire TAM multifaceted regulation of the co-evolving cancer ecosystem.


Assuntos
Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Neoplasias/patologia , Neoplasias/terapia
18.
Cell ; 186(8): 1689-1707, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059069

RESUMO

The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.


Assuntos
Neoplasias , Neurociências , Humanos , Sistema Imunitário , Neoplasias/patologia , Neurônios/patologia , Microambiente Tumoral
19.
Cell ; 186(8): 1532-1534, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059062

RESUMO

Solid tumors are composed of a complex and dynamic collection of cell types. Here I discuss the important relationships between cancer cells and bacterial members of the intratumoral microbiota that may provide a fitness advantage within the tumor ecological niche.


Assuntos
Microbiota , Neoplasias , Humanos , Bactérias/classificação , Neoplasias/microbiologia , Neoplasias/patologia
20.
Cell ; 186(8): 1580-1609, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059066

RESUMO

Tumor cells do not exist in isolation in vivo, and carcinogenesis depends on the surrounding tumor microenvironment (TME), composed of a myriad of cell types and biophysical and biochemical components. Fibroblasts are integral in maintaining tissue homeostasis. However, even before a tumor develops, pro-tumorigenic fibroblasts in close proximity can provide the fertile 'soil' to the cancer 'seed' and are known as cancer-associated fibroblasts (CAFs). In response to intrinsic and extrinsic stressors, CAFs reorganize the TME enabling metastasis, therapeutic resistance, dormancy and reactivation by secreting cellular and acellular factors. In this review, we summarize the recent discoveries on CAF-mediated cancer progression with a particular focus on fibroblast heterogeneity and plasticity.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese , Neoplasias/patologia , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA