Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 471(1-2): 81-89, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504364

RESUMO

NME4, also designated nm23-H4 or NDPK-D, has been known for years for its well-established roles in the synthesis of nucleoside triphosphates, though; little has been known regarding the differential metabolites involved as well as the biological roles NME4 plays in proliferation and invasion of esophageal squamous cell carcinoma (ESCC) cells. To understand the biological roles of NME4 in ESCC cells, lentiviral-based short hairpin RNA interference (shRNA) vectors were constructed and used to stably knock down NME4. Then, the proliferative and invasive variations were assessed using MTT, Colony formation and Transwell assays. To understand the metabolites involved after silencing of NME4 in ESCC cells, widely targeted metabolomic screening was taken. It was discovered that silencing of NME4 can profoundly suppress the proliferation and invasion in ESCC cells in vitro. Metabolically, a total of 11 differential metabolites were screened. KEGG analyses revealed that Tryptophan, Riboflavin, Purine, Nicotinate, lysine degradation, and Linoleic acid metabolism were also involved in addition to the well-established nucleotides metabolism. Some of these differential metabolites, say, 2-Picolinic Acid, Nicotinic Acid and Pipecolinic Acid were suggested to be associated with tumor immunomodulation. The data we described here support the idea that metabolisms occurred in mitochondrial was closely related to tumor immunity.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Metaboloma , Mitocôndrias/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Mitocôndrias/patologia , Invasividade Neoplásica , Nucleosídeo Difosfato Quinase D/antagonistas & inibidores , Nucleosídeo Difosfato Quinase D/genética
2.
Cell Death Differ ; 23(7): 1140-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26742431

RESUMO

Mitophagy is critical for cell homeostasis. Externalization of the inner mitochondrial membrane phospholipid, cardiolipin (CL), to the surface of the outer mitochondrial membrane (OMM) was identified as a mitophageal signal recognized by the microtubule-associated protein 1 light chain 3. However, the CL-translocating machinery remains unknown. Here we demonstrate that a hexameric intermembrane space protein, NDPK-D (or NM23-H4), binds CL and facilitates its redistribution to the OMM. We found that mitophagy induced by a protonophoric uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), caused externalization of CL to the surface of mitochondria in murine lung epithelial MLE-12 cells and human cervical adenocarcinoma HeLa cells. RNAi knockdown of endogenous NDPK-D decreased CCCP-induced CL externalization and mitochondrial degradation. A R90D NDPK-D mutant that does not bind CL was inactive in promoting mitophagy. Similarly, rotenone and 6-hydroxydopamine triggered mitophagy in SH-SY5Y cells was also suppressed by knocking down of NDPK-D. In situ proximity ligation assay (PLA) showed that mitophagy-inducing CL-transfer activity of NDPK-D is closely associated with the dynamin-like GTPase OPA1, implicating fission-fusion dynamics in mitophagy regulation.


Assuntos
Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Mitofagia , Nucleosídeo Difosfato Quinase D/metabolismo , Animais , Autofagia/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/toxicidade , Cardiolipinas/análise , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Nucleosídeo Difosfato Quinase D/antagonistas & inibidores , Nucleosídeo Difosfato Quinase D/genética , Oxidopamina/farmacologia , Ligação Proteica , Interferência de RNA , Rotenona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA