Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 30(23): 127539, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919013

RESUMO

Nucleotide prodrugs are of great clinical interest for treating a variety of viral infections due to their ability to target tissues selectively and to deliver relatively high concentrations of the active nucleotide metabolite intracellularly. However, their clinical successes have been limited, oftentimes due to unwanted in vivo metabolic processes that reduce the quantities of nucleoside triphosphate that reach the site of action. In an attempt to circumvent this, we designed novel nucleosides that incorporate a sterically bulky group at the 5'-carbon of the phosphoester prodrug, which we reasoned would reduce the amounts of non-productive PO bond cleavage back to the corresponding nucleoside by nucleotidases. Molecular docking studies with the NS5B HCV polymerase suggested that a nucleotide containing a 5'-methyl group could be accommodated. Therefore, we synthesized mono- and diphosphate prodrugs of 2',5'-C-dimethyluridine stereoselectively and evaluated their cytotoxicity and anti-HCV activity in the HCV replicon assay. All four prodrugs exhibited anti-HCV activity with IC50 values in the single digit micromolar concentrations, with the 5'(R)-C-methyl prodrug displaying superior potency relative to its 5'(S)-C-methyl counterpart. However, when compared to the unmethylated prodrug, the potency is poorer. The poorer potency of these prodrugs may be due to unfavorable steric interactions of the 5'-C-methyl group in the active sites of the kinases that catalyze the formation of active triphosphate metabolite.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Pró-Fármacos/farmacologia , Nucleotídeos de Uracila/farmacologia , Antivirais/síntese química , Antivirais/metabolismo , Linhagem Celular , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/metabolismo , Ligação Proteica , Nucleotídeos de Uracila/síntese química , Nucleotídeos de Uracila/metabolismo , Proteínas não Estruturais Virais/metabolismo
2.
Bioorg Med Chem Lett ; 28(7): 1248-1251, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29506959

RESUMO

A conjugate of triphosphorylated 2',3'-dideoxyuridine (ddU) with SiO2 nanoparticles was obtained via the CuAAC click chemistry between a γ-alkynyl ddU triphosphate and azido-modified SiO2 nanoparticles. Assessment of cytotoxicity in human breast adenocarcinoma MCF7 cells demonstrated that ddU triphosphate conjugated to SiO2 nanoparticles exhibited a 50% decrease in cancer cell growth at a concentration of 183 ±â€¯57 µg/mL, which corresponds to 22 ±â€¯7 µM of the parent nucleotide, whereas the parent nucleoside, nucleotide and alkynyl triphosphate precursor do not show any cytotoxicity. The data provide an example of remarkable potential of novel conjugates of SiO2 nanoparticles with phosphorylated nucleoside analogues, even those, which have not been used previously as therapeutics, for application as new anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Didesoxinucleotídeos/farmacologia , Nanopartículas/química , Dióxido de Silício/farmacologia , Nucleotídeos de Uracila/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Didesoxinucleotídeos/síntese química , Didesoxinucleotídeos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Dióxido de Silício/química , Relação Estrutura-Atividade , Nucleotídeos de Uracila/síntese química , Nucleotídeos de Uracila/química
3.
Mol Pharmacol ; 91(5): 518-532, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28254957

RESUMO

Pairing orphan G protein­coupled receptors (GPCRs) with their cognate endogenous ligands is expected to have a major impact on our understanding of GPCR biology. It follows that the reproducibility of orphan receptor ligand pairs should be of fundamental importance to guide meaningful investigations into the pharmacology and function of individual receptors. GPR17 is an orphan receptor characterized by some as a dualistic uracil nucleotide/cysteinyl leukotriene receptor and by others as inactive toward these stimuli altogether. Whereas regulation of central nervous system myelination by GPR17 is well established, verification of activity of its putative endogenous ligands has proven elusive so far. Herein we report that uracil nucleotides and cysteinyl leukotrienes do not activate human, mouse, or rat GPR17 in various cellular backgrounds, including primary cells, using eight distinct functional assay platforms based on labelfree pathway-unbiased biosensor technologies, as well as canonical second-messenger or biochemical assays. Appraisal of GPR17 activity can neither be accomplished with co-application of both ligand classes, nor with exogenous transfection of partner receptors (nucleotide P2Y12, cysteinyl-leukotriene CysLT1) to reconstitute the elusive pharmacology. Moreover, our study does not support the inhibition of GPR17 by the marketed antiplatelet drugs cangrelor and ticagrelor, previously suggested to antagonize GPR17. Whereas our data do not disagree with a role of GPR17 per se as an orchestrator of central nervous system functions, they challenge the utility of the proposed (ant)agonists as tools to imply direct contribution of GPR17 in complex biologic settings.


Assuntos
Cisteína/farmacologia , Leucotrienos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Nucleotídeos de Uracila/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Animais , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ligantes , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Ticagrelor
4.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 43-51, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768902

RESUMO

The Ubiquitin-Proteasome System (UPS) is essential for the regulation of the cellular proteostasis. Indeed, it has been postulated that an UPS dysregulation is the common mechanism that underlies several neurological disorders. Considering that extracellular nucleotides, through their selective P2Y2 receptor (P2Y2R), play a neuroprotective role in various neurological disorders that course with an UPS impairment, we wonder if this neuroprotective capacity resulted from their ability to modulate the UPS. Using a cellular model expressing two different UPS reporters, we found that the stimulation of P2Y2R by its selective agonist Up4U induced a significant reduction of UPS reporter levels. This reduction was due to an increase in two of the three peptidase proteasome activities, chymotrypsin and postglutamyl, caused by an increased expression of proteasome constitutive catalytic subunits ß1 and ß5. The intracellular signaling pathway involved required the activation of IP3/MEK1/2/ERK but was independent of PKC or PKA. Interestingly, the P2Y2R activation was able to revert both UPS-reporter accumulation and the cell death induced by a prolonged inhibition of UPS. Finally, we also observed that intracerebroventricular administration of Up4U induced a significant increase both of chymotrypsin and postglutamyl activities as well as an increased expression of proteasome subunits ß1 and ß5 in the hippocampus of wild-type mice, but not in P2Y2R KO mice. All these results strongly suggest that the capacity to modulate the UPS activity via P2Y2R is the molecular mechanism which is how the nucleotides play a neuroprotective role in neurological disorders.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nucleotídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Nucleotídeos/metabolismo , Agonistas do Receptor Purinérgico P2Y/metabolismo , Nucleotídeos de Uracila/metabolismo , Nucleotídeos de Uracila/farmacologia
5.
Eye Contact Lens ; 43(6): 378-382, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27243352

RESUMO

OBJECTIVES: To investigate the behavior of prelens tear film (PLTF) and postlens tear film (PoLTF) after the instillation of diquafosol using an experimental rabbit model of eyes with contact lens. METHODS: Cross-sectional, anterior segment optical coherence tomographic images of the inferior midperipheral cornea were obtained at baseline and at 5, 15, 30, 60, 90, and 120 min after the instillation of 3% diquafosol ophthalmic solution in 10 Japanese white rabbits wearing contact lenses. From the obtained images, the areas of the PLTF and PoLTF were calculated. Both artificial tear solution and 0.1% sodium hyaluronate ophthalmic solution were used for comparison. RESULTS: Significant fluid accumulation in both the PLTF and PoLTF was observed after diquafosol instillation, whereas no fluid accumulation was visible after the instillation of artificial tear or sodium hyaluronate. The increase in PLTF area after diquafosol instillation was significantly higher (P<0.01) at 15 and 30 min than that after the instillation of artificial tear or sodium hyaluronate. The increase in PoLTF area up to 60 min after the instillation of diquafosol was significantly higher (P<0.01) than that after the instillation of either of the other two drugs. CONCLUSIONS: Instillation of 3% diquafosol ophthalmic solution increases PLTF and PoLTF in rabbit eyes with contact lenses. Diquafosol has potential as a treatment option for contact lens-related dry eye.


Assuntos
Lentes de Contato Hidrofílicas , Córnea/efeitos dos fármacos , Soluções Oftálmicas/farmacologia , Polifosfatos/farmacologia , Lágrimas/efeitos dos fármacos , Nucleotídeos de Uracila/farmacologia , Animais , Lentes de Contato Hidrofílicas/efeitos adversos , Modelos Animais de Doenças , Síndromes do Olho Seco/tratamento farmacológico , Coelhos , Lágrimas/metabolismo , Tomografia de Coerência Óptica
6.
Exp Eye Res ; 143: 89-97, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26505315

RESUMO

Diquafosol is known as a purinergic P2Y2 receptor (P2Y2R) agonist that stimulates water and mucin secretion from conjunctival epithelial cells and goblet cells, leading to tear film stability in dry eye. However, its effect on corneal epithelial healing has not yet been elucidated. The aim of the present study was to evaluate the effect of diquafosol on corneal epithelial healing in vivo and on P2Y2R-related downstream signaling pathways in vitro. We administered 3% diquafosol ophthalmic solution on 3 mm-diameter epithelial defects made in rat corneas and assessed the wound closure over time. Corneal epithelial healing was significantly accelerated in diquafosol-treated eyes compared to control eyes at 12 and 24 h. During wound healing, P2Y2R staining appeared stronger in the re-epithelized margin near the wound defect. To evaluate whether diquafosol stimulates epidermal growth factor receptor/extracellular-signal-regulated kinase (EGFR/ERK)-related cell proliferation and migration, simian virus 40-transfected human corneal epithelial (THCE) cells were used for in vitro experiments. Cell proliferation was accelerated by diquafosol at concentrations from 20 to 200 µM during 48 h, but inhibited at concentrations over 2000 µM. The intracellular calcium ([Ca(2+)]i) elevation was measured in diquafosol (100 µM)-stimulated cells using Fluo-4/AM ([Ca(2+)]i indicator). [Ca(2+)]i elevation was observed in diquafosol-stimulated cells regardless of the presence of calcium in media, and suramin pretreatment inhibited the calcium response. The effect of diquafosol on phosphorylation of EGFR, ERK and Akt, and cell migration was determined by western blotting and in vitro cell migration assay. Diquafosol induced phosphorylation of EGFR at 2 min post-stimulation, and phosphorylation of ERK at 5 min post-stimulation. Phosphorylation of ERK was attenuated in cells pretreated with suramin or BAPTA/AM ([Ca(2+)]i chelator), and partially with AG1478 (EGFR inhibitor). Likewise, diquafosol-treated cells showed acceleration of gap closure in cell migration assay, which was inhibited by suramin, BAPTA/AM, AG1478, and U0126 (MEK inhibitor). These studies demonstrate that diquafosol is effective in promoting corneal epithelial wound healing and that this effect may result from ERK-stimulated cell proliferation and migration via P2Y2R-mediated [Ca(2+)]i elevation.


Assuntos
Cálcio/metabolismo , Epitélio Corneano/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Polifosfatos/farmacologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Nucleotídeos de Uracila/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Western Blotting , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Fator de Crescimento Epidérmico/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Masculino , Soluções Oftálmicas , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y2/metabolismo
7.
Optom Vis Sci ; 93(8): 973-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27115327

RESUMO

PURPOSE: To evaluate the efficacy of topical application of 3% diquafosol tetrasodium solution for the treatment of soft contact lens (SCL) wearers with dryness. In addition to clinical tests and subjective symptoms, we assessed the fluorescence intensity of wheat germ agglutinin conjugate of fluorescein (F-WGA) used as a marker of membrane-associated mucins and sialic acid concentration in tear fluids as a marker of secreted mucins. METHODS: Twelve SCL wearers with dryness symptoms were treated with diquafosol for 4 weeks. Clinical tests included the tear film break-up time (BUT), corneal and conjunctival fluorescein staining scores, and Schirmer values. Subjective symptoms were evaluated by the Dry Eye-Related Quality-of-Life Score (DEQS). Fluorescence intensities in the central cornea were measured by fluorophotometry at 5 minutes after a 5% F-WGA solution was applied to the eye. The tears collected by the Schirmer test strips were analyzed by high-performance liquid chromatography (HPLC), and the concentrations of sialic acid; total protein; and the four major tear proteins secretory IgA, lactoferrin, lipocalin-1, and lysozyme proteins were measured. RESULTS: Comparing the results before and after diquafosol treatment, BUT (p < 0.01), kerato-conjunctival staining score (p < 0.05), corneal staining score (p < 0.05), and DEQS score (p < 0.01) showed statistically significant improvements. The F-WGA fluorescence intensities (p < 0.0001) significantly increased after treatment, whereas the concentrations of sialic acid and tear proteins remained unchanged. CONCLUSIONS: Topical application of diquafosol solution to the SCL wearers with dryness improved biomarker of membrane-associated mucins, BUT, staining of cornea and conjunctiva, and subjective symptoms.


Assuntos
Lentes de Contato Hidrofílicas/efeitos adversos , Córnea/patologia , Síndromes do Olho Seco/prevenção & controle , Proteínas do Olho/análise , Polifosfatos/farmacologia , Lágrimas/química , Nucleotídeos de Uracila/farmacologia , Adulto , Cromatografia Líquida de Alta Pressão , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/etiologia , Feminino , Fluorofotometria , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Soluções Oftálmicas , Estudos Prospectivos , Adulto Jovem
8.
J Neuroinflammation ; 11: 141, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25178395

RESUMO

BACKGROUND: During cerebral inflammation uracil nucleotides leak to the extracellular medium and activate glial pyrimidine receptors contributing to the development of a reactive phenotype. Chronically activated microglia acquire an anti-inflammatory phenotype that favors neuronal differentiation, but the impact of these microglia on astrogliosis is unknown. We investigated the contribution of pyrimidine receptors to microglia-astrocyte signaling in a chronic model of inflammation and its impact on astrogliosis. METHODS: Co-cultures of astrocytes and microglia were chronically treated with lipopolysaccharide (LPS) and incubated with uracil nucleotides for 48 h. The effect of nucleotides was evaluated in methyl-[3H]-thymidine incorporation. Western blot and immunofluorescence was performed to detect the expression of P2Y6 receptors and the inducible form of nitric oxide synthase (iNOS). Nitric oxide (NO) release was quantified through Griess reaction. Cell death was also investigated by the LDH assay and by the TUNEL assay or Hoechst 33258 staining. RESULTS: UTP, UDP (0.001 to 1 mM) or PSB 0474 (0.01 to 10 µM) inhibited cell proliferation up to 43 ± 2% (n = 10, P <0.05), an effect prevented by the selective P2Y6 receptor antagonist MRS 2578 (1 µM). UTP was rapidly metabolized into UDP, which had a longer half-life. The inhibitory effect of UDP (1 mM) was abolished by phospholipase C (PLC), protein kinase C (PKC) and nitric oxide synthase (NOS) inhibitors. Both UDP (1 mM) and PSB 0474 (10 µM) increased NO release up to 199 ± 20% (n = 4, P <0.05), an effect dependent on P2Y6 receptors-PLC-PKC pathway activation, indicating that this pathway mediates NO release. Western blot and immunocytochemistry analysis indicated that P2Y6 receptors were expressed in the cultures being mainly localized in microglia. Moreover, the expression of iNOS was mainly observed in microglia and was upregulated by UDP (1 mM) or PSB 0474 (10 µM). UDP-mediated NO release induced apoptosis in astrocytes, but not in microglia. CONCLUSIONS: In LPS treated co-cultures of astrocytes and microglia, UTP is rapidly converted into UDP, which activates P2Y6 receptors inducing the release of NO by microglia that causes astrocyte apoptosis, thus controlling their rate of proliferation and preventing an excessive astrogliosis.


Assuntos
Apoptose/fisiologia , Astrócitos/fisiologia , Microglia/metabolismo , Óxido Nítrico/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Ratos , Ratos Wistar , Timidina/farmacocinética , Fatores de Tempo , Trítio/farmacocinética , Nucleotídeos de Uracila/metabolismo , Nucleotídeos de Uracila/farmacologia
9.
Mol Vis ; 20: 929-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24991185

RESUMO

PURPOSE: To investigate the role of a water and mucin secretagogue (3% diquafosol sodium eye drops) on the tear function and conjunctival ocular surface changes in Sod1(-/-) in comparison to the wild-type (WT) mice. METHODS: Fourteen eyes of 7 Sod1(-/-) male mice with C57BL/background and 14 eyes of 7 C57BL6 strain wild-type male mice were examined at 40 weeks in this study. All mice had application of 3% diquafosol ophthalmic solution six times a day for 2 weeks. Tear film stability and corneal epithelial damage was evaluated by fluorescein and Rose Bengal stainings. Anterior segment photography was performed before and after eye drop instillations. Aqueous tear quantity was measured with phenol red-impregnated cotton threads without anesthesia. Animals were sacrificed at 42 weeks after diquafosol treatment and the whole globe specimens were subjected to periodic acid Schiff staining. Goblet cell density was quantified by J Image software. Quantitative real-time PCR for conjunctival muc 5AC messenger RNA expression was also performed. RESULTS: Sod1(-/-) mice had significantly higher fluorescein staining scores compared to the WT mice before eye drop instillation. The mean tear film breakup time, Rose Bengal staining scores, and muc5 messenger RNA expression improved significantly with diquafosol treatment in both the WT and the knockout mice. The mean fluorescein staining score and aqueous tear quantity significantly improved in the Sod1(-/-) mice with treatment. A notable and consistent increase in goblet cells and decrease in inflammatory cell infiltrates could be confirmed in all specimens after 2 weeks of diquafosol eye drop application. CONCLUSIONS: Three percent diquafosol ophthalmic solution appears to be effective in the treatment of ocular surface disease in this age-related dry eye disease mouse model.


Assuntos
Olho/efeitos dos fármacos , Polifosfatos/farmacologia , Superóxido Dismutase/deficiência , Lágrimas/efeitos dos fármacos , Nucleotídeos de Uracila/farmacologia , Animais , Segmento Anterior do Olho/efeitos dos fármacos , Segmento Anterior do Olho/patologia , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/patologia , Fluoresceína/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-5AC/genética , Mucina-5AC/metabolismo , Polifosfatos/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Rosa Bengala/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fatores de Tempo , Nucleotídeos de Uracila/administração & dosagem
10.
ACS Appl Mater Interfaces ; 16(27): 34757-34771, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946068

RESUMO

Dry eye disease (DED) is a chronic multifactorial ocular surface disease mainly caused by the instability of tear film, characterized by a series of ocular discomforts and even visual disorders. Oxidative stress has been recognized as an upstream factor in DED development. Diquafosol sodium (DQS) is an agonist of the P2Y2 receptor to restore the integrity/stability of the tear film. With the ability to alternate between Ce3+ and Ce4+, cerium oxide nanozymes could scavenge overexpressed reactive oxygen species (ROS). Hence, a DQS-loaded cerium oxide nanozyme was designed to boost the synergistic treatment of DED. Cerium oxide with branched polyethylenimine-graft-poly(ethylene glycol) as nucleating agent and dispersant was fabricated followed with DQS immobilization via a dynamic phenylborate ester bond, obtaining the DQS-loaded cerium oxide nanozyme (defined as Ce@PBD). Because of the ability to mimic the cascade processes of superoxide dismutase and catalase, Ce@PBD could scavenge excessive accumulated ROS, showing strong antioxidant and anti-inflammatory properties. Meanwhile, the P2Y2 receptors in the conjunctival cells could be stimulated by DQS in Ce@PBD, which can relieve the incompleteness and instability of the tear film. The animal experiments demonstrated that Ce@PBD significantly restored the defect of the corneal epithelium and increased the number of goblet cells, with the promotion of tear secretion, which was the best among commercial DQS ophthalmic solutions.


Assuntos
Cério , Síndromes do Olho Seco , Cério/química , Cério/farmacologia , Animais , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/patologia , Síndromes do Olho Seco/metabolismo , Nucleotídeos de Uracila/química , Nucleotídeos de Uracila/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Polifosfatos/química , Polifosfatos/farmacologia , Camundongos , Coelhos
11.
Cells ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39120282

RESUMO

Dry eye disease (DED) is caused by inflammation and damage to the corneal surface due to tear film instability and hyperosmolarity. Various eye drops are used to treat this condition. Each eye drop has different properties and mechanisms of action, so the appropriate drug should be used according to clinical phenotypes. This study aims to compare the therapeutic mechanisms of cyclosporine A (CsA) and diquafosol tetrasodium (DQS). An experimental in vivo/in vitro model of DED using hyperosmolarity showed decreased cell viability, inhibited wound healing, and corneal damage compared to controls. Treatment with cyclosporine or diquafosol restored cell viability and wound healing and reduced corneal damage by hyperosmolarity. The expression of the inflammation-related genes il-1ß, il-1α, and il-6 was reduced by cyclosporine and diquafosol, and the expression of Tnf-α, c1q, and il-17a was reduced by cyclosporine. Increased apoptosis in the DED model was confirmed by increased Bax and decreased Bcl-2 and Bcl-xl expression, but treatment with cyclosporine or diquafosol resulted in decreased apoptosis. Diquafosol increased NGF expression and translocation into the extracellular space. DED has different damage patterns depending on the progression of the lesion. Thus, depending on the type of lesion, eye drops should be selected according to the therapeutic target, focusing on repairing cellular damage when cellular repair is needed or reducing inflammation when inflammation is high and cellular damage is severe.


Assuntos
Córnea , Ciclosporina , Modelos Animais de Doenças , Síndromes do Olho Seco , Fator de Crescimento Neural , Nucleotídeos de Uracila , Cicatrização , Nucleotídeos de Uracila/farmacologia , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/genética , Cicatrização/efeitos dos fármacos , Animais , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Córnea/efeitos dos fármacos , Córnea/patologia , Córnea/metabolismo , Ciclosporina/farmacologia , Humanos , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Polifosfatos/farmacologia , Camundongos
12.
J Pharmacol Exp Ther ; 347(1): 38-46, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23908386

RESUMO

The orphan receptor GPR17 has been reported to be activated by UDP, UDP-sugars, and cysteinyl leukotrienes, and coupled to intracellular Ca(2+) mobilization and inhibition of cAMP accumulation, but other studies have reported either a different agonist profile or lack of agonist activity altogether. To determine if GPR17 is activated by uracil nucleotides and leukotrienes, the hemagglutinin-tagged receptor was expressed in five different cell lines and the signaling properties of the receptor were investigated. In C6, 1321N1, or Chinese hamster ovary (CHO) cells stably expressing GPR17, UDP, UDP-glucose, UDP-galactose, and cysteinyl leukotriene C4 (LTC4) all failed to promote inhibition of forskolin-stimulated cAMP accumulation, whereas both UDP and UDP-glucose promoted marked inhibition (>80%) of forskolin-stimulated cAMP accumulation in C6 and CHO cells expressing the P2Y14 receptor. Likewise, none of these compounds promoted accumulation of inositol phosphates in COS-7 or human embryonic kidney 293 cells transiently transfected with GPR17 alone or cotransfected with Gαq/i5, which links Gi-coupled receptors to the Gq-regulated phospholipase C (PLC) signaling pathway, or PLCε, which is activated by the Gα12/13 signaling pathway. Moreover, none of these compounds promoted internalization of GPR17 in 1321N1-GPR17 cells. Consistent with previous reports, coexpression experiments of GPR17 with cysteinyl leukotriene receptor 1 (CysLTR1) suggested that GPR17 acts as a negative regulator of CysLTR1. Taken together, these data suggest that UDP, UDP-glucose, UDP-galactose, and LTC4 are not the cognate ligands of GPR17.


Assuntos
Cisteína/metabolismo , Leucotrienos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Nucleotídeos de Uracila/metabolismo , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Cisteína/farmacologia , Células HEK293 , Humanos , Leucotrienos/farmacologia , Nucleotídeos de Uracila/farmacologia , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia
13.
Neurosci Lett ; 792: 136939, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341926

RESUMO

Patients with persistent and severe dry eye disease (DED) have corneal hypersensitivity, resulting in ocular pain, and diquafosol sodium, a potent P2Y2 receptor agonist, is commonly used to improve the resultant tear film stability. This study determined the effects of diquafosol instillation on the suppression of trigeminal subnucleus caudalis (Vc) neuronal activity and ocular pain by enhancing tear film stability in the model for chronic DED. The effects of diquafosol on the ocular surface were assessed by the topical application for 28 days, starting from the 14th day since unilateral exorbital gland removal (chronic DED). Loss of tear volume secretion in chronic DED rats was significantly reversed by diquafosol instillation after 28 days, compared with saline treatment. The number of eyeblinks and pERK-IR neurons in the superficial laminae of Vc following hypertonic saline administration to the ocular surface was lower in diquafosol-treated chronic DED rats than in saline-treated rats. The neuronal activity evoked by hypertonic saline and mechanical stimulation along with the spontaneous neuronal activity in the superficial laminae of the Vc were suppressed in diquafosol-treated chronic DED rats. These findings suggest that ocular surface instillation of diquafosol for 28 days attenuates the neuronal hyperactivity in the Vc and the ocular pain that often occurs in chronic DED.


Assuntos
Síndromes do Olho Seco , Sódio , Ratos , Animais , Nucleotídeos de Uracila/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Lágrimas , Neurônios , Dor , Soluções Oftálmicas/farmacologia
14.
Stem Cell Res Ther ; 14(1): 97, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076930

RESUMO

BACKGROUND: Endogenously released adenine and uracil nucleotides favour the osteogenic commitment of bone marrow-derived mesenchymal stromal cells (BM-MSCs) through the activation of ATP-sensitive P2X7 and UDP-sensitive P2Y6 receptors. Yet, these nucleotides have their osteogenic potential compromised in post-menopausal (Pm) women due to overexpression of nucleotide metabolizing enzymes, namely NTPDase3. This prompted us to investigate whether NTPDase3 gene silencing or inhibition of its enzymatic activity could rehabilitate the osteogenic potential of Pm BM-MSCs. METHODS: MSCs were harvested from the bone marrow of Pm women (69 ± 2 years old) and younger female controls (22 ± 4 years old). The cells were allowed to grow for 35 days in an osteogenic-inducing medium in either the absence or the presence of NTPDase3 inhibitors (PSB 06126 and hN3-B3s antibody); pre-treatment with a lentiviral short hairpin RNA (Lenti-shRNA) was used to silence the NTPDase3 gene expression. Immunofluorescence confocal microscopy was used to monitor protein cell densities. The osteogenic commitment of BM-MSCs was assessed by increases in the alkaline phosphatase (ALP) activity. The amount of the osteogenic transcription factor Osterix and the alizarin red-stained bone nodule formation. ATP was measured with the luciferin-luciferase bioluminescence assay. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC RESULTS: The extracellular catabolism of ATP and UDP was faster in BM-MSCs from Pm women compared to younger females. The immunoreactivity against NTPDase3 increased 5.6-fold in BM-MSCs from Pm women vs. younger females. Selective inhibition or transient NTPDase3 gene silencing increased the extracellular accumulation of adenine and uracil nucleotides in cultured Pm BM-MSCs. Downregulation of NTPDase3 expression or activity rehabilitated the osteogenic commitment of Pm BM-MSCs measured as increases in ALP activity, Osterix protein cellular content and bone nodule formation; blockage of P2X7 and P2Y6 purinoceptors prevented this effect. CONCLUSIONS: Data suggest that NTPDase3 overexpression in BM-MSCs may be a clinical surrogate of the osteogenic differentiation impairment in Pm women. Thus, besides P2X7 and P2Y6 receptors activation, targeting NTPDase3 may represent a novel therapeutic strategy to increase bone mass and reduce the osteoporotic risk of fractures in Pm women.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Feminino , Idoso , Adolescente , Adulto Jovem , Adulto , Pós-Menopausa , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Nucleotídeos de Uracila/metabolismo , Nucleotídeos de Uracila/farmacologia , Difosfato de Uridina/metabolismo , Difosfato de Uridina/farmacologia , Trifosfato de Adenosina/metabolismo , Células da Medula Óssea , Células Cultivadas
15.
J Biol Chem ; 286(12): 10593-604, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21209081

RESUMO

The developing and mature central nervous system contains neural precursor cells expressing the proteoglycan NG2. Some of these cells continuously differentiate to myelin-forming oligodendrocytes; knowledge of the destiny of NG2(+) precursors would benefit from the characterization of new key functional players. In this respect, the G protein-coupled membrane receptor GPR17 has recently emerged as a new timer of oligodendrogliogenesis. Here, we used purified oligodendrocyte precursor cells (OPCs) to fully define the immunophenotype of the GPR17-expressing cells during OPC differentiation, unveil its native signaling pathway, and assess the functional consequences of GPR17 activation by its putative endogenous ligands, uracil nucleotides and cysteinyl leukotrienes (cysLTs). GPR17 presence was restricted to very early differentiation stages and completely segregated from that of mature myelin. Specifically, GPR17 decorated two subsets of slowly proliferating NG2(+) OPCs: (i) morphologically immature cells expressing other early proteins like Olig2 and PDGF receptor-α, and (ii) ramified preoligodendrocytes already expressing more mature factors, like O4 and O1. Thus, GPR17 is a new marker of these transition stages. In OPCs, GPR17 activation by either uracil nucleotides or cysLTs resulted in potent inhibition of intracellular cAMP formation. This effect was counteracted by GPR17 antagonists and receptor silencing with siRNAs. Finally, uracil nucleotides promoted and GPR17 inhibition, by either antagonists or siRNAs, impaired the normal program of OPC differentiation. These data have implications for the in vivo behavior of NG2(+) OPCs and point to uracil nucleotides and cysLTs as main extrinsic local regulators of these cells under physiological conditions and during myelin repair.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Regulação da Expressão Gênica/fisiologia , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Células-Tronco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/citologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/biossíntese , Células-Tronco/citologia , Nucleotídeos de Uracila/metabolismo , Nucleotídeos de Uracila/farmacologia
16.
Curr Opin Pharmacol ; 63: 102190, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35231671

RESUMO

Extracellular uridine nucleotides regulate physiological and pathophysiological metabolic processes through the activation of P2Y2, P2Y4, P2Y6 and P2Y14 purinergic receptors, which play a key role in adipogenesis, glucose uptake, lipolysis and adipokine secretion. Using adipocyte-specific knockout mouse models, it has been demonstrated that lack of the P2Y6R or P2Y14R can protect against diet-induced obesity and improve whole-body glucose metabolism. The P2Y2R facilitated adipogenesis and inflammation, and the loss of P2Y4R or P2Y14R raised the levels of the protective endocrine factor adiponectin. Hence, potent antagonists for these receptors may be tested to identify drug candidates for the treatment of obesity and type 2 diabetes. However, future studies are required to provide insight into purinergic regulation of brown adipocytes and their role in thermogenesis. This review summarizes the current studies on uridine nucleotide-activated P2YRs and their role in adipocyte function, diet-induced obesity and associated metabolic deficits.


Assuntos
Diabetes Mellitus Tipo 2 , Nucleotídeos de Uracila , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores Purinérgicos/metabolismo , Nucleotídeos de Uracila/metabolismo , Nucleotídeos de Uracila/farmacologia
17.
Science ; 375(6577): 161-167, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-34855509

RESUMO

The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and older adults. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with high selectivity index in cells and human airway epithelia organoids. Polymerase inhibition within in vitro RNA-dependent RNA polymerase assays established for RSV and SARS-CoV-2 revealed transcriptional stalling after incorporation. Once-daily oral treatment was highly efficacious at 5 milligrams per kilogram (mg/kg) in RSV-infected mice or 20 mg/kg in ferrets infected with different SARS-CoV-2 variants of concern, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2, and related RNA virus infections.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Nucleotídeos de Uracila/farmacologia , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/metabolismo , COVID-19/virologia , Linhagem Celular , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Modelos Animais de Doenças , Feminino , Furões , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mononegavirais/efeitos dos fármacos , Mononegavirais/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Transcrição Gênica , Nucleotídeos de Uracila/administração & dosagem , Nucleotídeos de Uracila/metabolismo , Replicação Viral/efeitos dos fármacos
18.
Sci Rep ; 11(1): 9124, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907267

RESUMO

There is still no established therapeutic solution for postoperative Dry Eye Syndrome (DES) after cataract surgery, in spite of progress in surgical techniques. Diquafosol tetrasodium (DQS), a recently developed ophthalmic solution, has been reported to be effective in DES, but no study evaluated post-cataract surgery lipid layer thickness (LLT) changes in healthy patients who used DQS postoperatively. We randomly divided participants into two groups; the DQS group was treated six times daily with DQS after cataract surgery, and the sodium hyaluronate (HA) group was treated with HA in the same way. Throughout study period, the DQS group showed significantly higher tear break up time (TBUT) and LLT than HA group. In multivariate analysis, better preoperative TBUT, Schirmer's I test score, ocular surface disease index (OSDI) score, and LLT were significantly associated with improved postoperative outcomes in each parameter. Also, the postoperative use of DQS served as an independent parameter of better TBUT, OSDI score, and LLT in postoperative 15 weeks. Treatment with 3% DQS following cataract surgery showed more improvement in TBUT and LLT, compared with 0.1% HA. Improving TBUT and LLT preoperatively and using 3% DQS postoperatively, could be a reliable choice for managing DES after cataract surgery.Trial Registration: ISRCTN registry with ISRCTN 18755487.


Assuntos
Extração de Catarata , Síndromes do Olho Seco/tratamento farmacológico , Polifosfatos/farmacologia , Nucleotídeos de Uracila/farmacologia , Idoso , Síndromes do Olho Seco/etiologia , Feminino , Humanos , Ácido Hialurônico/farmacologia , Masculino , Pessoa de Meia-Idade , Soluções Oftálmicas/farmacologia , Cuidados Pós-Operatórios , Estudos Prospectivos , Lágrimas , Resultado do Tratamento
19.
Sci Rep ; 11(1): 6989, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772064

RESUMO

Diquafosol tetrasodium (DQS), a purinergic P2Y2 receptor agonist, stimulates secretion of both water and mucins from the conjunctiva into tears. Hence, DQS-containing eye drops have been approved as a therapeutic option for dry eye disease in some Asian countries, including Japan. Recent clinical reports state that instilling DQS-containing eye drops significantly increases the lipid layer thickness in tears. Therefore, we examined this compound's direct actions on holocrine lipid-secreting meibomian gland cells and their function. Isolated meibomian gland cells (meibocytes) were procured from rabbits and cultivated in serum-free culture medium. Differentiated meibocytes with pioglitazone were used for the subsequent experiments. Intracellular Ca2+ signalling of the cells was dramatically elevated with DQS addition in a dose-dependent manner. This DQS-induced elevation was almost completely cancelled by the coexistence of the selective P2Y2 receptor antagonist AR-C118925XX. DQS treatment also facilitated total cholesterol (TC) release from cells into the medium. This effect of DQS on TC was suppressed significantly by the intracellular Ca2+ chelator BAPTA-AM as well as by AR-C118925XX. DNA fragmentation analysis revealed that DQS may have enhanced the apoptotic DNA fragmentation caused spontaneously by cells. Thus, DQS could stimulate meibocytes to release lipids through the P2Y2 receptor and possibly facilitate holocrine cell maturation.


Assuntos
Colesterol/metabolismo , Glândulas Tarsais/metabolismo , Soluções Oftálmicas/farmacologia , Polifosfatos/farmacologia , Receptores Purinérgicos P2Y2/metabolismo , Nucleotídeos de Uracila/farmacologia , Animais , Células Cultivadas , Síndromes do Olho Seco/patologia , Glândulas Tarsais/citologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , RNA Mensageiro/genética , Coelhos , Receptores Purinérgicos P2Y2/genética , Lágrimas/química
20.
J Exp Med ; 133(3): 665-76, 1971 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-4939152

RESUMO

Polyadenylic-polyuridylic acid complexes, a potent adjuvant to the immune response, were tested for action on thymic-influenced and bone marrow-derived lymphocytes in model systems deficient in one or the other of these cells. Adult mice, thymectomized at birth or mice treated with heterologous antithymocyte serum produced 90-95% fewer splenic rosette-forming cells than normal mice in response to an injection of sheep erythrocytes. Intravenous injection of complexes of homoribopolynucleotides, polyadenylic and polyuridylic acids, poly A:U with SRBC restored immunologic competence to NTx- or ATS-treated mice such that they produced normal or near normal levels of splenic RFC. In addition, injection of poly A:U enabled NTx mice to reject allogeneic skin grafts at the same rate as control mice with an intact thymus. Further reduction in residual thymocytes by combining neonatal thymectomy with ATS treatment reduced the number of anti-SRBC RFC induced by poly A:U. Lethally irradiated mice which received SRBC, excess bone marrow cells, and as few as 40,000 thymic lymphocytes were stimulated by poly A:U to produce RFC. No adjuvant effect was observed when irradiated mice received excess thymic lymphocytes and low doses of bone marrow cells with poly A:U. The results suggested that the adjuvant action of poly A:U was exerted on the thymic-influenced, antigen-reactive cell and that restoration of immunocompetence to NTx- or ATS-treated mice was caused by amplification of a small number of residual antigen-reactive cells which were influenced by the thymus in utero before thymectomy, or which survived treatment with ATS.


Assuntos
Adjuvantes Imunológicos , Formação de Anticorpos/efeitos dos fármacos , Linfócitos/imunologia , Polinucleotídeos/farmacologia , Timo/imunologia , Nucleotídeos de Adenina/farmacologia , Animais , Animais Recém-Nascidos , Células Produtoras de Anticorpos/efeitos dos fármacos , Antígenos , Soro Antilinfocitário/farmacologia , Eritrócitos/imunologia , Imunidade Celular , Camundongos , Modelos Biológicos , Ovinos , Transplante de Pele , Estimulação Química , Timectomia , Timo/citologia , Imunologia de Transplantes , Nucleotídeos de Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA