RESUMO
Hantaviruses are rodent-borne viruses causing serious zoonotic outbreaks worldwide for which no treatment is available. Hantavirus particles are pleomorphic and display a characteristic square surface lattice. The envelope glycoproteins Gn and Gc form heterodimers that further assemble into tetrameric spikes, the lattice building blocks. The glycoproteins, which are the sole targets of neutralizing antibodies, drive virus entry via receptor-mediated endocytosis and endosomal membrane fusion. Here we describe the high-resolution X-ray structures of the heterodimer of Gc and the Gn head and of the homotetrameric Gn base. Docking them into an 11.4-Å-resolution cryoelectron tomography map of the hantavirus surface accounted for the complete extramembrane portion of the viral glycoprotein shell and allowed a detailed description of the surface organization of these pleomorphic virions. Our results, which further revealed a built-in mechanism controlling Gc membrane insertion for fusion, pave the way for immunogen design to protect against pathogenic hantaviruses.
Assuntos
Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Orthohantavírus/química , Glicoproteínas/química , Glicoproteínas/ultraestrutura , Orthohantavírus/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/fisiologia , Conformação Proteica , Vírus de RNA , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/ultraestrutura , Vírion , Internalização do VírusRESUMO
Hantaviruses have evolved a unique translation strategy to boost the translation of viral mRNA in infected cells. Hantavirus nucleocapsid protein (NP) binds to the viral mRNA 5' UTR and the 40S ribosomal subunit via the ribosomal protein S19. NP associated ribosomes are selectively loaded on viral transcripts to boost their translation. Here we demonstrate that NP expression upregulated the steady-state levels of a subset of host cell factors primarily involved in protein processing in the endoplasmic reticulum. Detailed investigation of Valosin-containing protein (VCP/p97), one of the upregulated host factors, in both transfected and virus infected cells revealed that NP with the assistance of VCP mRNA 5' UTR facilitates the translation of downstream VCP ORF. The VCP mRNA contains a 5' UTR of 987 nucleotides harboring six unusual start codons upstream of the correct start codon for VCP which is located at 988th position from the 5' cap. In vitro translation of a GFP reporter transcript harboring the VCP mRNA 5' UTR generated both GFP and a short polypeptide of ~14 KDa by translation initiation from start codon located in the 5' UTR at 542nd position from the 5' cap. The translation initiation from 542nd AUG in the UTR sequence was confirmed in cells using a dual reporter construct expressing mCherry and GFP. The synthesis of 14KDa polypeptide dramatically inhibited the translation of the ORF from the downstream correct start codon at 988th position from the 5' cap. We report that purified NP binds to the VCP mRNA 5' UTR with high affinity and NP binding site is located close to the 542ndAUG. NP binding shuts down the translation of 14KDa polypeptide which then facilitates the translation initiation at the correct AUG codon. Knockdown of VCP generated lower levels of poorly infectious hantavirus particle in the cellular cytoplasm whose egress was dramatically inhibited in human umbilical vein endothelial cells. We demonstrated that VCP binds to the hantavirus glycoprotein Gn before its incorporation into assembled virions and facilitates viral spread to neighboring cells during infection. Our results suggest that ribosome engagement at the 542nd AUG codon in the 5' UTR likely regulates the endogenous steady state levels of VCP in cells. Hantaviruses interrupt this regulatory mechanism to enhance the steady state levels of VCP in virus infected cells. This augmentation facilitates virus replication, supports the transmission of the virus to adjacent cells, and promotes the release of infectious virus particles from the host cell.
Assuntos
Orthohantavírus , Proteoma , Humanos , Códon de Iniciação , Proteoma/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Células Endoteliais/metabolismo , Regiões 5' não Traduzidas , Orthohantavírus/genética , RNA Mensageiro/genética , Peptídeos/metabolismo , Biossíntese de ProteínasRESUMO
Hantaviruses cause the acute zoonotic diseases hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Infected patients show strong systemic inflammation and immune cell activation. NK cells are highly activated in HFRS, suggesting that also other innate lymphoid cells (ILCs) might be responding to infection. Here, we characterized peripheral ILC responses, and measured plasma levels of soluble factors and plasma viral load, in 17 Puumala virus (PUUV)-infected HFRS patients. This revealed an increased frequency of ILC2 in patients, in particular the ILC2 lineage-committed c-Kitlo ILC2 subset. Patients' ILCs showed an activated profile with increased proliferation and displayed altered expression of several homing markers. How ILCs are activated during viral infection is largely unknown. When analyzing PUUV-mediated activation of ILCs in vitro we observed that this was dependent on type I interferons, suggesting a role for type I interferons-produced in response to virus infection-in the activation of ILCs. Further, stimulation of naïve ILC2s with IFN-ß affected ILC2 cytokine responses in vitro, causing decreased IL-5 and IL-13, and increased IL-10, CXCL10, and GM-CSF secretion. These results show that ILCs are activated in HFRS patients and suggest that the classical antiviral type I IFNs are involved in shaping ILC functions.
Assuntos
Febre Hemorrágica com Síndrome Renal , Imunidade Inata , Interferon Tipo I , Linfócitos , Febre Hemorrágica com Síndrome Renal/imunologia , Febre Hemorrágica com Síndrome Renal/virologia , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Imunidade Inata/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Virus Puumala/imunologia , Masculino , Orthohantavírus/imunologia , Feminino , Adulto , Pessoa de Meia-Idade , Citocinas/metabolismo , Citocinas/imunologiaRESUMO
The Bunyavirales order is a large and diverse group of segmented negative-strand RNA viruses. Several virus families within this order contain important human pathogens, including Sin Nombre virus (SNV) of the Hantaviridae. Despite the high epidemic potential of bunyaviruses, specific medical countermeasures such as vaccines or antivirals are missing. The multifunctional ~250 kDa L protein of hantaviruses, amongst other functional domains, harbors the RNA-dependent RNA polymerase (RdRp) and an endonuclease and catalyzes transcription as well as replication of the viral RNA genome, making it a promising therapeutic target. The development of inhibitors targeting these key processes requires a profound understanding of the catalytic mechanisms. Here, we established expression and purification protocols of the full-length SNV L protein bearing the endonuclease mutation K124A. We applied different biochemical in vitro assays to provide an extensive characterization of the different enzymatic functions as well as the capacity of the hantavirus L protein to interact with the viral RNA. By using single-particle cryo-EM, we obtained a 3D model including the L protein core region containing the RdRp, in complex with the 5' promoter RNA. This first high-resolution model of a New World hantavirus L protein shows striking similarity to related bunyavirus L proteins. The interaction of the L protein with the 5' RNA observed in the structural model confirms our hypothesis of protein-RNA binding based on our biochemical data. Taken together, this study provides an excellent basis for future structural and functional studies on the hantavirus L protein and for the development of antiviral compounds.
Assuntos
Bunyaviridae , Orthohantavírus , Vírus de RNA , Vírus Sin Nombre , Humanos , Vírus Sin Nombre/genética , Vírus Sin Nombre/metabolismo , Orthohantavírus/genética , RNA Polimerase Dependente de RNA/genética , Bunyaviridae/metabolismo , RNA Viral/genética , Vírus de RNA/genética , Endonucleases/genética , Endonucleases/metabolismoRESUMO
BACKGROUND: Andes virus (ANDV), a rodent-borne hantavirus, causes hantavirus pulmonary syndrome (HPS). The safety and immunogenicity of a novel ANDV DNA vaccine was evaluated. METHODS: Phase 1, double-blind, dose-escalation trial randomly assigned 48 healthy adults to placebo or ANDV DNA vaccine delivered via needle-free jet injection. Cohorts 1 and 2 received 2 mg of DNA or placebo in a 3-dose (days 1, 29, 169) or 4-dose (days 1, 29, 57, 169) schedule, respectively. Cohorts 3 and 4 received 4 mg of DNA or placebo in the 3-dose and 4-dose schedule, respectively. Subjects were monitored for safety and neutralizing antibodies by pseudovirion neutralization assay (PsVNA50) and plaque reduction neutralization test (PRNT50). RESULTS: While 98% and 65% of subjects had at least 1 local or systemic solicited adverse event (AE), respectively, most AEs were mild or moderate; no related serious AEs were detected. Cohorts 2, 3, and 4 had higher seroconversion rates than cohort 1 and seropositivity of at least 80% by day 197, sustained through day 337. PsVNA50 geometric mean titers were highest for cohort 4 on and after day 197. CONCLUSIONS: This first-in-human candidate HPS vaccine trial demonstrated that an ANDV DNA vaccine was safe and induced a robust, durable immune response. Clinical Trials Registration. NCT03682107.
Assuntos
Síndrome Pulmonar por Hantavirus , Orthohantavírus , Vacinas de DNA , Adulto , Humanos , Vacinas de DNA/efeitos adversos , Anticorpos Neutralizantes , DNA , Imunogenicidade da Vacina , Método Duplo-Cego , Anticorpos AntiviraisRESUMO
Orthohantaviruses cause hantavirus cardiopulmonary syndrome; most cases occur in the southwest region of the United States. We discuss a clinical case of orthohantavirus infection in a 65-year-old woman in Michigan and the phylogeographic link of partial viral fragments from the patient and rodents captured near the presumed site of infection.
Assuntos
Infecções por Hantavirus , Orthohantavírus , Feminino , Humanos , Idoso , Michigan/epidemiologia , Filogeografia , SíndromeRESUMO
Few cases of hantavirus pulmonary syndrome have been reported in northeastern Argentina. However, neighboring areas show a higher incidence, suggesting underreporting. We evaluated the presence of antibodies against orthohantavirus in small rodents throughout Misiones province. Infected Akodon affinis montensis and Oligoryzomys nigripes native rodents were found in protected areas of Misiones.
Assuntos
Anticorpos Antivirais , Orthohantavírus , Animais , Argentina/epidemiologia , Orthohantavírus/imunologia , Orthohantavírus/classificação , Orthohantavírus/isolamento & purificação , Anticorpos Antivirais/sangue , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/veterinária , Infecções por Hantavirus/virologia , Roedores/virologia , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/virologia , Humanos , Síndrome Pulmonar por Hantavirus/epidemiologia , Reservatórios de Doenças/virologiaRESUMO
We report complete coding sequences of Orthohantavirus dobravaense (Dobrava virus) Igneada strains and phylogenetic characterization of all available complete coding sequences. Our analyses suggested separation of host-dependent lineages, followed by geographic clustering. Surveillance of orthohantaviruses using complete genomes would be useful for assessing public health threats from Dobrava virus.
Assuntos
Orthohantavírus , Vírus de RNA , Filogenia , Análise por Conglomerados , Saúde PúblicaRESUMO
A cluster of 3 persons in Germany experienced hantavirus disease with renal insufficiency. Reverse transcription PCR-based genotyping revealed infection by Seoul hantavirus transmitted from pet rats. Seoul virus could be responsible for disease clusters in Europe, and infected pet rats should be considered a health threat.
Assuntos
Orthohantavírus , Vírus de RNA , Vírus Seoul , Animais , Ratos , Vírus Seoul/genética , Hotspot de Doença , Alemanha/epidemiologia , Europa (Continente)RESUMO
We investigated a cohort of 370 patients in Austria with hantavirus infections (7.8% ICU admission rate) and detected 2 cases (cumulative incidence 7%) of invasive pulmonary aspergillosis; 1 patient died. Hantavirus-associated pulmonary aspergillosis may complicate the course of critically ill patients who have hemorrhagic fever with renal syndrome.
Assuntos
Estado Terminal , Infecções por Hantavirus , Aspergilose Pulmonar Invasiva , Humanos , Áustria/epidemiologia , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/complicações , Aspergilose Pulmonar Invasiva/epidemiologia , Aspergilose Pulmonar Invasiva/tratamento farmacológico , OrthohantavírusRESUMO
Orthohantaviruses, etiological agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) outbreaks are particularly endemic in Gyeonggi Province in northern area of the Republic of Korea (ROK). Small mammals were collected from three regions in the Gyeonggi Province during 2017 and 2018. Serological and molecular prevalence of HTNV was 25/201 (12.4%) and 10/25 (40%), respectively. A novel nanopore-based diagnostic assay using a cost-efficient Flongle chip was developed to rapidly and sensitively detect HTNV infection in rodent specimens within 3 h. A rapid phylogeographical surveillance of HTNV at high-resolution phylogeny was established using the amplicon-based Flongle sequencing. In total, seven whole-genome sequences of HTNV were newly obtained from wild rodents collected in Paju-si (Gaekhyeon-ri) and Yeoncheon-gun (Hyeonga-ri and Wangnim-ri), Gyeonggi Province. Phylogenetic analyses revealed well-supported evolutionary divergence and genetic diversity, enhancing the resolution of the phylogeographic map of orthohantaviruses in the ROK. Incongruences in phylogenetic patterns were identified among HTNV tripartite genomes, suggesting differential evolution for each segment. These findings provide crucial insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK.
Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Animais , Filogenia , Vírus Hantaan/genética , Orthohantavírus/genética , Roedores , Mamíferos , República da Coreia/epidemiologiaRESUMO
BACKGROUND: Eurasian pathogenic orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS) characterized by acute kidney injury (AKI). The virulence of orthohantaviruses varies enormously and direct infection of different renal cell types contribute to pathogenesis. Glomerular mesangial cells play an essential role in the interplay between kidney cells and proper kidney function. Therefore, we analyzed the replication competence of different orthohantavirus species in primary mesangial cells and a mesangial cell line. METHODS: We tested the suitability of the mesangial cell line CIHGM-1 (conditionally immortalized human glomerular mesangial cells) as cell culture model for orthohantavirus kidney infection by comparison with primary human renal mesangial cells (HRMCs). We analyzed infection with high pathogenic Hantaan virus (HTNV), moderate pathogenic Puumala virus (PUUV) and non-/low-pathogenic Tula virus (TULV). RESULTS: Effective viral spread was observed for PUUV only, whereas infection with HTNV and TULV was abortive. However, in contrast to TULV, HTNV exhibits an initially high infection rate and declines afterwards. This replication pattern was observed in HRMCs and CIHGM-1 cells. Viability or adhesion was neither impaired for PUUV-infected CIHGM-1 nor HRMCs. A loss of migration capacity was observed in PUUV-infected CIHGM-1 cells, but not in HRMCs. CONCLUSIONS: The identification of differences in the replication competence of pathogenic orthohantavirus strains in renal mesangial cells is of special interest and may provide useful insights in the virus-specific mechanisms of orthohantavirus induced AKI. The use of CIHGM-1 cells will facilitate the research in a relevant cell culture system.
Assuntos
Células Mesangiais , Orthohantavírus , Replicação Viral , Células Mesangiais/virologia , Humanos , Orthohantavírus/fisiologia , Orthohantavírus/patogenicidade , Linhagem Celular , Vírus Hantaan/fisiologia , Vírus Hantaan/patogenicidade , Virus Puumala/fisiologia , Virus Puumala/patogenicidade , Febre Hemorrágica com Síndrome Renal/virologia , Cinética , AnimaisRESUMO
Orthohantaviruses are zoonotic pathogens that cause acute and severe syndromes in humans. This review was performed to estimate the occurrence of human orthohantaviruses in South America between 2010 and 2022. A careful evaluation of the eligibility and quality of the articles was carried out after a systematic bibliographic search of four databases. The pooled frequency of human orthohantaviruses was calculated using a random effects model meta-analysis. The heterogeneity of estimates (resulting from the chi2 test and I2 statistics) was investigated by subgroup analysis and meta-regression. 1,962 confirmed cases of orthohantavirus infections were diagnosed among 35,548 individuals from seven South American countries. The general occurrence of orthohantaviruses was estimated to be 4.4% (95% confidence interval: 2.9-6.2%) based on general pooling of human cases from 32 studies. In a subgroup analysis considering the study design and method of diagnosis, the percentages of diagnosed orthohantavirus infections differed substantially (I2 = 97.8%, p = 0.00) among South American countries. Four genetic variants of orthohantavirus have been identified circulating in Argentina, Brazil, Bolivia, Chile, Colombia, and Peru. Although laboratory diagnosis of orthohantaviruses is not performed in many countries in South America, there is evidence that four different orthohantaviruses are circulating in the region. The pooled occurrence of viral infection was approximately 4.0% in more than half of the South American countries. Updated information on the occurrence of human infections is essential for monitoring the territorial spread and determining the frequency of this zoonosis.
Assuntos
Infecções por Hantavirus , Orthohantavírus , Animais , Humanos , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/virologia , Orthohantavírus/genética , Orthohantavírus/classificação , Orthohantavírus/isolamento & purificação , América do Sul/epidemiologiaRESUMO
The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.
Assuntos
Caderinas/metabolismo , Orthohantavírus/fisiologia , Internalização do Vírus , Animais , Caderinas/química , Caderinas/deficiência , Caderinas/genética , Células Endoteliais/virologia , Feminino , Orthohantavírus/patogenicidade , Síndrome Pulmonar por Hantavirus/virologia , Haploidia , Interações Hospedeiro-Patógeno/genética , Humanos , Pulmão/citologia , Masculino , Mesocricetus/virologia , Domínios Proteicos , Protocaderinas , Vírus Sin Nombre/patogenicidade , Vírus Sin Nombre/fisiologiaRESUMO
Nephropathia epidemica (NE), caused by Puumala (PUUV) orthohantavirus, is endemic in the Republic of Tatarstan (RT). There are limited options for NE prevention in RT. Currently, available vaccines are made using Haantan (HNTV) orthohantavirus antigens. In this study, the efficacy of microvesicles (MVs) loaded with PUUV antigens to induce the humoral immune response in small mammals was analyzed. Additionally, the cross-reactivity of serum from immunized small mammals and NE patients with HNTV, Dobrava, and Andes orthohantaviruses was investigated using nucleocapsid (N) protein peptide libraries. Finally, the selected peptides were analyzed for allergenicity, their ability to induce an autoimmune response, and their interaction with Class II HLA. Several N protein peptides were found to be cross-reactive with serum from MVs immunized small mammals. These cross-reactive epitopes were located in oligomerization perinuclear targeting and Daxx-interacting domains. Most cross-reactive peptides lack allergenic and autoimmune reactivity. Molecular docking revealed two cross-reacting peptides, N6 and N19, to have good binding with three Class II HLA alleles. These peptides could be candidates for developing vaccines and therapeutics for NE.
Assuntos
Anticorpos Antivirais , Antígenos Virais , Reações Cruzadas , Virus Puumala , Animais , Reações Cruzadas/imunologia , Antígenos Virais/imunologia , Antígenos Virais/química , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Virus Puumala/imunologia , Imunização , Simulação de Acoplamento Molecular , Orthohantavírus/imunologiaRESUMO
INTRODUCTION: Hantavirus infection is a zoonotic disease from rodents to humans, necessitating seroprevalence assessment for disease burden clarification and control measure implementation. This study aimed to estimate global hantaviruses seroprevalence, examining variations by regions, populations or settings. METHODS: A comprehensive database search identified studies on human hantaviruses seroprevalence using IgG detection until january 2024. A random-effects meta-analysis estimated pooled seroprevalence, with subgroup analyses for geographical region, population, setting or occupation. RESULTS: Out of 3,382 abstracts reviewed, 110 studies were selected, comprising 81,815 observations and 3207 events. The global seroprevalence was calculated at 2.93% (2.34%-3.67%). In terms of geographical distribution, our analysis encompassed 61 studies from the Americas, where the seroprevalence was estimated at 2.43% (95% CI: 1.71%-3.46%), 33 studies from Europe indicating a seroprevalence of 2.98% (95% CI: 2.19%-4.06%), 10 studies from Asia revealing a seroprevalence of 6.84% (95% CI: 3.64%-12.50%), and 6 studies from Africa demonstrating a seroprevalence of 2.21% (95% CI: 1.82%-2.71%). Subgroup analysis underscored varying seroprevalence rates across different populations, settings, and occupations, highlighting the necessity for targeted interventions and preventive measures. CONCLUSION: The analysis reveals a moderate global hantaviruses seroprevalence, emphasizing the viral family's complex transmission dynamics influenced by exposure and geographical factors. This highlights the need for targeted prevention and control strategies.
Assuntos
Infecções por Hantavirus , Estudos Soroepidemiológicos , Humanos , Infecções por Hantavirus/epidemiologia , Saúde Global/estatística & dados numéricos , Orthohantavírus/imunologia , Orthohantavírus/isolamento & purificação , AnimaisRESUMO
Objective: To investigate the distribution and hantavirus (HV) carrying state in host animals of hemorrhagic fever with renal syndrome (HFRS) in Henan Province from 2019 to 2022. Methods: Host animal monitoring was carried out at the monitoring sites of HFRS in Henan Province. The real-time fluorescence quantitative PCR was used to detect hantavirus in rat lungs. The types of hantavirus were analyzed. The positive samples were sequenced and then sequence homology and variation were analyzed. Results: A total of 1 308 rodents were captured from 2019 to 2022, 16 specimens of rat lungs tested positive for hantavirus nucleic acid. The positive rate of HV was 1.22% (16/1 308). According to type, the positive rate of HV in Apodius agrarius was the highest (68.75%, 11/16). According to distribution, the positive rate of HV in field samples was the highest (2.50%, 12/480), and the positive rate of HV in residential samples was 0.53% (4/759). The typing results of 16 positive samples showed that all viruses were hantavirus type â (hantaan virus). The positive samples were sequenced and eight S gene fragments (GenBank number: OQ681444-OQ681451) and six M gene fragments (OQ681438-OQ681443) were obtained. The S and M gene fragments were similar to the Shaanxi 84FLi strain and Sichuan SN7 strain. Phylogenetic analysis of S and M gene fragments showed that they all belonged to the hantaan virus-H5 subtype. Amino acid sequence analysis revealed that, compared with the hantaan virus vaccine strain 84FLi, the 74th amino acid encoded by eight S fragments was replaced by aspartamide with serine. Tryptophan was replaced by glycine at the 14th position of Gn region in XC2022047, and isoleucine was replaced by alanine at the 359 position of XC2022022 and XC2022024. Conclusion: The hantavirus carried by host animals in Henan Province from 2019 to 2022 belongs to the type â (hantaan virus), and Apodemus agrarius is still the dominant host animal of the hantaan virus. Compared with the vaccine strains, amino acid sites are replaced in the immune epitopes of the S and M gene fragments.
Assuntos
Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Vacinas , Animais , Febre Hemorrágica com Síndrome Renal/epidemiologia , Filogenia , Orthohantavírus/genética , Murinae , Aminoácidos/genéticaRESUMO
Several occurrences of human-to-human transmission of Andes virus, an etiological agent of hantavirus cardiopulmonary syndrome, are documented. Syrian hamsters consistently model human hantavirus cardiopulmonary syndrome, yet neither transmission nor shedding has been investigated. We demonstrate horizontal virus transmission and show that Andes virus is shed efficiently from both inoculated and contact-infected hamsters.
Assuntos
Orthohantavírus , Animais , Cricetinae , Humanos , Mesocricetus , SíndromeRESUMO
We report a novel orthohantavirus, putatively named Ozark orthohantavirus, in hispid cotton rats captured within the Ozark Plateau in Arkansas, USA. This virus phylogenetically clusters with other orthohantaviruses that cause severe human disease. Continued orthohantavirus surveillance and virus sequencing are needed to address the potential public health threat of this virus.
Assuntos
Infecções por Hantavirus , Orthohantavírus , Vírus de RNA , Animais , Humanos , Arkansas/epidemiologia , Anticorpos Antivirais , SigmodontinaeRESUMO
Seoul orthohantavirus (SEOV) is not considered a major public health threat on the continent of Africa. However, Africa is exposed to rodentborne SEOV introduction events through maritime traffic after exponential growth of trade with the rest of the world. Serologic studies have already detected hantavirus antibodies in human populations, and recent investigations have confirmed circulation of hantavirus, including SEOV, in rat populations. Thus, SEOV is a possible emerging zoonotic risk in Africa. Moreover, the range of SEOV could rapidly expand, and transmission to humans could increase because of host switching from the usual brown rat (Rattus norvegicus) species, which is currently invading Africa, to the more widely installed black rat (R. rattus) species. Because of rapid economic development, environmental and climatic changes, and increased international trade, strengthened surveillance is urgently needed to prevent SEOV dissemination among humans in Africa.