Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.309
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 57(2): 349-363.e9, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309272

RESUMO

Microglial reactivity to injury and disease is emerging as a heterogeneous, dynamic, and crucial determinant in neurological disorders. However, the plasticity and fate of disease-associated microglia (DAM) remain largely unknown. We established a lineage tracing system, leveraging the expression dynamics of secreted phosphoprotein 1(Spp1) to label and track DAM-like microglia during brain injury and recovery. Fate mapping of Spp1+ microglia during stroke in juvenile mice revealed an irreversible state of DAM-like microglia that were ultimately eliminated from the injured brain. By contrast, DAM-like microglia in the neonatal stroke models exhibited high plasticity, regaining a homeostatic signature and integrating into the microglial network after recovery. Furthermore, neonatal injury had a lasting impact on microglia, rendering them intrinsically sensitized to subsequent immune challenges. Therefore, our findings highlight the plasticity and innate immune memory of neonatal microglia, shedding light on the fate of DAM-like microglia in various neuropathological conditions.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Animais , Camundongos , Microglia , Encéfalo/metabolismo , Osteopontina/metabolismo
2.
Cell ; 164(1-2): 219-232, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771493

RESUMO

Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury.


Assuntos
Axônios/fisiologia , Colículos Superiores/fisiologia , 4-Aminopiridina/farmacologia , Animais , Axônios/efeitos dos fármacos , Fator Neurotrófico Ciliar/metabolismo , Fenômenos Eletrofisiológicos , Olho/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Nervo Óptico , Osteopontina/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Regeneração/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Sinapses
3.
Immunity ; 54(7): 1527-1542.e8, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34015256

RESUMO

The precise mechanisms underlying the beneficial effects of regulatory T (Treg) cells on long-term tissue repair remain elusive. Here, using single-cell RNA sequencing and flow cytometry, we found that Treg cells infiltrated the brain 1 to 5 weeks after experimental stroke in mice. Selective depletion of Treg cells diminished oligodendrogenesis, white matter repair, and functional recovery after stroke. Transcriptomic analyses revealed potent immunomodulatory effects of brain-infiltrating Treg cells on other immune cells, including monocyte-lineage cells. Microglia depletion, but not T cell lymphopenia, mitigated the beneficial effects of transferred Treg cells on white matter regeneration. Mechanistically, Treg cell-derived osteopontin acted through integrin receptors on microglia to enhance microglial reparative activity, consequently promoting oligodendrogenesis and white matter repair. Increasing Treg cell numbers by delivering IL-2:IL-2 antibody complexes after stroke improved white matter integrity and rescued neurological functions over the long term. These findings reveal Treg cells as a neurorestorative target for stroke recovery.


Assuntos
Isquemia Encefálica/imunologia , AVC Isquêmico/imunologia , Microglia/imunologia , Osteopontina/imunologia , Recuperação de Função Fisiológica/imunologia , Linfócitos T Reguladores/imunologia , Substância Branca/imunologia , Animais , Modelos Animais de Doenças , Interleucina-2/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Nat Immunol ; 18(9): 973-984, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671690

RESUMO

The balance of myeloid populations and lymphoid populations must be well controlled. Here we found that osteopontin (OPN) skewed this balance during pathogenic conditions such as infection and autoimmunity. Notably, two isoforms of OPN exerted distinct effects in shifting this balance through cell-type-specific regulation of apoptosis. Intracellular OPN (iOPN) diminished the population size of myeloid progenitor cells and myeloid cells, and secreted OPN (sOPN) increase the population size of lymphoid cells. The total effect of OPN on skewing the leukocyte population balance was observed as host sensitivity to early systemic infection with Candida albicans and T cell-mediated colitis. Our study suggests previously unknown detrimental roles for two OPN isoforms in causing the imbalance of leukocyte populations.


Assuntos
Doenças Autoimunes/imunologia , Candidíase/imunologia , Colite/imunologia , Infecções/imunologia , Linfócitos/imunologia , Células Mieloides/imunologia , Osteopontina/imunologia , Animais , Apoptose , Candida albicans , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Linfopoese/imunologia , Camundongos , Camundongos Knockout , Mielopoese/imunologia , Osteopontina/genética , Isoformas de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T
5.
Immunity ; 53(3): 641-657.e14, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888418

RESUMO

Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs), are suggested to play important roles in the pathogenesis of MAFLD through their activation, although the exact roles played by these cells remain unclear. Here, we demonstrated that KCs were reduced in MAFLD being replaced by macrophages originating from the bone marrow. Recruited macrophages existed in two subsets with distinct activation states, either closely resembling homeostatic KCs or lipid-associated macrophages (LAMs) from obese adipose tissue. Hepatic LAMs expressed Osteopontin, a biomarker for patients with NASH, linked with the development of fibrosis. Fitting with this, LAMs were found in regions of the liver with reduced numbers of KCs, characterized by increased Desmin expression. Together, our data highlight considerable heterogeneity within the macrophage pool and suggest a need for more specific macrophage targeting strategies in MAFLD.


Assuntos
Células da Medula Óssea/citologia , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Osteopontina/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Desmina/metabolismo , Feminino , Células de Kupffer/citologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Transcriptoma/genética
6.
Immunity ; 53(2): 429-441.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814029

RESUMO

A minor haplotype of the 10q26 locus conveys the strongest genetic risk for age-related macular degeneration (AMD). Here, we examined the mechanisms underlying this susceptibility. We found that monocytes from homozygous carriers of the 10q26 AMD-risk haplotype expressed high amounts of the serine peptidase HTRA1, and HTRA1 located to mononuclear phagocytes (MPs) in eyes of non-carriers with AMD. HTRA1 induced the persistence of monocytes in the subretinal space and exacerbated pathogenic inflammation by hydrolyzing thrombospondin 1 (TSP1), which separated the two CD47-binding sites within TSP1 that are necessary for efficient CD47 activation. This HTRA1-induced inhibition of CD47 signaling induced the expression of pro-inflammatory osteopontin (OPN). OPN expression increased in early monocyte-derived macrophages in 10q26 risk carriers. In models of subretinal inflammation and AMD, OPN deletion or pharmacological inhibition reversed HTRA1-induced pathogenic MP persistence. Our findings argue for the therapeutic potential of CD47 agonists and OPN inhibitors for the treatment of AMD.


Assuntos
Antígeno CD47/metabolismo , Cromossomos Humanos Par 10/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Degeneração Macular/genética , Osteopontina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sítios de Ligação/fisiologia , Células COS , Linhagem Celular , Chlorocebus aethiops , Olho/patologia , Predisposição Genética para Doença/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Transdução de Sinais/genética
7.
Nature ; 618(7966): 808-817, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344645

RESUMO

Niche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration1. Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity. Here, using genetic mouse models of nevi2,3, we show that dermal clusters of senescent melanocytes drive epithelial hair stem cells to exit quiescence and change their transcriptome and composition, potently enhancing hair renewal. Nevus melanocytes activate a distinct secretome, enriched for signalling factors. Osteopontin, the leading nevus signalling factor, is both necessary and sufficient to induce hair growth. Injection of osteopontin or its genetic overexpression is sufficient to induce robust hair growth in mice, whereas germline and conditional deletions of either osteopontin or CD44, its cognate receptor on epithelial hair cells, rescue enhanced hair growth induced by dermal nevus melanocytes. Osteopontin is overexpressed in human hairy nevi, and it stimulates new growth of human hair follicles. Although broad accumulation of senescent cells, such as upon ageing or genotoxic stress, is detrimental for the regenerative capacity of tissue4, we show that signalling by senescent cell clusters can potently enhance the activity of adjacent intact stem cells and stimulate tissue renewal. This finding identifies senescent cells and their secretome as an attractive therapeutic target in regenerative disorders.


Assuntos
Cabelo , Melanócitos , Transdução de Sinais , Animais , Camundongos , Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Folículo Piloso/citologia , Folículo Piloso/fisiologia , Receptores de Hialuronatos/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Nevo/metabolismo , Nevo/patologia , Osteopontina/metabolismo , Células-Tronco/citologia
8.
Nat Immunol ; 16(1): 96-106, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25436971

RESUMO

Follicular helper T cells (TFH cells) and follicular regulatory T cells (TFR cells) regulate the quantity and quality of humoral immunity. Although both cell types express the costimulatory receptor ICOS and require the transcription factor Bcl-6 for their differentiation, the ICOS-dependent pathways that coordinate their responses are not well understood. Here we report that activation of ICOS in CD4(+) T cells promoted interaction of the p85α regulatory subunit of the signaling kinase PI(3)K and intracellular osteopontin (OPN-i), followed by translocation of OPN-i to the nucleus, its interaction with Bcl-6 and protection of Bcl-6 from ubiquitin-dependent proteasome degradation. Post-translational protection of Bcl-6 by OPN-i was essential for sustained responses of TFH cells and TFR cells and regulation of the germinal center B cell response to antigen. Thus, the p85α-OPN-i axis represents a molecular bridge that couples activation of ICOS to Bcl-6-dependent functional differentiation of TFH cells and TFR cells; this suggests new therapeutic avenues to manipulate the responses of these cells.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Osteopontina/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Feminino , Citometria de Fluxo , Centro Germinativo/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/genética , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-bcl-6/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Organismos Livres de Patógenos Específicos
9.
Immunity ; 49(5): 943-957.e9, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30389414

RESUMO

Although commensal flora is involved in the regulation of immunity, the interplay between cytokine signaling and microbiota in atherosclerosis remains unknown. We found that interleukin (IL)-23 and its downstream target IL-22 restricted atherosclerosis by repressing pro-atherogenic microbiota. Inactivation of IL-23-IL-22 signaling led to deterioration of the intestinal barrier, dysbiosis, and expansion of pathogenic bacteria with distinct biosynthetic and metabolic properties, causing systemic increase in pro-atherogenic metabolites such as lipopolysaccharide (LPS) and trimethylamine N-oxide (TMAO). Augmented disease in the absence of the IL-23-IL-22 pathway was mediated in part by pro-atherogenic osteopontin, controlled by microbial metabolites. Microbiota transfer from IL-23-deficient mice accelerated atherosclerosis, whereas microbial depletion or IL-22 supplementation reduced inflammation and ameliorated disease. Our work uncovers the IL-23-IL-22 signaling as a regulator of atherosclerosis that restrains expansion of pro-atherogenic microbiota and argues for informed use of cytokine blockers to avoid cardiovascular side effects driven by microbiota and inflammation.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Dieta , Microbioma Gastrointestinal , Homeostase , Interleucina-23/metabolismo , Interleucinas/metabolismo , Animais , Aterosclerose/patologia , Biomarcadores , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Imunofenotipagem , Interleucina-23/deficiência , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Osteopontina/genética , Osteopontina/metabolismo , Transdução de Sinais , Interleucina 22
10.
Immunity ; 49(1): 134-150.e6, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958800

RESUMO

Memory T cells provide long-lasting protective immunity, and distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes remain unknown. We found that interleukin-33 (IL-33) enhanced amphiregulin production by the IL-33 receptor, ST2hi memory T helper 2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and osteopontin-producing eosinophils. Thus, the IL-33-amphiregulin-osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders.


Assuntos
Anfirregulina/imunologia , Eosinófilos/imunologia , Osteopontina/metabolismo , Fibrose Pulmonar/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Anfirregulina/biossíntese , Anfirregulina/metabolismo , Anfirregulina/farmacologia , Animais , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Memória Imunológica/imunologia , Imunomodulação , Interleucina-33/metabolismo , Camundongos , Rinite/imunologia , Rinite/patologia , Sinusite/imunologia , Sinusite/patologia , Transcrição Gênica/efeitos dos fármacos
11.
PLoS Genet ; 20(4): e1011235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648200

RESUMO

Tumor-associated macrophages (TAM) subtypes have been shown to impact cancer prognosis and resistance to immunotherapy. However, there is still a lack of systematic investigation into their molecular characteristics and clinical relevance in different cancer types. Single-cell RNA sequencing data from three different tumor types were used to cluster and type macrophages. Functional analysis and communication of TAM subpopulations were performed by Gene Ontology-Biological Process and CellChat respectively. Differential expression of characteristic genes in subpopulations was calculated using zscore as well as edgeR and Wilcoxon rank sum tests, and subsequently gene enrichment analysis of characteristic genes and anti-PD-1 resistance was performed by the REACTOME database. We revealed the heterogeneity of TAM, and identified eleven subtypes and their impact on prognosis. These subtypes expressed different molecular functions respectively, such as being involved in T cell activation, apoptosis and differentiation, or regulating viral bioprocesses or responses to viruses. The SPP1 pathway was identified as a critical mediator of communication between TAM subpopulations, as well as between TAM and epithelial cells. Macrophages with high expression of SPP1 resulted in poorer survival. By in vitro study, we showed SPP1 mediated the interactions between TAM clusters and between TAM and tumor cells. SPP1 promoted the tumor-promoting ability of TAM, and increased PDL1 expression and stemness of tumor cells. Inhibition of SPP1 attenuated N-cadherin and ß-catenin expression and the activation of AKT and STAT3 pathway in tumor cells. Additionally, we found that several subpopulations could decrease the sensitivity of anti-PD-1 therapy in melanoma. SPP1 signal was a critical pathway of communication between macrophage subtypes. Some specific macrophage subtypes were associated with immunotherapy resistance and prognosis in some cancer types.


Assuntos
Neoplasias , Osteopontina , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Prognóstico , Neoplasias/imunologia , Neoplasias/genética , Osteopontina/genética , Osteopontina/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Análise de Célula Única , Transdução de Sinais , Macrófagos/imunologia , Macrófagos/metabolismo , Comunicação Celular/imunologia
12.
Proc Natl Acad Sci U S A ; 121(24): e2322009121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843187

RESUMO

Follicular helper T (TFH) cells mediate germinal center reactions to generate high affinity antibodies against specific pathogens, and their excessive production is associated with the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). ETV5, a member of the ETS transcription factor family, promotes TFH cell differentiation in mice. In this study, we examined the role of ETV5 in the pathogenesis of lupus in mice and humans. T cell-specific deletion of Etv5 alleles ameliorated TFH cell differentiation and autoimmune phenotypes in lupus mouse models. Further, we identified SPP1 as an ETV5 target that promotes TFH cell differentiation in both mice and humans. Notably, extracellular osteopontin (OPN) encoded by SPP1 enhances TFH cell differentiation by activating the CD44-AKT signaling pathway. Furthermore, ETV5 and SPP1 levels were increased in CD4+ T cells from patients with SLE and were positively correlated with disease activity. Taken together, our findings demonstrate that ETV5 is a lupus-promoting transcription factor, and secreted OPN promotes TFH cell differentiation.


Assuntos
Diferenciação Celular , Lúpus Eritematoso Sistêmico , Osteopontina , Fatores de Transcrição , Animais , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Osteopontina/metabolismo , Osteopontina/genética , Camundongos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos Knockout
13.
J Immunol ; 212(3): 487-499, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099710

RESUMO

Angiogenesis and immune protection are essential at the onset of tumorigenesis. Angiogenesis serves to nourish the tumor, and prevention of immune defenses, for example, by dendritic cells (DCs), allows tumor growth. In this study, we investigated whether there are factors with dual functions that are both angiogenic and immunomodulatory and represent a therapeutic target. We analyzed 1) innate immune responses intratumorally and in draining lymph nodes and 2) angiogenic factors in conjunctival melanoma (CM), a potentially lethal malignant tumor at the ocular surface whose immune and vascular responses are largely unknown. For this purpose, an HGF-Cdk4R24C model in immunocompetent C57BL/6 mice was used and revealed that CD103- type 2 classical DC (cDC2s) were the most abundant DC subtype in healthy conjunctiva, whereas in CM, CD103- cDC2s, CD103+ type 1 cDCs, monocyte-derived DCs, and plasmacytoid DCs were significantly increased. In our analysis of angiogenic factors in CM, the examination of 53 angiogenesis-related factors that might interact with DCs identified osteopontin (OPN) as a major tumor-derived protein that interacts with DCs. Consistent with these findings, 3) a dual therapeutic strategy that inhibited tumor cell function by an OPN blocking Ab while enhancing the immune response by cDC2 vaccination resulted in 35% failure of tumor development. Moreover, tumor progression, monocyte-derived DC infiltration, and intratumoral angiogenesis were significantly reduced, whereas survival and CD8+ T cell infiltration were increased in treated mice compared with the control group. Therefore, we identified OPN blockade in combination with cDC2 vaccination as a potential future therapeutic intervention for early stages of CM by combining antiangiogenic and host immune stimulating effects.


Assuntos
Melanoma , Osteopontina , Camundongos , Animais , Osteopontina/metabolismo , Melanoma/metabolismo , Camundongos Endogâmicos C57BL , Células Dendríticas , Vacinação
14.
Nature ; 583(7818): 819-824, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699411

RESUMO

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, regulates thalamocortical interactions that are critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. However, little is known about the organizational principles that underlie its divergent functions. Here we performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that cellular heterogeneity in the TRN is characterized by a transcriptomic gradient of two negatively correlated gene-expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core or shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections with the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. In sum, our study provides a comprehensive atlas of TRN neurons at single-cell resolution and links molecularly defined subnetworks to the functional organization of thalamocortical circuits.


Assuntos
Redes Reguladoras de Genes , Núcleos Talâmicos/citologia , Núcleos Talâmicos/metabolismo , Animais , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Metaloendopeptidases/metabolismo , Camundongos , Vias Neurais , Neurônios/metabolismo , Osteopontina/metabolismo , Técnicas de Patch-Clamp , RNA-Seq , Análise de Célula Única , Sono/genética , Sono/fisiologia , Núcleos Talâmicos/fisiologia , Transcriptoma
15.
Proc Natl Acad Sci U S A ; 120(6): e2218915120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730200

RESUMO

Alzheimer's disease (AD) is the most common form of incurable dementia and represents a critical public health issue as the world's population ages. Although microglial dysregulation is a cardinal feature of AD, the extensive heterogeneity of these immunological cells in the brain has impeded our understanding of their contribution to this disease. Here, we identify a pathogenic microglial subset which expresses the CD11c surface marker as the sole producer of Osteopontin (OPN) in the 5XFAD mouse model of AD. OPN production divides Disease-Associated Microglia (DAM) into two functionally distinct subsets, i.e., a protective CD11c+OPN- subset that robustly ingests amyloid ß (Aß) in a noninflammatory fashion and a pathogenic CD11c+OPN+ subset that produces proinflammatory cytokines and fails to ingest significant amounts of Aß. Genetic ablation of OPN or administration of monoclonal anti-OPN antibody to 5XFAD mice reduces proinflammatory microglia, plaque formation, and numbers of dystrophic neurites and results in improved cognitive function. Analysis of brain tissue from AD patients indicates that levels of OPN-producing CD11c+ microglia correlate strongly with the degree of cognitive deficit and AD neuropathology. These findings define an OPN-dependent pathway to disease driven by a distinct microglial subset, and identify OPN as a novel therapeutic target for potentially effective immunotherapy to treat AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Osteopontina/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Placa Amiloide/metabolismo
16.
Immunol Rev ; 311(1): 224-233, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35451082

RESUMO

Osteopontin (OPN) also known by its official gene designation secreted phosphoprotein-1 (SPP1) is a fascinating, multifunctional protein expressed in a number of cell types that functions not only in intercellular communication, but also in the extracellular matrix (ECM). OPN/SPP1 possesses cytokine, chemokine, and signal transduction functions by virtue of modular structural motifs that provide interaction surfaces for integrins and CD44-variant receptors. In humans, there are three experimentally verified splice variants of OPN/SPP1 and CD44's ten exons are also alternatively spiced in a cell/tissue-specific manner, although very little is known about how this is regulated in the central nervous system (CNS). Post-translational modifications of phosphorylation, glycosylation, and localized cleavage by specific proteases in the cells and tissues where OPN/SPP1 functions, provides additional layers of specificity. However, the former make elucidating the exact molecular mechanisms of OPN/SPP1 function more complex. Flexibility in OPN/SPP1 structure and its engagement with integrins having the ability to transmit signals in inside-out and outside-in direction, is likely why OPN/SPP1 can serve as an early detector of inflammation and ongoing tissue damage in response to cancer, stroke, traumatic brain injury, pathogenic infection, and neurodegeneration, processes that impair tissue homeostasis. This review will focus on what is currently known about OPN/SPP1 function in the brain.


Assuntos
Doenças Neuroinflamatórias , Osteopontina , Comunicação Celular , Citocinas , Humanos , Integrinas/metabolismo , Ligantes , Osteopontina/genética , Osteopontina/metabolismo , Peptídeo Hidrolases , Fosfoproteínas
17.
Hepatology ; 79(2): 269-288, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37535809

RESUMO

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which pharmacological treatment options are currently unavailable. PSC is strongly associated with colitis and a disruption of the gut-liver axis, and macrophages are involved in the pathogenesis of PSC. However, how gut-liver interactions and specific macrophage populations contribute to PSC is incompletely understood. APPROACH AND RESULTS: We investigated the impact of cholestasis and colitis on the hepatic and colonic microenvironment, and performed an in-depth characterization of hepatic macrophage dynamics and function in models of concomitant cholangitis and colitis. Cholestasis-induced fibrosis was characterized by depletion of resident KCs, and enrichment of monocytes and monocyte-derived macrophages (MoMFs) in the liver. These MoMFs highly express triggering-receptor-expressed-on-myeloid-cells-2 ( Trem2 ) and osteopontin ( Spp1 ), markers assigned to hepatic bile duct-associated macrophages, and were enriched around the portal triad, which was confirmed in human PSC. Colitis induced monocyte/macrophage infiltration in the gut and liver, and enhanced cholestasis-induced MoMF- Trem2 and Spp1 upregulation, yet did not exacerbate liver fibrosis. Bone marrow chimeras showed that knockout of Spp1 in infiltrated MoMFs exacerbates inflammation in vivo and in vitro , while monoclonal antibody-mediated neutralization of SPP1 conferred protection in experimental PSC. In human PSC patients, serum osteopontin levels are elevated compared to control, and significantly increased in advanced stage PSC and might serve as a prognostic biomarker for liver transplant-free survival. CONCLUSIONS: Our data shed light on gut-liver axis perturbations and macrophage dynamics and function in PSC and highlight SPP1/OPN as a prognostic marker and future therapeutic target in PSC.


Assuntos
Colangite Esclerosante , Colestase , Colite , Humanos , Colangite Esclerosante/patologia , Osteopontina , Cirrose Hepática/patologia , Ductos Biliares/patologia , Colestase/patologia , Macrófagos/patologia
18.
FASEB J ; 38(14): e23783, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037571

RESUMO

Secreted phosphoprotein 1 (SPP1), also known as osteopontin, is a phosphorylated protein. High SPP1 expression levels have been detected in multiple cancers and are associated with poor prognosis and reduced survival rates. However, only a few pan-cancer analyses have targeted SPP1. We conducted a comprehensive analysis using multiple public databases, including TIMER and TCGA, to investigate the expression levels of SPP1 in 33 different tumor types. In addition, we verified the effect of SPP1 on osteosarcoma. To assess the impact of SPP1 on patient outcomes, we employed univariate Cox regression and Kaplan-Meier survival analyses to analyze overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in these tumor patients. We also explored SPP1 gene alterations in various tumor tissues using cBioPortal. We then examined the relationship between SPP1 and clinical characteristics, TME, immune regulatory genes, immune checkpoints, TMB, and MSI using R language. In addition, we used GSEA to investigate the molecular mechanisms underlying the role of SPP1. Bioinformatics analysis indicated that SPP1 was upregulated in 17 tumors. Overexpression of SPP1 results in poor OS, DSS, and PFI in CESC, ESCA, GBM, LGG, LIHC, PAAD, PRAD, and skin cutaneous melanoma. SPP1 expression was positively associated with immunocyte infiltration, immune regulatory genes, immune checkpoints, TMB, MSI, and drug sensitivity in certain cancers. We found that high expression of SPP1 in osteosarcoma was related to drug resistance and metastasis and further demonstrated that SPP1 can stimulate osteosarcoma cell proliferation via CCND1 by activating the PI3K/Akt pathway. These findings strongly suggest that SPP1 is a potential prognostic marker and novel target for cancer immunotherapy.


Assuntos
Biomarcadores Tumorais , Osteopontina , Osteossarcoma , Humanos , Osteossarcoma/imunologia , Osteossarcoma/mortalidade , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteopontina/genética , Osteopontina/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
19.
Mol Ther ; 32(5): 1425-1444, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38504518

RESUMO

Pathological ocular angiogenesis has long been associated with myeloid cell activation. However, the precise cellular and molecular mechanisms governing the intricate crosstalk between the immune system and vascular changes during ocular neovascularization formation remain elusive. In this study, we demonstrated that the absence of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells led to a substantial accumulation of microglia and macrophage subsets during the neovascularization process. Our single-cell RNA sequencing data analysis revealed a remarkable increase in the expression of the secreted phosphoprotein 1 (Spp1) gene within these microglia and macrophages, identifying subsets of Spp1-expressing microglia and macrophages during neovascularization formation in angiogenesis mouse models. Notably, the number of Spp1-expressing microglia and macrophages exhibited further elevation during neovascularization in mice lacking myeloid SOCS3. Moreover, our investigation unveiled the Spp1 gene as a direct transcriptional target gene of signal transducer and activator of transcription 3. Importantly, pharmaceutical activation of SOCS3 or blocking of SPP1 resulted in a significant reduction in pathological neovascularization. In conclusion, our study highlights the pivotal role of the SOCS3/STAT3/SPP1 axis in the regulation of pathological retinal angiogenesis.


Assuntos
Macrófagos , Microglia , Osteopontina , Neovascularização Retiniana , Proteína 3 Supressora da Sinalização de Citocinas , Animais , Camundongos , Angiogênese , Modelos Animais de Doenças , Regulação da Expressão Gênica , Macrófagos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Osteopontina/metabolismo , Osteopontina/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/etiologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética
20.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35177477

RESUMO

Expression of Itgax (encoding the CD11c surface protein) and Spp1 (encoding osteopontin; OPN) has been associated with activated microglia that can develop in healthy brains and some neuroinflammatory disorders. However, whether CD11c and OPN expression is a consequence of microglial activation or represents a portion of the genetic program expressed by a stable microglial subset is unknown. Here, we show that OPN production in the brain is confined to a small CD11c+ microglial subset that differentiates from CD11c- precursors in perinatal life after uptake of apoptotic neurons. Our analysis suggests that coexpression of OPN and CD11c marks a microglial subset that is expressed at birth and persists into late adult life, independent of environmental activation stimuli. Analysis of the contribution of OPN to the intrinsic functions of this CD11c+ microglial subset indicates that OPN is required for subset stability and the execution of phagocytic and proinflammatory responses, in part through OPN-dependent engagement of the αVß3-integrin receptor. Definition of OPN-producing CD11c+ microglia as a functional microglial subset provides insight into microglial differentiation in health and disease.


Assuntos
Antígenos CD11/metabolismo , Microglia/fisiologia , Osteopontina/metabolismo , Animais , Encéfalo/metabolismo , Antígenos CD11/genética , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Inflamação/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Osteopontina/genética , Fagócitos/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA