Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34764222

RESUMO

Benthic N2 production by microbial denitrification and anammox is the largest sink for fixed nitrogen in the oceans. Most N2 production occurs on the continental shelves, where a high flux of reactive organic matter fuels the depletion of nitrate close to the sediment surface. By contrast, N2 production rates in abyssal sediments are low due to low inputs of reactive organics, and nitrogen transformations are dominated by aerobic nitrification and the release of nitrate to the bottom water. Here, we demonstrate that this trend is reversed in the deepest parts of the oceans, the hadal trenches, where focusing of reactive organic matter enhances benthic microbial activity. Thus, at ∼8-km depth in the Atacama Trench, underlying productive surface waters, nitrate is depleted within a few centimeters of the sediment surface, N2 production rates reach those reported from some continental margin sites, and fixed nitrogen loss is mainly conveyed by anammox bacteria. These bacteria are closely related to those known from shallow oxygen minimum zone waters, and comparison of activities measured in the laboratory and in situ suggest they are piezotolerant. Even the Kermadec Trench, underlying oligotrophic surface waters, exhibits substantial fixed N removal. Our results underline the role of hadal sediments as hot spots of deep-sea biological activity, revealing a fully functional benthic nitrogen cycle at high hydrostatic pressure and pointing to hadal sediments as a previously unexplored niche for anaerobic microbial ecology and diagenesis.


Assuntos
Sedimentos Geológicos/microbiologia , Fixação de Nitrogênio/fisiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia/fisiologia , Desnitrificação/fisiologia , Microbiota/fisiologia , Nitratos/metabolismo , Nitrificação/fisiologia , Ciclo do Nitrogênio/fisiologia , Oceanos e Mares
2.
Microbiologyopen ; 10(4): e1227, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459550

RESUMO

The imperfect denitrifier, Candidatus (Ca.) Desulfobacillus denitrificans, which lacks nitric oxide (NO) reductase, frequently appears in anammox bioreactors depending on the operating conditions. We used genomic and metatranscriptomic analyses to evaluate the metabolic potential of Ca. D. denitrificans and deduce its functional relationships to anammox bacteria (i.e., Ca. Brocadia pituitae). Although Ca. D. denitrificans is hypothesized to supply NO to Ca. B. pituitae as a byproduct of imperfect denitrification, this microbe also possesses hydroxylamine oxidoreductase, which catalyzes the oxidation of hydroxylamine to NO and potentially the reverse reaction. Ca. D. denitrificans can use a range of electron donors for denitrification, including aromatic compounds, glucose, sulfur compounds, and hydrogen, but metatranscriptomic analysis suggested that the major electron donors are aromatic compounds, which inhibit anammox activity. The interrelationship between Ca. D. denitirificans and Ca. B. pituitae via the metabolism of aromatic compounds may govern the population balance of both species. Ca. D. denitrificans also has the potential to fix CO2 via an irregular Calvin cycle and couple denitrification to the oxidation of hydrogen and sulfur compounds under chemolithoautotrophic conditions. This metabolic versatility, which suggests a mixotrophic lifestyle, would facilitate the growth of Ca. D. denitrificans in the anammox bioreactor.


Assuntos
Compostos de Amônio/metabolismo , Oxidação Anaeróbia da Amônia/fisiologia , Betaproteobacteria/metabolismo , Reatores Biológicos/microbiologia , Desnitrificação/fisiologia , Anaerobiose , Dióxido de Carbono/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Compostos Inorgânicos/metabolismo , Ácido Nítrico/metabolismo , Oxirredução , Planctomicetos/metabolismo , Compostos de Enxofre/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA