Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 151: 107705, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137600

RESUMO

The increasing prevalence of drug-resistant Mycobacterium tuberculosis strains stimulates the discovery of new drug candidates. Among them are 8-hydroxyquinoline (8HQ) derivatives that exhibited antimicrobial properties. Unfortunately, there is a lack of data assessing possible targets for this class mainly against Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (MtInhA), a validated target in this field. Thus, the main purpose of this study was to identify 8HQ derivatives that are active against M. tuberculosis and MtInhA. Initially, the screening against the microorganism of a small antimicrobial library and its new derivatives that possess some structural similarity with MtInhA inhibitors identified four 7-substituted-8HQ (series 5 - 5a, 5c, 5d and 5i) and four 5-substituted-8HQ active derivatives (series 7 - 7a, 7c, 7d and 7j). In general, the 7-substituted 8-HQs were more potent and, in the enzymatic assay, were able to inhibit MtInhA at low micromolar range. However, the 5-substituted-8-HQs that presented antimycobacterial activity were not able to inhibit MtInhA. These findings indicate the non-promiscuous nature of 8-HQ derivatives and emphasize the significance of selecting appropriate substituents to achieve in vitro enzyme inhibition. Finally, 7-substituted-8HQ series are promising new derivatives for structure-based drug design and further development.


Assuntos
Antituberculosos , Inibidores Enzimáticos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Oxiquinolina , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Oxiquinolina/química , Oxiquinolina/farmacologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Relação Dose-Resposta a Droga
2.
Chem Biodivers ; 21(3): e202400356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353670

RESUMO

The senescence process is associated with accumulated oxidative damage and increased metal concentration in the heart and brain. Besides, abnormal metal-protein interactions have also been linked with the development of several conditions, including Alzheimer's and Parkinson's diseases. Over the years we have described a series of structure-related compounds with different activities towards models of such diseases. In this work, we evaluated the potential of three N-acylhydrazones (INHHQ: 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone, HPCIH: pyridine-2-carboxaldehyde isonicotinoyl hydrazone and X1INH: 1-methyl-1H-imidazole-2-carboxaldehyde isonicotinoyl hydrazone) to prevent oxidative stress in cellular models, with the dual intent of being active on this pathway and also to confirm their lack of cardiotoxicity as an important step in the drug development process, especially considering that the target population often presents cardiovascular comorbidity. The 8-hydroxyquinoline-contaning compound, INHHQ, exhibits a significant cardioprotective effect against hydrogen peroxide and a robust antioxidant activity. However, this compound is the most toxic to the studied cell models and seems to induce oxidative damage on its own. Interestingly, although not possessing a phenol group in its structure, the new-generation 1-methylimidazole derivative X1INH showed a cardioprotective tendency towards H9c2 cells, demonstrating the importance of attaining a compromise between activity and intrinsic cytotoxicity when developing a drug candidate.


Assuntos
Doenças Neurodegenerativas , Piridinas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Cardiotoxicidade , Antioxidantes/farmacologia , Estresse Oxidativo , Metais , Proteínas/metabolismo , Hidrazonas/farmacologia , Hidrazonas/química , Oxiquinolina/farmacologia
3.
Drug Dev Res ; 85(7): e22265, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39358925

RESUMO

Four lanthanide complexes with 8-hydroxyquinoline-2-aldehyde-2-hydrazinopyridine (H-L1), 8-hydroxyquinoline-2-aldehyde-2-hydrazimidazole (H-L2): [Sm(L1)2][Sm(L1)(NO3)3]·CHCl3·2CH3OH (1), [Gd(L1)2][Gd(L1)(NO3)3]·CHCl3·2CH3OH (2), [Sm(L2)(NO3)2]2·CH3OH (3), and [Eu(L2)(NO3)2]2·CH3OH (4) were synthesized and characterized. In vitro cytotoxicity evaluation showed that the ligands and four lanthanide complexes exhibited cytotoxicity to the five tested tumor cell lines. Among them, complex 1 showed the best antiproliferative activity against NCI-H460 tumor cells. Mechanistic studies demonstrated that complex 1 arrested the cell cycle of NCI-H460 cells in G1 phase and induced mitochondria-mediated apoptosis, which resulted in the loss of mitochondrial membrane potential, enhanced intracellular Ca2+ levels and reactive oxygen species generation. In addition, complex 1 affected the expression levels of intracellular apoptosis-related proteins and activated the caspase-3/9 in NCI-H460 cells. Therefore, complex 1 is a potential anticancer agent.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Oxiquinolina , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Oxiquinolina/farmacologia , Oxiquinolina/química , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Elementos da Série dos Lantanídeos/farmacologia , Elementos da Série dos Lantanídeos/química , Espécies Reativas de Oxigênio/metabolismo , Ciclo Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos
4.
Molecules ; 29(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39275023

RESUMO

The reaction between glycine-type aminonaphthol derivatives substituted with 2- or 1-naphthol and indole or 7-azaindole has been tested. Starting from 2-naphthol as a precursor, the reaction led to the formation of ring-closed products, while in the case of a 1-naphthol-type precursor, the desired biaryl ester was isolated. The synthesis of a bifunctional precursor starting from 5-chloro-8-hydroxyquinoline, morpholine, and ethyl glyoxylate via modified Mannich reaction is reported. The formed Mannich base 10 was subjected to give bioconjugates with indole and 7-azaindole. The effect of the aldehyde component and the amine part of the Mannich base on the synthetic pathway was also investigated. In favor of having a preliminary overview of the structure-activity relationships, the derivatives have been tested on cancer and normal cell lines. In the case of bioconjugate 16, as the most powerful scaffold in the series bearing indole and a 5-chloro-8-hydroxyquinoline skeleton, a potent toxic activity against the resistant Colo320 colon adenocarcinoma cell line was observed. Furthermore, this derivative was selective towards cancer cell lines showing no toxicity on non-tumor fibroblast cells.


Assuntos
Antineoplásicos , Indóis , Humanos , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Oxiquinolina/química , Oxiquinolina/farmacologia , Metano/química , Metano/análogos & derivados , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais
5.
Inorg Chem ; 62(29): 11466-11486, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37441730

RESUMO

We report the synthesis and characterization of three novel Schiff bases (L1-L3) derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with amines containing morpholine or piperidine moieties. These were reacted with CuCl2 and ZnCl2 yielding six new coordination compounds, with the general formula ML2, where M = Cu(II) or Zn(II) and L = L1-L3, which were all characterized by analytical, spectroscopic (Fourier transform infrared (FTIR), UV-visible absorption, nuclear magnetic resonance (NMR), or electron paramagnetic resonance (EPR)), and mass spectrometric techniques, as well as by single-crystal X-ray diffraction. In the solid state, two Cu(II) complexes, with L1 and L2, are obtained as dinuclear compounds, with relatively short Cu-Cu distances (3.146 and 3.171 Å for Cu2(L1)4 and Cu2(L2)4, respectively). The free ligands show moderate lipophilicity, while their complexes are more lipophilic. The pKa values of L1-L3 and formation constants of the complex (for ML and ML2) species were determined by spectrophotometric titrations, with the Cu(II) complexes showing higher stability than the Zn(II) complexes. EPR indicated the presence of several species in solution as pH varied and binding modes were proposed. The binding of the complexes to bovine serum albumin (BSA) was evaluated by fluorescence and circular dichroism (CD) spectroscopies. All complexes bind BSA, and as demonstrated by CD, the process takes several hours to reach equilibrium. The antiproliferative activity was evaluated in malignant melanoma cells (A375) and in noncancerous keratinocytes (HaCaT). All complexes display significant cytotoxicity (IC50 < 10 µM) but modest selectivity. The complexes show higher activity than the free ligands, the Cu(II) complexes being more active than the Zn(II) complexes, and approximately twice more cytotoxic than cisplatin. A Guava ViaCount assay corroborated the antiproliferative activity.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Bases de Schiff/química , Ligantes , Oxiquinolina/farmacologia , Zinco/química , Cobre/farmacologia , Cobre/química
6.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804172

RESUMO

AIM: This study evaluates the in vitro efficacy of 8-hydroxyquinoline (8HQ) derivatives in controlling the phytopathogenic fungus Phaeomoniella chlamydospora. METHODS AND RESULTS: The in vitro tests assessed the susceptibility to the minimum inhibitory concentration (MIC), checkerboard assay, mycelial growth (MG) inhibition, and EC50 determination. Among the seven agricultural fungicides tested, tebuconazole (TEB) displayed the lowest MIC, 1.01 µg mL-1, followed by captan (CAP), thiophanate methyl (TM), and mancozeb with MICs of 4.06, 5.46, and 10.62 µg mL-1, respectively. The 8HQ derivatives used in this study were clioquinol and PH 151 (PH) with MICs of 1.09 and 2.02 µg mL-1, respectively. PH associated with TEB and CAP showed synergism and inhibited 95.8% of MG at the highest dose. TEB inhibited 100% of MG at the three highest doses, while associated with PH exhibited the lowest EC50 (0.863 + 0.0381 µg mL-1). CONCLUSIONS: We concluded that the 8HQ derivatives tested controlled effectively the P. chlamydospora in vitro. PH associated with CAP and TEB exhibited a synergistic effect. The association between PH and TM was considered indifferent. IMPACT STATEMENT: This study expands the list of active ingredients tested against P. chlamydospora, with the PH 151 and clioquinol derivatives being tested for the first time. The in vitro efficacy and synergistic action with other fungicides suggest a potential use as a grapevine wound protectant. This association makes it possible to reduce doses and increase the potency of both drugs, reducing the risk of resistance development and harm to humans and the environment.


Assuntos
Ascomicetos , Clioquinol , Fungicidas Industriais , Humanos , Fungicidas Industriais/farmacologia , Clioquinol/farmacologia , Oxiquinolina/farmacologia
7.
Bioorg Chem ; 134: 106444, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893547

RESUMO

The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/ß-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and ß-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Humanos , Simulação de Acoplamento Molecular , Chalcona/química , Chalconas/farmacologia , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Oxiquinolina/farmacologia , Estaurosporina/farmacologia , Apoptose , Moduladores de Tubulina , Antineoplásicos/química , Receptores ErbB , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular
8.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175622

RESUMO

8-hydroxyquinoline (oxine) is a widely known and frequently used chelating agent, and the pharmacological effects of the core molecule and its derivatives have been studied since the 19th century. There are several synthetic methods to modify this core. The Mannich reaction is one of the most easily implementable examples, which requires mild reaction conditions and simple chemical reagents. The three components of the Mannich reaction are a primary or secondary amine, an aldehyde and a compound having a hydrogen with pronounced activity. In the modified Mannich reaction, naphthol or a nitrogen-containing naphthol analogue (e.g., 8-hydroxyquinoline) is utilised as the active hydrogen provider compound, thus affording the formation of aminoalkylated products. The amine component can be ammonia and primary or secondary amines. The aldehyde component is highly variable, including aliphatic and aromatic aldehydes. Based on the pharmacological relevance of aminomethylated 8-hydroxyquinolines, this review summarises their syntheses via the modified Mannich reaction starting from 8-hydroxyquinoline, formaldehyde and various amines.


Assuntos
Naftóis , Oxiquinolina , Oxiquinolina/farmacologia , Naftóis/química , Aminas/química , Aldeídos/química , Hidrogênio , Bases de Mannich/química
9.
Inorg Chem ; 61(19): 7631-7641, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35507007

RESUMO

The use of metal-binding pharmacophores (MBPs) in fragment-based drug discovery has proven effective for targeted metalloenzyme drug development. However, MBPs can still suffer from pharmacokinetic liabilities. Bioisostere replacement is an effective strategy utilized by medicinal chemists to navigate these issues during the drug development process. The quinoline pharmacophore and its bioisosteres, such as quinazoline, are important building blocks in the design of new therapeutics. More relevant to metalloenzyme inhibition, 8-hydroxyquinoline (8-HQ) and its derivatives can serve as MBPs for metalloenzyme inhibition. In this report, 8-HQ isosteres are designed and the coordination chemistry of the resulting metal-binding isosteres (MBIs) is explored using a bioinorganic model complex. In addition, the physicochemical properties and metalloenzyme inhibition activity of these MBIs were investigated to establish drug-like profiles. This report provides a new group of 8-HQ-derived MBIs that can serve as novel scaffolds for metalloenzyme inhibitor development with tunable, and potentially improved, physicochemical properties.


Assuntos
Metaloproteínas , Oxiquinolina , Quelantes , Descoberta de Drogas , Metaloproteínas/química , Oxiquinolina/farmacologia
10.
Inorg Chem ; 61(37): 14626-14640, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36073854

RESUMO

Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid ß (Aß) peptide is central to disease pathology, which is supported by elevated Aß levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aß, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aß(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aß(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aß(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aß(1-42) species in solution, leaving a single Cu(II)Aß(1-42) species. It follows that the Cu(II) site in this Cu(II)Aß(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aß(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aß(1-42).


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Clioquinol , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Quelantes/farmacologia , Quelantes/uso terapêutico , Clioquinol/análogos & derivados , Clioquinol/química , Cobre/química , Humanos , Íons , Metais , Oxiquinolina/química , Oxiquinolina/farmacologia , Fragmentos de Peptídeos , Solventes , Zinco
11.
Bioorg Chem ; 125: 105912, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660839

RESUMO

Trichomoniasis is a neglected parasitic infection, with no oral therapeutic alternatives to overcome the pitfalls of currently approved drugs. In this context, the search for new anti-Trichomonas vaginalis drugs is imperative. Here we report the selective anti-T. vaginalis activity of a substituted 8-hydroxyquinoline-5-sulfonamide derivative. Six different derivatives were evaluated for anti-T. vaginalis. In vitro and in vivo toxicity methods, association with metal ions, and investigation on the mechanism of action were performed with the most active derivative, PH 152. Cytotoxicity assays showed selectivity for the parasite and the low toxicity was confirmed in G. mellonella larvae model. The mode of action is related to iron chelation by disrupting Fe-S clusters-dependent enzyme activities in the parasite. Proteomic analysis indicated inhibition of metallopeptidases related to T. vaginalis virulence mechanisms and metabolic pathways. PH 152 presented selective trichomonacidal activity through multitarget action.


Assuntos
Trichomonas vaginalis , Quelantes de Ferro , Metaloproteases , Oxiquinolina/farmacologia , Proteômica , Trichomonas vaginalis/fisiologia
12.
Bioorg Chem ; 128: 106045, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35921788

RESUMO

The development of new antimicrobial agents is necessary to overcome the emerging antimicrobial resistance among infectious microbial pathogens. Herein, we successfully designed and synthesized quinolinequinones (QQs) with N-phenylpiperazine (QQ1-7) containing strong or weak EDG in the amino moiety by converting hydroxyquinoline (HQ) to the dichloroquinolinequinone (QQ) via chlorooxidation. We performed an extensive antimicrobial activity assessment of the QQs with N-phenylpiperazine (QQ1-7). Among the seven quinolinequinones (QQs) with N-phenylpiperazine tested, QQ3 and QQ4 were the most active molecules against Staphylococcus aureus (ATCC® 29213) with a MIC value of 1.22 µg/mL. In addition to this, while QQ4 was more than six (6) times more effective towards Enterococcus faecalis (ATCC® 29212), QQ3 was twenty-six (26) times more effective against same strain. Furthermore, the evaluation of antimicrobial activity indicated that six of seven synthesized QQs (QQ1-4, QQ6, and QQ7) exhibited superior biological potency, eight (8) times for five of them (QQ1-4 and QQ6) and two (2) times for QQ7, against Staphylococcus epidermidis (ATCC® 12228). Besides, all QQs except QQ5 displayed excellent antifungal activity against the fungi Candida albicans (ATCC® 10231). Among these, the two QQs (QQ3 and QQ4), which showed the lowest values against gram-positive bacterial strains (Staphylococcus aureus (ATCC® 29213), Staphylococcus epidermidis (ATCC® 12228), and Enterococcus faecalis (ATCC® 29212)) as well as fungal strains (Candida albicans (ATCC® 10231) and Candida parapsilosis (ATCC® 22019)), were further evaluated for their biofilm inhibition properties and their mode of action with in vitro potential antimicrobial activity against each of 20 clinically obtained resistant strains of gram-positive bacteria, and bactericidal activity using time-kill curve assay. In this study, we investigated the bactericidal effects of QQ3 against methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans strains. The findings of this study suggest that a significant bactericidal effect was seen with all tested 1 × MIC and 4 × MIC concentrations used within 24 h. Our findings present significant implications for an antimicrobial drug candidate for treating infections, especially those caused by clinically resistant MRSA isolates.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Candida albicans , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Oxiquinolina/farmacologia , Piperazinas , Staphylococcus aureus , Staphylococcus epidermidis
13.
J Fish Dis ; 45(6): 895-905, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35445749

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is an significant pathogen that causes high mortality and related economic losses in bass aquaculture. There is no effective or approved therapy to date. In this study, we evaluated the anti-MSRV effects of 22 quinoline derivatives in grass carp ovary (GCO) cells. Among these compounds, 8-hydroxyquinoline exhibited valid inhibition in decreasing MSRV nucleoprotein gene expression levels of 99.3% with a half-maximal inhibitory concentrations (IC50 ) value of 4.66 µM at 48 h. Moreover, 8-hydroxyquinoline significantly enhanced a protective effect in GCO cells by reducing the cytopathic effect (CPE). By comparing the anti-MSRV activity of 22 quinoline derivatives, we found that 8-hydroxyquinoline possessed the efficient active site of 8-hydroxyl and inhibited MSRV infection in vitro. For in vivo studies, 8-hydroxyquinoline via intraperitoneal injection exhibited an antiviral effect in MSRV-infected largemouth bass by substantially enhancing the survival rate by 15.0%. Importantly, the viral loads in the infected largemouth bass notably reduced in the spleen on the third days post-infection. Overall, 8-hydroxyquinoline was considered to be an efficient agent against MSRV in aquaculture.


Assuntos
Bass , Carpas , Doenças dos Peixes , Quinolinas , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Domínio Catalítico , Feminino , Oxiquinolina/farmacologia , Quinolinas/farmacologia , Rhabdoviridae/genética , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/veterinária
14.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743210

RESUMO

CBS encodes a pyridoxal 5'-phosphate-dependent enzyme that catalyses the condensation of homocysteine and serine to form cystathionine. Due to its implication in some cancers and in the cognitive pathophysiology of Down syndrome, the identification of pharmacological inhibitors of this enzyme is urgently required. However, thus far, attempts to identify such molecules have only led to the identification of compounds with low potency and limited selectivity. We consequently developed an original, yeast-based screening method that identified three FDA-approved drugs of the 8-hydroxyquinoline family: clioquinol, chloroxine and nitroxoline. These molecules reduce CBS enzymatic activity in different cellular models, proving that the molecular mechanisms involved in yeast phenotypic rescue are conserved in mammalian cells. A combination of genetic and chemical biology approaches also revealed the importance of copper and zinc intracellular levels in the regulation of CBS enzymatic activity-copper promoting CBS activity and zinc inhibiting its activity. Taken together, these results indicate that our effective screening approach identified three new potent CBS inhibitors and provides new findings for the regulation of CBS activity, which is crucial to develop new therapies for CBS-related human disorders.


Assuntos
Cistationina beta-Sintase , Saccharomyces cerevisiae , Animais , Cobre , Cistationina beta-Sintase/genética , Humanos , Mamíferos , Oxiquinolina/farmacologia , Fosfato de Piridoxal , Zinco
15.
Med Mycol ; 59(5): 431-440, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32692811

RESUMO

Fungal infections that affect humans and plants have increased significantly in recent decades. However, these pathogens are still neglected when compared to other infectious agents. Due to the high prevalence of these infections, the need for new molecules with antifungal potential is recognized, as pathogenic species are developing resistance to the main drugs available. This work reports the design and synthesis of 1,2,3-triazole derivatives of 8-hydroxyquinoline, as well as the determination of their activities against a panel of fungal species: Candida spp., Trichosporon asahii, Magnusiomyces capitatus, Microsporum spp., Trichophyton spp. and Fusarium spp. The triazoles 5-(4-phenyl-1H-1,2,3-triazol-1-yl)quinolin-8-ol (12) and 5-(4-(cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)quinolin-8-ol (16) were more promising, presenting minimum inhibitory concentration (MIC) values between 1-16 µg/ml for yeast and 2-4 µg/ml for dermatophytes. However, no relevant anti-Fusarium spp. activity was observed. In the time-kill assays with Microsporum canis, 12 and 16 presented time-dependent fungicide profile at 96 h and 120 h in all evaluated concentrations, respectively. For Candida guilliermondii, 12 was fungicidal at all concentrations at 6 h and 16 exhibited a predominantly fungistatic profile. Both 12 and 16 presented low leukocyte toxicity at 4 µg/ml and the cell viability was close to 100% after the treatment with 12 at all tested concentrations. The sorbitol assay combined with SEM suggest that damages on the fungal cell wall could be involved in the activity of these derivatives. Given the good results obtained with this series, scaffold 4-(cycloalkenyl or phenyl)-5-triazol-8-hydroxyquinoline appears to be a potential pharmacophore for exploration in the development of new antifungal agents.


Assuntos
Antifúngicos/farmacologia , Fungos/citologia , Fungos/efeitos dos fármacos , Oxiquinolina/química , Oxiquinolina/farmacologia , Triazóis/química , Triazóis/farmacologia , Basidiomycota/efeitos dos fármacos , Candida/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Fusarium/efeitos dos fármacos , Humanos , Leucócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microsporum/efeitos dos fármacos , Oxiquinolina/análogos & derivados , Saccharomycetales/efeitos dos fármacos , Trichophyton/efeitos dos fármacos
16.
J Appl Microbiol ; 131(3): 1440-1451, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33565222

RESUMO

AIM: The purpose of this study was to evaluate the in vitro and in vivo efficiency of derivatives of 8-Hydroxyquinoline (8HQ) in controlling the fungus Ilyonectria liriodendri. METHODS AND RESULTS: The in vitro tests consisted of assessing its susceptibility to the minimal inhibitory concentration (MIC) and the inhibition of mycelial growth. While the in vivo tests consisted of applying and assessing the most effective products for the protection of wounds, in both preventive + curative and curative forms. The MIC values for PH 151 (6·25 µg ml-1 ) showed better results when compared to the fungicides tebuconazole (>50 µg ml-1 ) and mancozeb (12·5 µg ml-1 for strain 176 and 25 µg ml-1 for strain 1117). PH 151 significantly inhibited mycelial growth, while mancozeb did not differ from the control. In in vivo tests, PH 151 again demonstrated excellent results in vitro, especially when applied preventively. CONCLUSIONS: The derivative of 8HQ PH 151 was effective in controlling the fungus I. liriodendri in vitro and proved to be a promising option for protecting wounds. SIGNIFICANCE AND IMPACT OF THE STUDY: This study points to the prospect of an effective and safe preventive antifungal product, which would enable the use of pesticides in vine culture to be reduced.


Assuntos
Fungicidas Industriais/farmacologia , Hypocreales , Oxiquinolina , Doenças das Plantas , Vitis/microbiologia , Hypocreales/patogenicidade , Testes de Sensibilidade Microbiana , Oxiquinolina/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
17.
Bioorg Chem ; 112: 104962, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992968

RESUMO

The current paper deals with 8-hydroxyquinoline derived p-halo N4-phenyl substituted thiosemicarbazones, their crystal structures, spectral characterization and in vitro cytotoxic studies of Co(III), Ni(II) and Cu(II) complexes. The molecular structures of the ligands, (E)-4-(4-halophenyl)-1-((8-hydroxyquinoline-2-yl)methylene)thiosemicarbazones (halo = fluoro/chloro/bromo) are determined by single crystal X-ray diffraction method. The crystal structures reveal that the ligands are non-planar and exist in their thioamide tautomeric forms. The various physicochemical investigations of the synthesized complexes reveal metal to ligand stoichiometry to be 1:2 in Co(III) complexes whereas 1:1 in Ni(II) and Cu(II) complexes. The ligands coordinate in a tridentate NNS fashion around Co(III) centers to form an octahedral geometry and square planar geometry around Ni(II) and Cu(II) metal centers. The oxidation of Co(II) to Co(III) is observed on complexation. The synthesized compounds are subjected to in vitro cytotoxicity studies. When compared to bare ligands, the complexes show enhancement of the antiproliferative activity against MCF-7, breast cancer cell lines. The Co(III) complexes of fluoro and bromo derivatives of ligands have displayed remarkable results with roughly two fold increase in their activity in correlation to the standard drug, Paclitaxel. Moreover, the fluorescence microscopy images of cells stained with acridine orange-ethidium bromide suggest an apoptotic mode of cell death.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Metais Pesados/farmacologia , Oxiquinolina/farmacologia , Tiossemicarbazonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Metais Pesados/química , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Molecular , Oxiquinolina/química , Relação Estrutura-Atividade , Tiossemicarbazonas/química
18.
Bioorg Chem ; 108: 104633, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33513476

RESUMO

8-Hydroxyquinoline (8-HQ) is a significant heterocyclic scaffold in organic and analytical chemistry because of the properties of chromophore and is used to detect various metal ions and anions. But from the last 2 decades, this moiety has been drawn great attention of medicinal chemists due to its significant biological activities. Synthetic modification of 8-hydroxyquinoline is under exploration on large scale to develop more potent target-based broad spectrum drug molecules for the treatment of several life-threatening diseases such as anti-cancer, HIV, neurodegenerative disorders, etc. Metal chelation properties of 8-hydroxyquinoline and its derivatives also make these potent drug candidates for the treatment of various diseases. This review comprises 8-hydroxyquinoline derivatives reported in the literature in last five years (2016-2020) and we anticipate that it will assist medicinal chemists in the synthesis of novel and pharmacologically potent agents for various therapeutic targets, mainly anti-proliferative, anti-microbial, anti-fungal and anti-viral as well as for the treatment of neurodegenerative disorders.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Oxiquinolina/farmacologia , Anti-Infecciosos/química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Química Farmacêutica , Fungos/efeitos dos fármacos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/química , Oxiquinolina/química , Vírus/efeitos dos fármacos
19.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500808

RESUMO

Five heteroleptic compounds, [VVO(IN-2H)(L-H)], where L are 8-hydroxyquinoline derivatives and IN is a Schiff base ligand, were synthesized and characterized in both the solid and solution state. The compounds were evaluated on epimastigotes and trypomastigotes of Trypanosoma cruzi as well as on VERO cells, as a mammalian cell model. Compounds showed activity against trypomastigotes with IC50 values of 0.29-3.02 µM. IN ligand and the new [VVO2(IN-H)] complex showed negligible activity. The most active compound [VVO(IN-2H)(L2-H)], with L2 = 5-chloro-7-iodo-8-hydroxyquinoline, showed good selectivity towards the parasite and was selected to carry out further biological studies. Stability studies suggested a partial decomposition in solution. [VVO(IN-2H)(L2-H)] affects the infection potential of cell-derived trypomastigotes. Low total vanadium uptake by parasites and preferential accumulation in the soluble proteins fraction were determined. A trypanocide effect was observed when incubating epimastigotes with 10 × IC50 values of [VVO(IN-2H)(L2-H)] and the generation of ROS after treatments was suggested. Fluorescence competition measurements with DNA:ethidium bromide adduct showed a moderate DNA interaction of the complexes. In vivo toxicity study on C. elegans model showed no toxicity up to a 100 µM concentration of [VVO(IN-2H)(L2-H)]. This compound could be considered a prospective anti-T. cruzi agent that deserves further research.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Oxiquinolina/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Vanádio/farmacologia , Animais , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Estrutura Molecular , Oxiquinolina/química , Testes de Sensibilidade Parasitária , Tripanossomicidas/síntese química , Tripanossomicidas/química , Vanádio/química
20.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443314

RESUMO

Despite the common use of salens and hydroxyquinolines as therapeutic and bioactive agents, their metal complexes are still under development. Here, we report the synthesis of novel mixed-ligand metal complexes (MSQ) comprising salen (S), derived from (2,2'-{1,2-ethanediylbis[nitrilo(E) methylylidene]}diphenol, and 8-hydroxyquinoline (Q) with Co(II), Ni(II), Cd(II), Al(III), and La(III). The structures and properties of these MSQ metal complexes were investigated using molar conductivity, melting point, FTIR, 1H NMR, 13C NMR, UV-VIS, mass spectra, and thermal analysis. Quantum calculation, analytical, and experimental measurements seem to suggest the proposed structure of the compounds and its uncommon monobasic tridentate binding mode of salen via phenolic oxygen, azomethine group, and the NH group. The general molecular formula of MSQ metal complexes is [M(S)(Q)(H2O)] for M (II) = Co, Ni, and Cd or [M(S)(Q)(Cl)] and [M(S)(Q)(H2O)]Cl for M(III) = La and Al, respectively. Importantly, all prepared metal complexes were evaluated for their antimicrobial and anticancer activities. The metal complexes exhibited high cytotoxic potency against human breast cancer (MDA-MB231) and liver cancer (Hep-G2) cell lines. Among all MSQ metal complexes, CoSQ and LaSQ produced IC50 values (1.49 and 1.95 µM, respectively) that were comparable to that of cisplatin (1.55 µM) against Hep-G2 cells, whereas CdSQ and LaSQ had best potency against MDA-MB231 with IC50 values of 1.95 and 1.43 µM, respectively. Furthermore, the metal complexes exhibited significant antimicrobial activities against a wide spectrum of both Gram-positive and -negative bacterial and fungal strains. The antibacterial and antifungal efficacies for the MSQ metal complexes, the free S and Q ligands, and the standard drugs gentamycin and ketoconazole decreased in the order AlSQ > LaSQ > CdSQ > gentamycin > NiSQ > CoSQ > Q > S for antibacterial activity, and for antifungal activity followed the trend of LaSQ > AlSQ > CdSQ > ketoconazole > NiSQ > CoSQ > Q > S. Molecular docking studies were performed to investigate the binding of the synthesized compounds with breast cancer oxidoreductase (PDB ID: 3HB5). According to the data obtained, the most probable coordination geometry is octahedral for all the metal complexes. The molecular and electronic structures of the metal complexes were optimized theoretically, and their quantum chemical parameters were calculated. PXRD results for the Cd(II) and La(III) metal complexes indicated that they were crystalline in nature.


Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Teoria da Densidade Funcional , Etilenodiaminas/síntese química , Simulação de Acoplamento Molecular , Oxiquinolina/síntese química , Oxiquinolina/farmacologia , Antibacterianos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Etilenodiaminas/química , Etilenodiaminas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Ligantes , Testes de Sensibilidade Microbiana , Conformação Molecular , Oxiquinolina/química , Difração de Pó , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA