Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.953
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunol Rev ; 301(1): 145-156, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33619731

RESUMO

Vaccines for paratuberculosis have been used for over a hundred years but the disease continues to affect ruminant health and livestock industries globally. Mycobacterium avium subspecies paratuberculosis which causes the disease also known as Johne's disease is a subversive pathogen able to undermine both innate and adaptive host defense mechanisms. This review focuses on early protective immune pathways that lead to some animals becoming resilient to infection to provide a road map for designing better vaccines and emphasizes the need for harnessing the potential of mucosal immunity.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Vacinas , Animais , Biomarcadores , Paratuberculose/prevenção & controle
2.
Vet Res ; 55(1): 69, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822400

RESUMO

Current diagnostic methods for Johne's disease in cattle allow reliable detection of infections with Mycobacterium avium ssp. paratuberculosis (MAP) not before animals are 2 years of age. Applying a flow cytometry-based approach (FCA) to quantify a MAP-specific interferon-gamma (IFN-γ) response in T cell subsets, the present study sought to monitor the kinetics of the cell-mediated immune response in experimentally infected calves. Six MAP-negative calves and six calves, orally inoculated with MAP at 10 days of age, were sampled every 4 weeks for 52 weeks post-inoculation (wpi). Peripheral blood mononuclear cells (PBMC) were stimulated with either purified protein derivatives (PPD) or whole cell sonicates derived from MAP (WCSj), M. avium ssp. avium or M. phlei for 6 days followed by labeling of intracellular IFN-γ in CD4+ and CD8+ T cells. No antigen-specific IFN-γ production was detectable in CD8+ cells throughout and the responses of CD4+ cells of MAP-infected and control calves were similar up to 12 wpi. However, the mean fluorescence intensity (MFI) for the detection of IFN-γ in CD4+ cells after WCSj antigen stimulation allowed for a differentiation of animal groups from 16 wpi onwards. This approach had a superior sensitivity (87.8%) and specificity (86.8%) to detect infected animals from 16 wpi onwards, i.e., in an early infection stage, as compared to the IFN-γ release assay (IGRA). Quantification of specific IFN-γ production at the level of individual CD4+ cells may serve, therefore, as a valuable tool to identify MAP-infected juvenile cattle.


Assuntos
Linfócitos T CD4-Positivos , Doenças dos Bovinos , Citometria de Fluxo , Interferon gama , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Paratuberculose/imunologia , Paratuberculose/diagnóstico , Paratuberculose/microbiologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Mycobacterium avium subsp. paratuberculosis/fisiologia , Interferon gama/metabolismo , Citometria de Fluxo/veterinária , Citometria de Fluxo/métodos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/microbiologia , Linfócitos T CD4-Positivos/imunologia , Biomarcadores
3.
Genet Sel Evol ; 56(1): 5, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200416

RESUMO

BACKGROUND: Paratuberculosis is a contagious and incurable disease that is caused by Mycobacterium avium subsp. paratuberculosis (MAP) with significant negative effects on animal welfare and farm profitability. Based on a large naturally infected flock over 12 years, we analyzed repeated enzyme-linked immunosorbent assay tests (ELISA), OvineSNP50 BeadChip genotypes and whole-genome sequences imputed from 56 influential animals. The main goals were to estimate the genetic parameters of proxy traits for resistance to MAP, identify genomic regions associated with the host's immune response against MAP and search for candidate genes and causative mutations through association and functional annotation analyses of polymorphisms identified by sequencing. RESULTS: Two variables were derived from ELISA tests. The first, a binary variable, assessed the infection status of each animal over the entire productive life, while the second considered the level of antibody recorded over time. Very similar results were obtained for both variables. Heritability estimates of about 0.20 were found and a significant region capturing 18% and 13% of the genetic variance was detected on ovine chromosome 20 by linkage disequilibrium and linkage analysis on OvineSNP50 positions. Functional annotation and association analyses on the imputed sequence polymorphisms that were identified in this region were carried out. No significant variants showed a functional effect on the genes that mapped to this region, most of which belong to the major histocompatibility complex class II (MHC II). However, the conditional analysis led to the identification of two significant polymorphisms that can explain the genetic variance associated with the investigated genomic region. CONCLUSIONS: Our results confirm the involvement of the host's genetics in susceptibility to MAP in sheep and suggest that selective breeding may be an option to limit the infection. The estimated heritability is moderate with a relevant portion being due to a highly significant region on ovine chromosome 20. The results of the combined use of sequence-based data and functional analyses suggest several genes belonging to the MHC II as the most likely candidates, although no mutations in their coding regions showed a significant association. Nevertheless, information from genotypes of two highly significant polymorphisms in the region can enhance the efficiency of selective breeding programs.


Assuntos
Formação de Anticorpos , Paratuberculose , Animais , Ovinos/genética , Paratuberculose/genética , Genótipo , Anticorpos , Ensaio de Imunoadsorção Enzimática
4.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 18-23, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430046

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis, which is currently prevalent in many parts of Iran and produces severe economic loss. It is hence necessary to identify and isolate the animals infected with this bacterium, so this research aimed to isolate MAP from milk and fecal samples of ELISA-positive animals and determine the molecular identity of isolates. After performing ELISA on 3,700 bovine blood samples, 115 samples of milk and feces were taken from ELISA-positive cattle and were cultured on Herald's egg yolk medium with and without mycobactin-J and then the acid-fastness of positive samples was determined using Ziehl-Neelsen staining. The 16S rRNA-PCR test was performed after DNA extraction to determine the molecular identity of isolates. Primers IS6110 and IS901 were employed to ensure that the isolates were not related to members of M. tuberculosis complex and  M. avium, respectively. Primer IS900 was also used to determine the molecular identity of MAP isolates. Also, expression levels of MAP-related genes (IS900, ISMAP02, F57, MAP2191, MAP4027) were evaluated via qPCR. Finally, positive samples were confirmed based on the Nested-PCR. Results showed that a total of 9 isolates were obtained from the culture of 90 ELISA-positive samples. The results revealed that all grown samples were positive for acid-fastness. The 16S rRNA-PCR test revealed the 543 bp band, which confirms the presence of Mycobacterium in the samples. The PCR test with Primer IS900 generated the 398 bp fragment in the first step and the 298 bp fragment in the second step, indicating the presence of MAP in samples. Also, relative expression analysis revealed that MAP-related genes were significantly higher in ELIZA-positive samples than in negative ones. Based on the study findings, it can be concluded that MAP-infected animals can be identified by ELISA. In addition, mycobacterium can be isolated by culturing the samples on appropriate media and then its molecular identity can be determined by using nested-PCR.


Assuntos
Paratuberculose , Animais , Bovinos , Paratuberculose/diagnóstico , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase , Corantes , Mycobacterium avium , DNA Bacteriano/genética
5.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38684472

RESUMO

AIMS: This study aimed to identify specific genomic targets for the detection and strain typing of Map and analyse their sensitivity and specificity, and detect Map directly from faeces. METHODS AND RESULTS: A comparative genomics approach was used to identify specific genomic targets for the detection and strain typing of Map. A Map specific qPCR using the primer pair 7132 that targets a DNA segregation ATPase protein was able to detect all strains of Map and is more sensitive than the current Johne's disease PCR assays with a sensitivity of 0.0002 fg µl-1. A strain specific qPCR using the Atsa primer pair that targets the arylsulfase gene was able to differentiate between Type S and Type C strains of Map and was more sensitive than the IS1311 PCR and REA with a sensitivity of 40 fg µl-1 and was specific for Type S Map. Both assays successfully detected Map directly from faeces. CONCLUSION: This study developed and validated two genomics informed qPCR assays, 7132B Map and Atsa Type S and found both assays to be highly specific and sensitive for the detection of Map from culture and directly from faeces. This is the first time that a probe-based qPCR has been designed and developed for Map strain typing, which will greatly improve the response time during outbreak investigations.


Assuntos
Fezes , Genômica , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/classificação , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Fezes/microbiologia , Animais , Paratuberculose/microbiologia , Paratuberculose/diagnóstico , Bovinos , DNA Bacteriano/genética , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/diagnóstico , Primers do DNA/genética
6.
Dig Dis Sci ; 69(7): 2289-2303, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38896362

RESUMO

Mycobacterium avium ssp. paratuberculosis (MAP) has been implicated in the development of Crohn's disease (CD) for over a century. Similarities have been noted between the (histo)pathological presentation of MAP in ruminants, termed Johne's disease (JD), and appearances in humans with CD. Analyses of disease presentation and pathology suggest a multi-step process occurs that consists of MAP infection, dysbiosis of the gut microbiome, and dietary influences. Each step has a role in the disease development and requires a better understanding to implementing combination therapies, such as antibiotics, vaccination, faecal microbiota transplants (FMT) and dietary plans. To optimise responses, each must be tailored directly to the activity of MAP, otherwise therapies are open to interpretation without microbiological evidence that the organism is present and has been influenced. Microscopy and histopathology enables studies of the mycobacterium in situ and how the associated disease processes manifest in the patient e.g., granulomas, fissuring, etc. The challenge for researchers has been to prove the relationship between MAP and CD with available laboratory tests and methodologies, such as polymerase chain reaction (PCR), MAP-associated DNA sequences and bacteriological culture investigations. These have, so far, been inconclusive in revealing the relationship of MAP in patients with CD. Improved and accurate methods of detection will add to evidence for an infectious aetiology of CD. Specifically, if the bacterial pathogen can be isolated, identified and cultivated, then causal relationships to disease can be confirmed, especially if it is present in human gut tissue. This review discusses how MAP may cause the inflammation seen in CD by relating its known pathogenesis in cattle, and from examples of other mycobacterial infections in humans, and how this would impact upon the difficulties with diagnostic tests for the organism.


Assuntos
Doença de Crohn , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Doença de Crohn/microbiologia , Humanos , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Paratuberculose/microbiologia , Paratuberculose/diagnóstico , Animais , Microbioma Gastrointestinal/fisiologia
7.
J Dairy Sci ; 107(7): 4804-4821, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38428495

RESUMO

Johne's disease (JD) is an infectious enteric disease in ruminants, causing substantial economic loss annually worldwide. This work aimed to estimate JD's genetic parameters and the phenotypic and genetic trends by incorporating recent data. It also explores the feasibility of a national genetic evaluation for JD susceptibility in Holstein cattle in the United States. The data were extracted from a JD data repository, maintained at the Council on Dairy Cattle Breeding, and initially supplied by 2 dairy record processing centers. The data comprised 365,980 Holstein cows from 1,048 herds participating in a voluntary control program for JD. Two protocol kits, IDEXX Paratuberculosis Screening Ab Test (IDX) and Parachek 2 (PCK), were used to analyze milk samples with the ELISA technique. Test results from the first 5 parities were considered. An animal was considered infected if it had at least one positive outcome. The overall average of JD incidence was 4.72% in these US Holstein cattle. Genotypes of 78,964 SNP markers were used for 25,000 animals randomly selected from the phenotyped population. Variance components and genetic parameters were estimated based on 3 models, namely, a pedigree-only threshold model (THR), a single-step threshold model (ssTHR), and a single-step linear model (ssLR). The posterior heritability estimates of JD susceptibility were low to moderate: 0.11 to 0.16 based on the 2 threshold models and 0.05 to 0.09 based on the linear model. The average reliability of EBVs of JD susceptibility using single-step analysis for animals with or without phenotypes varied from 0.18 (THR) to 0.22 (ssLR) for IDX and from 0.14 (THR) to 0.18 (ssTHR and ssLR) for PCK. Despite no prior direct genetic selection against JD, the estimated genetic trends of JD susceptibility were negative and highly significant. The correlations of bulls' PTA with economically important traits such as milk yield, milk protein, milk fat, somatic cell score, and mastitis were low, indicating a nonoverlapping genetic selection process with traits in current genetic evaluations. Our results suggest the feasibility of reducing the JD incidence rate by incorporating it into the national genetic evaluation programs.


Assuntos
Doenças dos Bovinos , Genótipo , Paratuberculose , Fenótipo , Animais , Bovinos/genética , Paratuberculose/genética , Doenças dos Bovinos/genética , Feminino , Leite , Cruzamento , Estados Unidos
8.
J Dairy Sci ; 107(6): 3916-3926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331177

RESUMO

Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of bovine paratuberculosis, also known as Johne's disease. This infection is responsible for negative effects, ranging from reduction of milk production to reproductive compromise and increased susceptibility to other diseases such as mastitis. Contradictory information on the association between this infection and reproductive performance has been reported in dairy cows. The aim of this work was to investigate associations between individual cow MAP seropositivity and lifetime reproduction and production performance. The MAP serum ELISA (IDEXX MAP Ac) results from all the 13,071 adult cows present on 191 farms and corresponding birth- and calving-date records obtained from the National Association for Genetic Improvement of Dairy Cattle were used. Cows and farms were classified as positive or negative, based on ELISA results. Outcomes assessed were age at first calving (AFC), intercalving intervals (ICI) from first to fourth interval, and average milk production per day of productive cycle (Milk-305/ICI, a ratio between 305-d corrected milk production and the number of days of the respective calving interval). Multilevel mixed models were used to investigate the association of cow MAP status with AFC, ICI, and Milk-305/ICI. Three levels were considered in the models: "measurement occasion," the first level, was nested within cows and cows were nested within farms. The "measurement occasion" is the time point to which all the observed measures (between 2 successive parturitions, such as milk production and somatic cell count) were referred. Our results indicate that MAP-positive cows have a significantly lower 14-d mean AFC than MAP-negative cows. The overall average ICI in our study was 432.5 d (standard deviation: 94.6). The average ICI, from first to fourth, was not significantly affected by MAP seropositivity. No significant effect of MAP positivity was found on the overall ICI. In relation to Milk-305/ICI, MAP-positive cows did not produce significantly less milk than negative cows across their productive lifetime. We observed higher but nonsignificant Milk-305/ICI (kg/d) in MAP-positive cows. In our study, the proportion of MAP-positive cows within lactations remained similar across all lactations, suggesting that seropositivity did not increased drop-off rate.


Assuntos
Doenças dos Bovinos , Lactação , Leite , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Feminino , Doenças dos Bovinos/microbiologia , Reprodução , Gravidez
9.
World J Microbiol Biotechnol ; 40(9): 276, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037634

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, or paratuberculosis (PTB) in ruminants, besides having zoonotic potential. It possibly changes the gut microbiome, but no conclusive data are available yet. This study aimed at investigating the influence of MAP on the faecal microbiome of cattle naturally infected with PTB. In a follow up period of 10 months, PTB status was investigated in a herd of dairy cattle with history of clinical cases. Each animal was tested for MAP infection using serum and milk ELISA for MAP anti-bodies and IS900 real-time PCR and recombinase polymerase amplification assays for MAP DNA in the faeces and milk monthly for 4 successive months, then a last one after 6 months. The faecal samples were subjected to 16S rDNA metagenomic analysis using Oxford Nanopore Sequencing Technology. The microbial content was compared between animal groups based on MAP positivity rate and production status. All animals were MAP positive by one or more tests, but two animals were consistently negative for MAP DNA in the faeces. In all animals, the phyla firmicutes and bacteroidetes were highly enriched with a small contribution of proteobacteria, and increased abundance of the families Oscillospiraceae, Planococcaceae, and Streptococcacaceae was noted. Animals with high MAP positivity rate showed comparable faecal microbial content, although MAP faecal positivity had no significant effect (p > 0.05) on the microbiome. Generally, richness and evenness indices decreased with increasing positivity rate. A significantly different microbial content was found between dry cows and heifers (p < 0.05). Particularly, Oscillospiraceae and Rikenellaceae were enriched in heifers, while Planococcaceae and Streptococcaceae were overrepresented in dry cows. Furthermore, abundance of 72 genera was significantly different between these two groups (p < 0.05). Changes in faecal microbiome composition were notably associated with increasing MAP shedding in the faeces. The present findings suggest a combined influence of the production status and MAP on the cattle faecal microbiome. This possibly correlates with the fate of the infection, the concern in disease control, again remains for further investigations.


Assuntos
Doenças dos Bovinos , DNA Bacteriano , Fezes , Leite , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , RNA Ribossômico 16S , Animais , Bovinos , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Mycobacterium avium subsp. paratuberculosis/genética , Fezes/microbiologia , Paratuberculose/microbiologia , RNA Ribossômico 16S/genética , Doenças dos Bovinos/microbiologia , Leite/microbiologia , DNA Bacteriano/genética , Microbioma Gastrointestinal , Feminino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Metagenômica/métodos
10.
Trop Anim Health Prod ; 56(2): 87, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393533

RESUMO

The spread of John's disease in camel herds (Camelus dromedarius) has been worldwide reported. Despite extensive studies on Mycobacterium avium subspecies paratuberculosis (MAP) infection in camels, the complete pathogenesis and epidemiology of this infection have not been fully exploited. The objective of the study is focusing on the nature of the immune responses, and the types of the recruited cells were studied in the intestine of naturally infected camels employing immunohistochemistry to analyze the expression of CD335, CD103, CD11b, and CD38 markers. Marked expression of some or all of the markers was observed in the ileum, mesenteric, and supramammary lymph nodes of the old infected camels. The expression of CD335, a well-known natural killer (NK) cell marker, was detected in the mesenteric lymph node, while the dendritic cell (DCs) marker, CD103, was markedly expressed in the villi and propria submucosa (PS) of the ileum in old infected camels. CD103 + and CD11b + DCs were detected in the mesenteric lymph nodes of young infected camels. The expression of CD38, a crucial proinflammatory marker, was more noticeable in the peripheral region of the mesenteric lymph node. The expression of these markers in the infected camel intestine was peculiar and is reported for the first time. In summary, the unique expression patterns of CD335, CD103, CD11b, and CD38 markers in naturally infected camel intestines revealed through immunohistochemistry new insights into the immune responses associated with MAP infection. These first-time observations suggest potential roles of innate and adaptive immunity, highlighting specific aspects of MAP immunopathology. Further studies with targeted tools are crucial for a precise understanding of these markers' roles in the infected intestines.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Camelus , Paratuberculose/microbiologia , Intestinos , Imunidade Humoral , Linfonodos/microbiologia
11.
BMC Genomics ; 24(1): 605, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821814

RESUMO

Genome-wide association studies (GWAS) have identified host genetic variants associated with paratuberculosis (PTB) susceptibility. Most of the GWAS-identified SNPs are in non-coding regions. Connecting these non-coding variants and downstream affected genes is a challenge and, up to date, only a few functional mutations or expression quantitative loci (cis-eQTLs) associated with PTB susceptibility have been identified. In the current study, the associations between imputed whole-genome sequence genotypes and whole RNA-Sequencing data from peripheral blood (PB) and ileocecal valve (ICV) samples of Spanish Holstein cows (N = 16) were analyzed with TensorQTL. This approach allowed the identification of 88 and 37 cis-eQTLs regulating the expression levels of 90 and 37 genes in PB and ICV samples, respectively (False discorey rate, FDR ≤ 0.05). Next, we applied summary-based data Mendelian randomization (SMR) to integrate the cis-eQTL dataset with GWAS data obtained from a cohort of 813 culled cattle that were classified according to the presence or absence of PTB-associated histopathological lesions in gut tissues. After multiple testing corrections (FDR ≤ 0.05), we identified two novel cis-eQTLs affecting the expression of the early growth response factor 4 (EGR4) and the bovine neuroblastoma breakpoint family member 6-like protein isoform 2 (MGC134040) that showed pleiotropic associations with the presence of multifocal and diffuse lesions in gut tissues; P = 0.002 and P = 0.017, respectively. While EGR4 acts as a brake on T-cell proliferation and cytokine production through interaction with the nuclear factor Kappa ß (NF-κß), MGC134040 is a target gene of NF-κß. Our findings provide a better understanding of the genetic factors influencing PTB outcomes, confirm that the multifocal lesions are localized/confined lesions that have different underlying host genetics than the diffuse lesions, and highlight regulatory SNPs and regulated-gene targets to design future functional studies.


Assuntos
Paratuberculose , Humanos , Feminino , Bovinos , Animais , Paratuberculose/genética , Estudo de Associação Genômica Ampla/veterinária , Análise da Randomização Mendeliana , Locos de Características Quantitativas , Expressão Gênica , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Transcrição de Resposta de Crescimento Precoce/genética
12.
BMC Genomics ; 24(1): 656, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907856

RESUMO

BACKGROUND: To date genomic studies on Map have concentrated on Type C strains with only a few Type S strains included for comparison. In this study the entire pan-genome of 261 Map genomes (205 Type C, 52 Type S and 4 Type B) and 7 Mycobacterium avium complex (Mac) genomes were analysed to identify genomic similarities and differences between the strains and provide more insight into the evolutionary relationship within this Mycobacterial species. RESULTS: Our analysis of the core genome of all the Map isolates identified two distinct lineages, Type S and Type C Map that is consistent with previous phylogenetic studies of Map. Pan-genome analysis revealed that Map has a larger accessory genome than Mycobacterium avium subsp. avium (Maa) and Type C Map has a larger accessory genome than Type S Map. In addition, we found large rearrangements within Type S strains of Map and little to none in Type C and Type B strains. There were 50 core genes identified that were unique to Type S Map and there were no unique core genes identified between Type B and Type C Map strains. In Type C Map we identified an additional CE10 CAZyme class which was identified as an alpha/beta hydrolase and an additional polyketide and non-ribosomal peptide synthetase cluster. Consistent with previous analysis no plasmids and only incomplete prophages were identified in the genomes of Map. There were 45 hypothetical CRISPR elements identified with no associated cas genes. CONCLUSION: This is the most comprehensive comparison of the genomic content of Map isolates to date and included the closing of eight Map genomes. The analysis revealed that there is greater variation in gene synteny within Type S strains when compared to Type C indicating that the Type C Map strain emerged after Type S. Further analysis of Type C and Type B genomes revealed that they are structurally similar with little to no genetic variation and that Type B Map may be a distinct clade within Type C Map and not a different strain type of Map. The evolutionary lineage of Maa and Map was confirmed as emerging after M. hominissuis.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Mycobacterium avium subsp. paratuberculosis/genética , Filogenia , Genoma , Sintenia , Rearranjo Gênico , Paratuberculose/genética , Mycobacterium avium/genética
13.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32895696

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) exhibits 'molecular mimicry' with the human host resulting in several autoimmune diseases such as multiple sclerosis, type 1 diabetes mellitus (T1DM), Hashimoto's thyroiditis, Crohn's disease (CD), etc. The conventional therapy for autoimmune diseases includes immunosuppressants or immunomodulators that treat the symptoms rather than the etiology and/or causative mechanism(s). Eliminating MAP-the etiopathological agent might be a better strategy to treat MAP-associated autoimmune diseases. In this case study, we conducted a systematic in silico analysis to identify the metabolic chokepoints of MAP's mimicry proteins and their interacting partners. The probable inhibitors of chokepoint proteins were identified using DrugBank. DrugBank molecules were stringently screened and molecular interactions were analyzed by molecular docking and 'off-target' binding. Thus, we identified 18 metabolic chokepoints of MAP mimicry proteins and 13 DrugBank molecules that could inhibit three chokepoint proteins viz. katG, rpoB and narH. On the basis of molecular interaction between drug and target proteins finally eight DrugBank molecules, viz. DB00609, DB00951, DB00615, DB01220, DB08638, DB08226, DB08266 and DB07349 were selected and are proposed for treatment of three MAP-associated autoimmune diseases namely, T1DM, CD and multiple sclerosis. Because these molecules are either approved by the Food and Drug Administration or these are experimental drugs that can be easily incorporated in clinical studies or tested in vitro. The proposed strategy may be used to repurpose drugs to treat autoimmune diseases induced by other pathogens.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Simulação por Computador , Mycobacterium avium subsp. paratuberculosis/efeitos dos fármacos , Paratuberculose/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Animais , Doenças Autoimunes/metabolismo , Doenças Autoimunes/microbiologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/métodos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/microbiologia , Mycobacterium avium subsp. paratuberculosis/metabolismo , Mycobacterium avium subsp. paratuberculosis/fisiologia , Paratuberculose/metabolismo , Paratuberculose/microbiologia , Ligação Proteica , Mapas de Interação de Proteínas/efeitos dos fármacos
14.
Appl Environ Microbiol ; 89(2): e0168222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36719222

RESUMO

Amplification of the IS900 multicopy element is a hallmark nucleic acid-based diagnostic test for Mycobacterium avium subsp. paratuberculosis, which causes Johne's disease in ruminants. This assay is frequently used to determine the presence of the bacterium in feces of infected cattle and sheep. Two IS900 primer sets developed in the 1990s were widely used for decades, and their use has continued in current studies. However, these primers were developed prior to the availability of complete genome sequences. Recent sequence analysis of the binding locations for one primer pair (P90/P91) identified errors and binding inefficiencies that can be easily corrected to further increase detection sensitivity. The P90 primer is missing two nucleotides that should be present near the 3' end, and it does not bind all copies of IS900 due to 5' deletions at some IS900 loci. These IS900 primer pairs, along with newly developed primers, were tested by real-time PCR on purified genomic DNA to determine which primer set performed the best and how primer design errors affect amplification efficiencies. The newly designed PCR primer set (JB5) showed increased sensitivity by two to three quantification cycles using purified genomic DNA and was similar in efficiency to 150C/921. These tests were extended using DNA from feces and tissues of infected cows, which showed similar results. Finally, a 167-bp partial duplication of IS900 was found in type I strains. Although P90 and P91 primers successfully amplify M. avium subsp. paratuberculosis DNA, their use should be discontinued in favor of more efficient primer pairs in future studies. IMPORTANCE This study is an example of how applied genomic analysis can aid diagnostic test improvements. Detection of Mycobacterium avium subsp. paratuberculosis infection of livestock prior to the appearance of clinical disease signs is very difficult but essential for identifying animals shedding the bacterium to prevent transmission of Johne's disease. Total M. avium subsp. paratuberculosis quantity in the feces as determined by real-time PCR (qPCR) using the IS900 target indicates bacterial shedding status and potential for transmission of the pathogen. However, legacy primers designed prior to the availability of complete genome sequences that are used in these tests to detect M. avium subsp. paratuberculosis were based on data from only a single copy of IS900 and not considering all copies collectively as a group. This approach resulted in primer design errors which can be easily corrected to improve test sensitivities. We tested original primers that contain these errors and their corrected versions by qPCR and showed improved sensitivity on purified genomic DNA as well as fecal and tissue samples. These findings may help detect the organism from environmental samples on farms where sensitivity is currently lacking.


Assuntos
Doenças dos Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Feminino , Bovinos , Ovinos , Animais , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/diagnóstico , Paratuberculose/genética , Paratuberculose/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Elementos de DNA Transponíveis , DNA Bacteriano/genética , DNA Bacteriano/análise , Fezes/microbiologia , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/microbiologia
15.
Vet Res ; 54(1): 61, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464437

RESUMO

Neutrophils constitute an essential component of the innate immune response, readily killing most bacteria through phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETs) among other mechanisms. These cells play an unclear role in mycobacterial infections such as Mycobacterium avium subspecies paratuberculosis (Map), the etiological agent of paratuberculosis, and its response is particularly understudied in ruminants. Herein, a wide set of techniques were adapted, or newly developed, to study the in vitro response of caprine neutrophils after Map infection. Immunofluorescence was used to demonstrate, simultaneously, chemotaxis, phagocytosis, degranulation, and NETs. The quantification of neutrophil phagocytic activity against Map at a 1:10 multiplicity of infection (MOI), through flow cytometry, showed values that varied from 4.54 to 5.63% of phagocyting neutrophils. By immunofluorescence, a 73.3 ± 14.5% of the fields showed NETs, and the mean release of DNA, attributable to NETosis, calculated through a fluorometric method, was 16.2 ± 3.5%. In addition, the RNA expression of TGF-ß, TNF and IL-1ß cytokines, measured through reverse transcription qPCR, was significantly higher in the two latter. Overall, neutrophil response was proportional to the number of bacteria. This work confirms that the simultaneous study of several neutrophil mechanisms, and the combination of different methodologies, are essential to reach a comprehensive understanding of neutrophil response against pathogens, demonstrates that, in vitro, caprine neutrophils display a strong innate response against Map, using their entire repertoire of effector functions, and sets the basis for further in vitro and in vivo studies on the role of neutrophils in paratuberculosis.


Assuntos
Doenças das Cabras , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Neutrófilos , Paratuberculose/microbiologia , Cabras , Imunidade Inata
16.
Mol Biol Rep ; 50(1): 943-947, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36371554

RESUMO

BACKGROUND: Paratuberculosis is a worldwide endemic infectious disease of ruminants that results in high economic losses. Public health concerns are also being raised with human Crohn's disease. Therefore, control is becoming priority for governments. Control is largely dependent on "Test and Cull" or "Test and Segregate" policy. Hence, it is critical to assure the infection before making the decision. Commercial kits are costly especially in view of resource limited areas. Present study analyzed the performance various in house DNA isolation methods and PCR master mix combinations to optimize a protocol for confirmation of paratuberculosis bacilli shedding in feces. METHODS AND RESULTS: Present study included five protocols of fecal DNA isolation (chemical, bio-chemical, physio-chemical and physical) and three reaction mixes (based on Qiagen, Genei and Thermo 2X master mixes) in nine different combinations using additives and tested their performance for IS900 PCR. Spiked fecal samples were used to select the best combination of DNA isolation method and PCR master mix (PRM). Selected combination was used to test reference (positive and negative) fecal samples and field samples. Findings revealed that combination physical method of DNA isolation and Genei based PRM (with additives; betaine DMSO and BSA) had lowest limit of detection. Sensitivity was 83% and specificity was 100% in comparison to fecal culture. High prevalence (23%) was reported for paratuberculosis on field samples. CONCLUSION: Optimized protocol has acceptable sensitivity and can easily be adopted in resource-limited laboratories. High prevalence of paratuberculosis needs immediate implementation of the control strategies.


Assuntos
Doenças dos Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Bovinos , Animais , Humanos , Paratuberculose/diagnóstico , Mycobacterium avium subsp. paratuberculosis/genética , Sensibilidade e Especificidade , Doenças dos Bovinos/diagnóstico , Reação em Cadeia da Polimerase/métodos , DNA , Fezes/química , DNA Bacteriano/genética , DNA Bacteriano/análise
17.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626735

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) causes paratuberculosis (Johne's disease) in ruminants and is suspected to be involved in the development of Crohn's disease and several autoimmune disorders. As such, sensitive and specific MAP detection methods are required to confirm infection in animals and identify potential sources of animal and human exposure. Despite recent developments in immunological and nucleic acid-based detection methods, culture-based detection of MAP remains the 'gold standard' against which the sensitivity and specificity of other detection methods are measured. However, not all culture-based approaches are equivalent in terms of detection capability, which can lead to errors in the evaluation of other detection methods. This review will provide an overview of the chronological development of culture methods for MAP, and will consider the unique growth requirements of MAP, the merits of solid versus liquid culture media, the relative performance of the commonly used MAP culture media, and sample preparation/decontamination protocols for different sample types. The limitations of current MAP culture methods and prospects for improvements are discussed.


Assuntos
Doença de Crohn , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Humanos , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/diagnóstico , Paratuberculose/microbiologia , Ruminantes , Meios de Cultura , Fezes/microbiologia
18.
BMC Vet Res ; 19(1): 203, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833766

RESUMO

BACKGROUND: Paratuberculosis, caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a chronic progressive granulomatous enteritis mainly affecting domestic and wild ruminants worldwide. Although paratuberculosis could be prevail in Ethiopia, there is a scarcity of epidemiological data on paratuberculosis in the country. Thus, this study was conducted to estimate the prevalence of paratuberculosis based on gross and microscopic lesions in cattle slaughtered at ELFORA Abattoir, central Ethiopia. Small intestines and associated lymph nodes of 400 apparently healthy cattle which were slaughtered at ELFORA export abattoir were examined for gross and microscopic lesions of paratuberculosis. The microscopic lesions were classified into four grades (I-IV) based on the type and number of cells infiltrated into the lesion. The prevalence of paratuberculosis was estimated on the basis of gross as well as microscopic lesion of paratuberculosis. RESULTS: The prevalence of paratuberculosis was 11.25% (95% Confidence interval, CI = 0.083-0.148) on the basis of gross lesion. However, relatively lower prevalence (2.0%, 95% CI = 0.01, 0.039) was recorded based on microscopic lesion. The gross lesions were characterized by intestinal thickening, mucosal corrugations and enlargement of associated mesenteric lymph nodes. On the other hand, the microscopic lesions were characterized by granuloma of different grades ranging from grade I to grade III lesions. CONCLUSIONS: The present study indicated the occurrence of paratuberculosis in cattle of Ethiopia based on the detection of gross and microscopic lesions consistent with the lesion of paratuberculosis. The result of this study could be used as baseline information for future studies on the epidemiology and economic significance of paratuberculosis.


Assuntos
Doenças dos Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Paratuberculose/epidemiologia , Paratuberculose/diagnóstico , Prevalência , Etiópia/epidemiologia , Doenças dos Bovinos/microbiologia
19.
BMC Vet Res ; 19(1): 157, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710242

RESUMO

BACKGROUND: Detection of an appropriate antigen with high immunogenicity can be a big step in the production of an effective vaccine for control of Johne's disease (JD). The aim of this study was to evaluate the efficacy of Mce-truncated protein as a subunit vaccine candidate for the control of JD in experimentally challenged goats. MATERIALS AND METHODS: Six healthy goat kids were immunized with Mce-truncated protein, and two goats were kept as controls. All kids were twice challenged orally with live Mycobacterium avium subspecies paratuberculosis(MAP) strain and half the goats from both the categories were sacrificed at 7 and 10 months after start of challenge study. Culture of MAP was performed from all the necropsied tissues to determine the true JD infection status. RESULTS: Mce-truncated protein only reacted with pooled vaccinated goat sera in western-blot. A significant increase in humoral immune response against Mce protein was also observed in vaccinated goats. Compared to the control group, vaccinated goats gained higher body weights and none of them shed MAP or showed histopatological lesions or colonization of MAP in their necropsy tissues. CONCLUSIONS: The new Mce protein based vaccine provided significant immunity in goats as they could meet the challenge with live MAP bacilli. Although the vaccine used in this study showed the high potential as a new effective vaccine for the control of JD, further validation study is still required to successfully implement the vaccine for JD control program.


Assuntos
Doenças das Cabras , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Cabras , Vacinas de Subunidades Antigênicas , Imunidade Humoral , Paratuberculose/prevenção & controle , Doenças das Cabras/prevenção & controle
20.
Anim Genet ; 54(1): 78-81, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36321295

RESUMO

Mycobacterium avium ssp. paratuberculosis (MAP), causes Johne's disease (JD), or paratuberculosis, a chronic enteritis of ruminants, which in goats is characterized by ileal lesions. The work described here is a case-control association study using the Illumina Caprine SNP50 BeadChip to unravel the genes involved in susceptibility of goats to JD. Goats in herds with a high occurrence of Johne's disease were classified as healthy or infected based on the level of serum antibodies against MAP, and 331 animals were selected for the association study. Goats belonged to the Jonica (157) and Siriana breeds (174). Whole-genome association analysis identified one region suggestive of significance associated with an antibody response to MAP on chromosome 7 (p-value = 1.23 × 10-5 ). These results provide evidence for genetic loci involved in the antibody response to MAP in goats.


Assuntos
Doenças dos Bovinos , Doenças das Cabras , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Paratuberculose/genética , Paratuberculose/epidemiologia , Paratuberculose/microbiologia , Cabras/genética , Estudo de Associação Genômica Ampla/veterinária , Mycobacterium avium/genética , Formação de Anticorpos/genética , Mycobacterium avium subsp. paratuberculosis/genética , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças dos Bovinos/genética , Doenças das Cabras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA