Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.097
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Immunol ; 210(3): 259-270, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480265

RESUMO

A growing body of evidence has shown that resident memory T (TRM) cells formed in tissue after mucosal infection or vaccination are crucial for counteracting reinfection by pathogens. However, whether lung TRM cells activated by oral immunization with Yptb1(pYA5199) play a protective role against pneumonic plague remains unclear. In this study, we demonstrated that lung CD4+ and CD8+ TRM cells significantly accumulated in the lungs of orally Yptb1(pYA5199)-vaccinated mice and dramatically expanded with elevated IL-17A, IFN-γ, and/or TNF-α production after pulmonary Yersinia pestis infection and afforded significant protection. Short-term or long-term treatment of immunized mice with FTY720 did not affect lung TRM cell formation and expansion or protection against pneumonic plague. Moreover, the intratracheal transfer of both lung CD4+ and CD8+ TRM cells conferred comprehensive protection against pneumonic plague in naive recipient mice. Lung TRM cell-mediated protection was dramatically abolished by the neutralization of both IFN-γ and IL-17A. Our findings reveal that lung TRM cells can be activated via oral Yptb1(pYA5199) vaccination, and that IL-17A and IFN-γ production play an essential role in adaptive immunity against pulmonary Y. pestis infection. This study highlights an important new target for developing an effective pneumonic plague vaccine.


Assuntos
Peste , Yersinia pestis , Camundongos , Animais , Peste/prevenção & controle , Interleucina-17 , Células T de Memória , Vacinação , Pulmão
2.
Nature ; 574(7776): 57-62, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534221

RESUMO

The causative agent of plague, Yersinia pestis, uses a type III secretion system to selectively destroy immune cells in humans, thus enabling Y. pestis to reproduce in the bloodstream and be transmitted to new hosts through fleabites. The host factors that are responsible for the selective destruction of immune cells by plague bacteria are unknown. Here we show that LcrV, the needle cap protein of the Y. pestis type III secretion system, binds to the N-formylpeptide receptor (FPR1) on human immune cells to promote the translocation of bacterial effectors. Plague infection in mice is characterized by high mortality; however, Fpr1-deficient mice have increased survival and antibody responses that are protective against plague. We identified FPR1R190W as a candidate resistance allele in humans that protects neutrophils from destruction by the Y. pestis type III secretion system. Thus, FPR1 is a plague receptor on immune cells in both humans and mice, and its absence or mutation provides protection against Y. pestis. Furthermore, plague selection of FPR1 alleles appears to have shaped human immune responses towards other infectious diseases and malignant neoplasms.


Assuntos
Macrófagos/metabolismo , Neutrófilos/metabolismo , Peste/microbiologia , Receptores de Formil Peptídeo/metabolismo , Yersinia pestis/metabolismo , Alelos , Animais , Antígenos de Bactérias/metabolismo , Aderência Bacteriana , Sistemas CRISPR-Cas , Quimiotaxia/imunologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Peste/imunologia , Peste/prevenção & controle , Polimorfismo de Nucleotídeo Único/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Formil Peptídeo/deficiência , Receptores de Formil Peptídeo/genética , Sistemas de Secreção Tipo III/efeitos dos fármacos , Células U937 , Yersinia pestis/química , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade
3.
Proc Natl Acad Sci U S A ; 119(11): e2109667119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275791

RESUMO

SignificanceYersinia pestis, the etiologic agent of plague, has been responsible for high mortality in several epidemics throughout human history. This plague bacillus has been used as a biological weapon during human history and is currently one of the deadliest biological threats. Currently, no licensed plague vaccines are available in the Western world. Since an array of immunogens are enclosed in outer membrane vesicles (OMVs), immune responses elicited by OMVs against a diverse range of antigens may reduce the likelihood of antigen circumvention. Therefore, self-adjuvanting OMVs from a remodeled Yersinia pseudotuberculosis strain as a type of plague vaccine could diversify prophylactic choices and solve current vaccine limitations.


Assuntos
Antígenos de Bactérias , Lipídeo A , Vacina contra a Peste , Peste , Proteínas Citotóxicas Formadoras de Poros , Yersinia pseudotuberculosis , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Dose Letal Mediana , Lipídeo A/genética , Lipídeo A/imunologia , Camundongos , Peste/prevenção & controle , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/genética , Vacina contra a Peste/imunologia , Plasmídeos/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/imunologia
4.
Small ; 20(15): e2307066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009518

RESUMO

A new Yersinia pseudotuberculosis mutant strain, YptbS46, carrying the lpxE insertion and pmrF-J deletion is constructed and shown to exclusively produce monophosphoryl lipid A (MPLA) having adjuvant properties. Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, are designated OMV46-LcrV, which contained MPLA and high amounts of LcrV (Low Calcium response V) and displayed low activation of Toll-like receptor 4 (TLR4). Intramuscular prime-boost immunization with 30 µg of of OMV46-LcrV exhibited substantially reduced reactogenicity than the parent OMV44-LcrV and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV46-LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which are correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV46-LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV46-LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. The studies strongly demonstrate the feasibility of OMV46-LcrV as a new type of plague vaccine candidate.


Assuntos
Lipídeo A/análogos & derivados , Vacina contra a Peste , Peste , Yersinia pestis , Camundongos , Animais , Yersinia , Peste/prevenção & controle , Antígenos de Bactérias
5.
Bull Exp Biol Med ; 176(4): 472-476, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38492103

RESUMO

Vaccine strains Yersinia pestis EV NIIEG at a dose of 103 CFU and Francisella tularensis 15 NIIEG at a dose of 102 CFU induced changes in the concentration of cyclic nucleotides in the thymus and spleen of white mice. Antigen-induced changes in the cAMP/cGMP ratio in immunocompetent organs had a phase or oscillatory character, which seems to be related to the regulation of postvaccination immunoreactivity in the body. Synthetic organoselenium compound 974zh stimulated an increase in the amplitude of cAMP/cGMP oscillations, indicating its stimulating effect on the immunogenic properties of vaccine strains at doses an order of magnitude below the standard doses.


Assuntos
Peste , Tularemia , Yersinia pestis , Animais , Camundongos , Peste/prevenção & controle , Vacina contra a Peste , Baço , Tularemia/prevenção & controle , Vacinação
6.
BMC Vet Res ; 19(1): 186, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789313

RESUMO

Zoonotic diseases are like a sneaky game of "tag" between animals and humans, where the stakes are high and the consequences can be deadly. From the bubonic plague to COVID-19, zoonotic diseases have affected humanity for centuries, reminding us of our interconnectedness with the animal kingdom and the importance of taking proactive measures to prevent their spread. Whether it is avoiding contact with animals or practicing good hygiene, staying safe from zoonotic diseases is a game we all need to play.


Assuntos
COVID-19 , Peste , Humanos , Animais , COVID-19/veterinária , Zoonoses/prevenção & controle , Peste/prevenção & controle , Peste/veterinária
7.
Ann Sci ; 80(2): 83-111, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36907660

RESUMO

ABSTRACTAt the end of the 1920s, Tanganyika Territory experienced several serious rodent outbreaks that threatened cotton and other grain production. At the same time, regular reports of pneumonic and bubonic plague occurred in the northern areas of Tanganyika. These events led the British colonial administration to dispatch several studies into rodent taxonomy and ecology in 1931 to determine the causes of rodent outbreaks and plague disease, and to control future outbreaks. The application of ecological frameworks to the control of rodent outbreaks and plague disease transmission in colonial Tanganyika Territory gradually moved from a view that prioritised 'ecological interrelations' among rodents, fleas and people to one where those interrelations required studies into population dynamics, endemicity and social organisation in order to mitigate pests and pestilence. This shift in Tanganyika anticipated later population ecology approaches on the African continent. Drawing on sources from the Tanzania National Archives, this article offers an important case study of the application of ecological frameworks in a colonial setting that anticipated later global scientific interest in studies of rodent populations and rodent-borne disease ecologies.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Peste/epidemiologia , Peste/prevenção & controle , Tanzânia/epidemiologia , Controle de Roedores
8.
Infect Immun ; 90(8): e0016522, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35900096

RESUMO

A newly attenuated Yersinia pseudotuberculosis strain (designated Yptb1) with triple mutation Δasd ΔyopK ΔyopJ and chromosomal insertion of the Y. pestis caf1R-caf1M-caf1A-caf1 operon was constructed as a live vaccine platform. Yptb1 tailored with an Asd+ plasmid (pYA5199) (designated Yptb1[pYA5199]) simultaneously delivers Y. pestis LcrV and F1. The attenuated Yptb1(pYA5199) localized in the Peyer's patches, lung, spleen, and liver for a few weeks after oral immunization without causing any disease symptoms in immunized rodents. An oral prime-boost Yptb1(pYA5199) immunization stimulated potent antibody responses to LcrV, F1, and Y. pestis whole-cell lysate (YPL) in Swiss Webster mice and Brown Norway rats. The prime-boost Yptb1(pYA5199) immunization induced higher antigen-specific humoral and cellular immune responses in mice than a single immunization did, and it provided complete short-term and long-term protection against a high dose of intranasal Y. pestis challenge in mice. Moreover, the prime-boost immunization afforded substantial protection for Brown Norway rats against an aerosolized Y. pestis challenge. Our study highlights that Yptb1(pYA5199) has high potential as an oral vaccine candidate against pneumonic plague.


Assuntos
Vacina contra a Peste , Peste , Yersinia pestis , Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Camundongos , Peste/prevenção & controle , Ratos , Vacinação , Yersinia pestis/genética , Yersinia pseudotuberculosis/genética
9.
MMWR Recomm Rep ; 70(3): 1-27, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34264565

RESUMO

This report provides CDC recommendations to U.S. health care providers regarding treatment, pre-exposure prophylaxis, and postexposure prophylaxis of plague. Yersinia pestis, the bacterium that causes plague, leads to naturally occurring disease in the United States and other regions worldwide and is recognized as a potential bioterrorism weapon. A bioweapon attack with Y. pestis could potentially infect thousands, requiring rapid and informed decision making by clinicians and public health agencies. The U.S. government stockpiles a variety of medical countermeasures to mitigate the effects of a bioterrorism attack (e.g., antimicrobials, antitoxins, and vaccines) for which the 21st Century Cures Act mandates the development of evidence-based guidelines on appropriate use. Guidelines for treatment and postexposure prophylaxis of plague were published in 2000 by a nongovernmental work group; since then, new human clinical data, animal study data, and U.S. Food and Drug Administration approvals of additional countermeasures have become available. To develop a comprehensive set of updated guidelines, CDC conducted a series of systematic literature reviews on human treatment of plague and other relevant topics to collect a broad evidence base for the recommendations in this report. Evidence from CDC reviews and additional sources were presented to subject matter experts during a series of forums. CDC considered individual expert input while developing these guidelines, which provide recommended best practices for treatment and prophylaxis of human plague for both naturally occurring disease and following a bioterrorism attack. The guidelines do not include information on diagnostic testing, triage decisions, or logistics involved in dispensing medical countermeasures. Clinicians and public health officials can use these guidelines to prepare their organizations, hospitals, and communities to respond to a plague mass-casualty event and as a guide for treating patients affected by plague.


Assuntos
Anti-Infecciosos/uso terapêutico , Peste/prevenção & controle , Profilaxia Pós-Exposição , Profilaxia Pré-Exposição , Bioterrorismo , Centers for Disease Control and Prevention, U.S. , Humanos , Peste/epidemiologia , Estados Unidos/epidemiologia
10.
Proc Natl Acad Sci U S A ; 116(19): 9155-9163, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061115

RESUMO

Zoonoses, such as plague, are primarily animal diseases that spill over into human populations. While the goal of eradicating such diseases is enticing, historical experience validates abandoning eradication in favor of ecologically based control strategies (which reduce morbidity and mortality to a locally accepted risk level). During the 20th century, one of the most extensive plague-eradication efforts in recorded history was undertaken to enable large-scale changes in land use in the former Soviet Union (including vast areas of central Asia). Despite expending tremendous resources in its attempt to eradicate plague, the Soviet antiplague response gradually abandoned the goal of eradication in favor of plague control linked with developing basic knowledge of plague ecology. Drawing from this experience, we combine new gray-literature sources, historical and recent research, and fieldwork to outline best practices for the control of spillover from zoonoses while minimally disrupting wildlife ecosystems, and we briefly compare the Soviet case with that of endemic plague in the western United States. We argue for the allocation of sufficient resources to maintain ongoing local surveillance, education, and targeted control measures; to incorporate novel technologies selectively; and to use ecological research to inform developing landscape-based models for transmission interruption. We conclude that living with emergent and reemergent zoonotic diseases-switching to control-opens wider possibilities for interrupting spillover while preserving natural ecosystems, encouraging adaptation to local conditions, and using technological tools judiciously and in a cost-effective way.


Assuntos
Peste/epidemiologia , Peste/prevenção & controle , Animais , Surtos de Doenças , Ecossistema , Humanos , Peste/microbiologia , Roedores/microbiologia , Sifonápteros/microbiologia , Sifonápteros/fisiologia , U.R.S.S./epidemiologia , Yersinia pestis , Zoonoses/epidemiologia , Zoonoses/microbiologia , Zoonoses/transmissão
11.
Public Health ; 212: 55-57, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215929

RESUMO

This article examines the politico-scientific mechanism, which leads nations to declare an epidemic or a pandemic finished, irrespective of the actual epidemiological situation at a given time. A historical comparison is made with the famous behavior of Emperor Justinian I (482-565 CE) during the plague pandemic named after him (part of the first plague pandemic). Finally, a reference to the importance of the multidisciplinary study of the history of medicine and the intersection between pandemics and wars is made.


Assuntos
Peste , Masculino , Humanos , Peste/epidemiologia , Peste/prevenção & controle , Pandemias/prevenção & controle , Erradicação de Doenças
12.
Zhonghua Yu Fang Yi Xue Za Zhi ; 56(1): 9-14, 2022 Jan 06.
Artigo em Zh | MEDLINE | ID: mdl-34954955

RESUMO

The risk of plague epidemics and relapse of various types of plague foci persists in Inner Mongolia Autonomous Region. For Marmota sibirica plague foci, the animal plague has not been found but antibody has been detected positive. Nowadays, Marmota sibirica has been increasing in population and distribution in China. In bordering countries Mongolia and Russia, the animal plague has been continuously prevalent. For Spermophilus dauricus plague foci, the animal plague has been taken place now and then. Compared to the above foci, the animal plague is most prevalent in Meriones unguiculatus plague foci and frequently spread to humans. Due to higher strain virulence and historical disaster in Marmota sibirica plague foci and Spermophilus dauricus plague foci, plague prevention and control should be strengthened on these foci. In addition to routine surveillance, epidemic dynamics need to be further monitored in these two foci, in order to prevent their relapse and spread to humans.


Assuntos
Epidemias , Peste , Yersinia pestis , Animais , China/epidemiologia , Humanos , Peste/epidemiologia , Peste/prevenção & controle , Prevalência , Sciuridae
13.
Artigo em Inglês | MEDLINE | ID: mdl-33753342

RESUMO

Infection with aerosolized Francisella tularensis or Yersinia pestis can lead to lethal disease in humans if treatment is not initiated promptly. Finafloxacin is a novel fluoroquinolone which has demonstrated broad-spectrum activity against a range of bacterial species in vitro, in vivo, and in humans, activity which is superior in acidic, infection-relevant conditions. Human-equivalent doses of finafloxacin or ciprofloxacin were delivered at 24 h (representing prophylaxis) or at 72 or 38 h (representing treatment) postchallenge with F. tularensis or Y. pestis, respectively, in BALB/c mouse models. In addition, a short course of therapy (3 days) was compared to a longer course (7 days). Both therapies provided a high level of protection against both infections when administered at 24 h postchallenge, irrespective of the length of the dosing regimen; however, differences were observed when therapy was delayed. A benefit was demonstrated with finafloxacin compared to ciprofloxacin in both models when therapy was delivered later in the infection. These studies suggest that finafloxacin is an effective alternative therapeutic for the prophylaxis and treatment of inhalational infections with F. tularensis or Y. pestis.


Assuntos
Francisella tularensis , Peste , Tularemia , Animais , Fluoroquinolonas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Peste/tratamento farmacológico , Peste/prevenção & controle , Tularemia/tratamento farmacológico
14.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575967

RESUMO

The bacterial pathogen, Yersinia pestis, has caused three historic pandemics and continues to cause small outbreaks worldwide. During infection, Y. pestis assembles a capsule-like protective coat of thin fibres of Caf1 subunits. This F1 capsular antigen has attracted much attention due to its clinical value in plague diagnostics and anti-plague vaccine development. Expression of F1 is tightly regulated by a transcriptional activator, Caf1R, of the AraC/XylS family, proteins notoriously prone to aggregation. Here, we have optimised the recombinant expression of soluble Caf1R. Expression from the native and synthetic codon-optimised caf1R cloned in three different expression plasmids was examined in a library of E. coli host strains. The functionality of His-tagged Caf1R was demonstrated in vivo, but insolubility was a problem with overproduction. High levels of soluble MBP-Caf1R were produced from codon optimised caf1R. Transcriptional-lacZ reporter fusions defined the PM promoter and Caf1R binding site responsible for transcription of the cafMA1 operon. Use of the identified Caf1R binding caf DNA sequence in an electrophoretic mobility shift assay (EMSA) confirmed correct folding and functionality of the Caf1R DNA-binding domain in recombinant MBP-Caf1R. Availability of functional recombinant Caf1R will be a valuable tool to elucidate control of expression of F1 and Caf1R-regulated pathophysiology of Y. pestis.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Peste/genética , Yersinia pestis/genética , Proteínas de Ligação a DNA/genética , Genes araC/genética , Humanos , Óperon/genética , Peste/microbiologia , Peste/prevenção & controle , Plasmídeos/genética , Fatores de Transcrição/genética , Vacinas/genética , Yersinia pestis/patogenicidade
15.
Artigo em Inglês | MEDLINE | ID: mdl-32015027

RESUMO

Pneumonic plague, caused by the Gram-negative bacteria Yersinia pestis, is an invasive, rapidly progressing disease with poor survival rates. Following inhalation of Y. pestis, bacterial invasion of the lungs and a tissue-damaging inflammatory response allows vascular spread of the infection. Consequently, primary pneumonic plague is a multiorgan disease involving sepsis and necrosis of immune tissues and the liver, as well as bronchopneumonia and rampant bacterial growth. Given the likely role of the hyperinflammatory response in accelerating the destruction of tissue, in this work we evaluated the therapeutic potential of the inducible cytoprotective enzyme heme oxygenase 1 (HO-1) against primary pneumonic plague. On its own, the HO-1 inducer cobalt protoporphyrin IX (CoPP) provided mice protection from lethal challenge with Y. pestis CO92 with improved pulmonary bacterial clearance and a dampened inflammatory response compared to vehicle-treated mice. Furthermore, CoPP treatment combined with doxycycline strongly enhanced protection in a rat aerosol challenge model. Compared to doxycycline alone, CoPP treatment increased survival, with a 3-log decrease in median bacterial titer recovered from the lungs and the general absence of a systemic hyperinflammatory response. In contrast, treatment with the HO-1 inhibitor SnPP had no detectable impact on doxycycline efficacy. The combined data indicate that countering inflammatory toxicity by therapeutically inducing HO-1 is effective in reducing the rampant growth of Y. pestis and preventing pneumonic plague.


Assuntos
Antibacterianos/uso terapêutico , Doxiciclina/uso terapêutico , Heme Oxigenase-1/metabolismo , Peste/prevenção & controle , Protoporfirinas/uso terapêutico , Yersinia pestis/efeitos dos fármacos , Aerossóis , Animais , Broncopneumonia/microbiologia , Broncopneumonia/patologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Heme Oxigenase-1/genética , Humanos , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peste/tratamento farmacológico , Peste/microbiologia , Ratos , Ratos Sprague-Dawley , Yersinia pestis/crescimento & desenvolvimento
16.
MMWR Morb Mortal Wkly Rep ; 69(9): 241-244, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32134908

RESUMO

Plague, an acute zoonosis caused by Yersinia pestis, is endemic in the West Nile region of northwestern Uganda and neighboring northeastern Democratic Republic of the Congo (DRC) (1-4). The illness manifests in multiple clinical forms, including bubonic and pneumonic plague. Pneumonic plague is rare, rapidly fatal, and transmissible from person to person via respiratory droplets. On March 4, 2019, a patient with suspected pneumonic plague was hospitalized in West Nile, Uganda, 4 days after caring for her sister, who had come to Uganda from DRC and died shortly thereafter, and 2 days after area officials received a message from a clinic in DRC warning of possible plague. The West Nile-based Uganda Virus Research Institute (UVRI) plague program, together with local health officials, commenced a multipronged response to suspected person-to-person transmission of pneumonic plague, including contact tracing, prophylaxis, and education. Plague was laboratory-confirmed, and no additional transmission occurred in Uganda. This event transpired in the context of heightened awareness of cross-border disease spread caused by ongoing Ebola virus disease transmission in DRC, approximately 400 km to the south. Building expertise in areas of plague endemicity can provide the rapid detection and effective response needed to mitigate epidemic spread and minimize mortality. Cross-border agreements can improve ability to respond effectively.


Assuntos
Epidemias/prevenção & controle , Peste/prevenção & controle , Prática de Saúde Pública , Doença Relacionada a Viagens , Adulto , República Democrática do Congo/epidemiologia , Feminino , Humanos , Peste/transmissão , Uganda/epidemiologia , Adulto Jovem
17.
Med Health Care Philos ; 23(4): 603-609, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32761351

RESUMO

The recent outbreak of the SARS-CoV-2 coronavirus is posing many different challenges to local communities, directly affected by the pandemic, and to the global community, trying to find how to respond to this threat in a larger scale. The history of the Eyam Plague, read in light of Ross Upshur's Four Principles for the Justification of Public Health Intervention, and of the Siracusa Principles on the Limitation and Derogation Provisions in the International Covenant on Civil and Political Rights, could provide useful guidance in navigating the complex ethical issues that arise when quarantine measures need to be put in place.


Assuntos
Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Peste/história , Pneumonia Viral/prevenção & controle , Quarentena/história , COVID-19 , Inglaterra/epidemiologia , História do Século XVII , Humanos , Controle de Infecções/métodos , Londres/epidemiologia , Peste/prevenção & controle , Saúde Pública/ética , Quarentena/ética
18.
Bull Exp Biol Med ; 169(1): 40-42, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32488779
19.
J Infect Dis ; 220(7): 1147-1151, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31095689

RESUMO

Pneumonic plague, caused by Yersinia pestis, is a rapidly progressing contagious disease. In the plague mouse model, a single immunization with the EV76 live attenuated Y. pestis strain rapidly induced the expression of hemopexin and haptoglobin in the lung and serum, both of which are important in iron sequestration. Immunization against a concomitant lethal Y. pestis respiratory challenge was correlated with temporary inhibition of disease progression. Combining EV76-immunization and second-line antibiotic treatment, which are individually insufficient, led to a synergistic protective effect that represents a proof of concept for efficient combinational therapy in cases of infection with antibiotic-resistant strains.


Assuntos
Antibacterianos/uso terapêutico , Vacinas Bacterianas/uso terapêutico , Ceftriaxona/uso terapêutico , Peste/tratamento farmacológico , Peste/prevenção & controle , Profilaxia Pós-Exposição/métodos , Yersinia pestis/imunologia , Animais , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Feminino , Haptoglobinas/análise , Hemopexina/análise , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peste/microbiologia , Resultado do Tratamento , Vacinas Vivas não Atenuadas/imunologia
20.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331960

RESUMO

In this study, a novel recombinant attenuated Yersinia pseudotuberculosis PB1+ strain (χ10069) engineered with ΔyopK ΔyopJ Δasd triple mutations was used to deliver a Y. pestis fusion protein, YopE amino acid 1 to 138-LcrV (YopENt138-LcrV), to Swiss Webster mice as a protective antigen against infections by yersiniae. χ10069 bacteria harboring the pYA5199 plasmid constitutively synthesized the YopENt138-LcrV fusion protein and secreted it via the type 3 secretion system (T3SS) at 37°C under calcium-deprived conditions. The attenuated strain χ10069(pYA5199) was manifested by the establishment of controlled infection in different tissues without developing conspicuous signs of disease in histopathological analysis of microtome sections. A single-dose oral immunization of χ10069(pYA5199) induced strong serum antibody titers (log10 mean value, 4.2), secretory IgA in bronchoalveolar lavage (BAL) fluid from immunized mice, and Yersinia-specific CD4+ and CD8+ T cells producing high levels of tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and interleukin 2 (IL-2), as well as IL-17, in both lungs and spleens of immunized mice, conferring comprehensive Th1- and Th2-mediated immune responses and protection against bubonic and pneumonic plague challenges, with 80% and 90% survival, respectively. Mice immunized with χ10069(pYA5199) also exhibited complete protection against lethal oral infections by Yersinia enterocolitica WA and Y. pseudotuberculosis PB1+. These findings indicated that χ10069(pYA5199) as an oral vaccine induces protective immunity to prevent bubonic and pneumonic plague, as well as yersiniosis, in mice and would be a promising oral vaccine candidate for protection against plague and yersiniosis for human and veterinary applications.


Assuntos
Anticorpos Antibacterianos/biossíntese , Imunoglobulina A/biossíntese , Vacina contra a Peste/administração & dosagem , Peste/prevenção & controle , Proteínas Recombinantes de Fusão/administração & dosagem , Yersinia pestis/efeitos dos fármacos , Infecções por Yersinia pseudotuberculosis/prevenção & controle , Yersinia pseudotuberculosis/efeitos dos fármacos , Administração Oral , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Proteção Cruzada , Feminino , Expressão Gênica , Humanos , Imunização , Interferon gama/genética , Interferon gama/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos , Peste/imunologia , Peste/microbiologia , Peste/mortalidade , Vacina contra a Peste/biossíntese , Vacina contra a Peste/genética , Vacina contra a Peste/imunologia , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Análise de Sobrevida , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Vacinas Sintéticas , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade , Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/patogenicidade , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/microbiologia , Infecções por Yersinia pseudotuberculosis/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA