Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 787
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(11): 2785-2800.e16, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657604

RESUMO

Natural cell death pathways such as apoptosis and pyroptosis play dual roles: they eliminate harmful cells and modulate the immune system by dampening or stimulating inflammation. Synthetic protein circuits capable of triggering specific death programs in target cells could similarly remove harmful cells while appropriately modulating immune responses. However, cells actively influence their death modes in response to natural signals, making it challenging to control death modes. Here, we introduce naturally inspired "synpoptosis" circuits that proteolytically regulate engineered executioner proteins and mammalian cell death. These circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. Furthermore, synpoptosis circuits can be transmitted intercellularly, offering a foundation for engineering synthetic killer cells that induce desired death programs in target cells without self-destruction. Together, these results lay the groundwork for programmable control of mammalian cell death.


Assuntos
Morte Celular , Humanos , Apoptose , Caspases/metabolismo , Células HEK293 , Proteólise , Piroptose/efeitos dos fármacos , Biologia Sintética/métodos , Células Cultivadas
2.
Cell ; 185(2): 283-298.e17, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021065

RESUMO

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , Sequência de Bases , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Epiteliais/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Células HT29 , Humanos , Doenças Inflamatórias Intestinais/genética , Metotrexato/farmacologia , Mutação/genética , Fosforilação/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Piroptose/efeitos dos fármacos , Piroptose/genética , Reprodutibilidade dos Testes , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/genética
3.
Nat Immunol ; 21(7): 736-745, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32367036

RESUMO

Cytosolic sensing of pathogens and damage by myeloid and barrier epithelial cells assembles large complexes called inflammasomes, which activate inflammatory caspases to process cytokines (IL-1ß) and gasdermin D (GSDMD). Cleaved GSDMD forms membrane pores, leading to cytokine release and inflammatory cell death (pyroptosis). Inhibiting GSDMD is an attractive strategy to curb inflammation. Here we identify disulfiram, a drug for treating alcohol addiction, as an inhibitor of pore formation by GSDMD but not other members of the GSDM family. Disulfiram blocks pyroptosis and cytokine release in cells and lipopolysaccharide-induced septic death in mice. At nanomolar concentration, disulfiram covalently modifies human/mouse Cys191/Cys192 in GSDMD to block pore formation. Disulfiram still allows IL-1ß and GSDMD processing, but abrogates pore formation, thereby preventing IL-1ß release and pyroptosis. The role of disulfiram in inhibiting GSDMD provides new therapeutic indications for repurposing this safe drug to counteract inflammation, which contributes to many human diseases.


Assuntos
Dissulfiram/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas de Ligação a Fosfato/antagonistas & inibidores , Piroptose/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Caspase 1/genética , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Caspases Iniciadoras/genética , Caspases Iniciadoras/metabolismo , Linhagem Celular Tumoral , Dissulfiram/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Feminino , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Lipossomos , Camundongos , Mutagênese Sítio-Dirigida , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sepse/imunologia , Células Sf9 , Spodoptera
4.
Nat Immunol ; 20(3): 276-287, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692621

RESUMO

Inflammatory caspases (caspase-1, caspase-4, caspase-5 and caspase-11 (caspase-1/-4/-5/-11)) mediate host defense against microbial infections, processing pro-inflammatory cytokines and triggering pyroptosis. However, precise checkpoints are required to prevent their unsolicited activation. Here we report that serpin family B member 1 (SERPINB1) limited the activity of those caspases by suppressing their caspase-recruitment domain (CARD) oligomerization and enzymatic activation. While the reactive center loop of SERPINB1 inhibits neutrophil serine proteases, its carboxy-terminal CARD-binding motif restrained the activation of pro-caspase-1/-4/-5/-11. Consequently, knockdown or deletion of SERPINB1 prompted spontaneous activation of caspase-1/-4/-5/-11, release of the cytokine IL-1ß and pyroptosis, inducing elevated inflammation after non-hygienic co-housing with pet-store mice and enhanced sensitivity to lipopolysaccharide- or Acinetobacter baumannii-induced endotoxemia. Our results reveal that SERPINB1 acts as a vital gatekeeper of inflammation by restraining neutrophil serine proteases and inflammatory caspases in a genetically and functionally separable manner.


Assuntos
Caspases/imunologia , Mediadores da Inflamação/imunologia , Inflamação/imunologia , Serpinas/imunologia , Animais , Caspases/genética , Caspases/metabolismo , Linhagem Celular , Células Cultivadas , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Piroptose/efeitos dos fármacos , Piroptose/imunologia , Células RAW 264.7 , Interferência de RNA , Serina Proteases/imunologia , Serina Proteases/metabolismo , Serpinas/genética , Serpinas/metabolismo , Células THP-1 , Células U937
5.
Nature ; 599(7884): 290-295, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34671164

RESUMO

Mouse caspase-11 and human caspase-4 and caspase-5 recognize cytosolic lipopolysaccharide (LPS) to induce pyroptosis by cleaving the pore-forming protein GSDMD1-5. This non-canonical inflammasome defends against Gram-negative bacteria6,7. Shigella flexneri, which causes bacillary dysentery, lives freely within the host cytosol where these caspases reside. However, the role of caspase-11-mediated pyroptosis in S. flexneri infection is unknown. Here we show that caspase-11 did not protect mice from S. flexneri infection, in contrast to infection with another cytosolic bacterium, Burkholderia thailandensis8. S. flexneri evaded pyroptosis mediated by caspase-11 or caspase 4 (hereafter referred to as caspase-11/4) using a type III secretion system (T3SS) effector, OspC3. OspC3, but not its paralogues OspC1 and 2, covalently modified caspase-11/4; although it used the NAD+ donor, this modification was not ADP-ribosylation. Biochemical dissections uncovered an ADP-riboxanation modification on Arg314 and Arg310 in caspase-4 and caspase-11, respectively. The enzymatic activity was shared by OspC1 and 2, whose ankyrin-repeat domains, unlike that of OspC3, could not recognize caspase-11/4. ADP-riboxanation of the arginine blocked autoprocessing of caspase-4/11 as well as their recognition and cleavage of GSDMD. ADP-riboxanation of caspase-11 paralysed pyroptosis-mediated defence in Shigella-infected mice and mutation of ospC3 stimulated caspase-11- and GSDMD-dependent anti-Shigella humoral immunity, generating a vaccine-like protective effect. Our study establishes ADP-riboxanation of arginine as a bacterial virulence mechanism that prevents LPS-induced pyroptosis.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Caspases Iniciadoras/metabolismo , Evasão da Resposta Imune , Piroptose , Shigella flexneri/patogenicidade , Difosfato de Adenosina/metabolismo , Animais , Disenteria Bacilar/imunologia , Disenteria Bacilar/microbiologia , Feminino , Imunidade Humoral , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NAD/metabolismo , Piroptose/efeitos dos fármacos , Vacinas contra Shigella , Shigella flexneri/imunologia , Virulência
6.
J Immunol ; 212(11): 1670-1679, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668725

RESUMO

Hashimoto's thyroiditis (HT) is the most common organ-specific autoimmune disease, predominantly affecting women. Although the pathogenesis of HT is incompletely understood, some studies have found that macrophage polarization plays a role. Puerarin is a soy isoflavone compound that has anti-inflammatory and immunomodulatory effects and regulates macrophage immune activity. This study aimed to verify the therapeutic effect of puerarin on HT and explored its regulatory effect on macrophage polarization imbalance in HT. Through bioinformatics analysis and molecular biology methods, it was found that macrophages increased significantly in HT patients and model mice. Immunological staining showed that puerarin intervention could reduce tissue inflammatory cell infiltration. Molecular biological examination displayed that puerarin could inhibit local and systemic inflammation levels, and the expression of marker thyroglobulin and thyroid peroxidase Abs. In vivo experimental results indicated that puerarin regulated macrophage polarity and reduced inflammatory damage, possibly by inhibiting the pyroptosis signaling pathway. In vivo macrophage clearance experiments demonstrated that puerarin relied on macrophages to exert its mechanism of action in treating HT. The results of this study indicate that macrophages are important mediators in the development of HT, and puerarin can regulate macrophage polarity and inflammatory status to provide thyroid tissue protection, which provides a new idea for the treatment of HT.


Assuntos
Isoflavonas , Macrófagos , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Humanos , Feminino , Modelos Animais de Doenças , Tireoidite Autoimune/tratamento farmacológico , Tireoidite Autoimune/imunologia , Doença de Hashimoto/tratamento farmacológico , Doença de Hashimoto/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Exp Cell Res ; 438(2): 114054, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657723

RESUMO

Recent studies have suggested exosomes (EXO) as potential therapeutic tools for cardiovascular diseases, including atherosclerosis (AS). This study investigates the function of bone marrow stem cell (BMSC)-derived exosomes (EXO) on macrophage pyroptosis in AS and explores the associated mechanism. BMSC-EXO were isolated from healthy mice and identified. RAW264.7 cells (mouse macrophages) were exposed to oxLDL to simulate an AS condition. BMSC-EXO treatment enhanced viability and reduced lactate dehydrogenase release of macrophages. An animal model of AS was established using ApoE-/- mice. BMSC-EXO treatment suppressed plaque formation as well as macrophage and lipid infiltration in mouse aortic tissues. Moreover, BMSC-EXO decreased concentrations of pyroptosis-related markers interleukin (IL)-1ß, IL-18, cleaved-caspase-1 and gasdermin D in vitro and in vivo. Long non-coding RNA AU020206 was carried by the BMSC-EXO, and it bound to CCAAT enhancer binding protein beta (CEBPB) to block CEBPB-mediated transcriptional activation of NLR family pyrin domain containing 3 (NLRP3). Functional assays revealed that silencing of AU020206 aggravated macrophage pyroptosis and exacerbated AS symptoms in mice. These exacerbations were blocked upon CEBPB silencing but then restored after NLRP3 overexpression. In conclusion, this study demonstrates that AU020206 delivered by BMSC-EXO alleviates macrophage pyroptosis in AS by blocking CEBPB-mediated transcriptional activation of NLRP3.


Assuntos
Aterosclerose , Proteína beta Intensificadora de Ligação a CCAAT , Exossomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , RNA Longo não Codificante , Animais , Piroptose/efeitos dos fármacos , Piroptose/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , RNA Longo não Codificante/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Exossomos/metabolismo , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Masculino
8.
Exp Cell Res ; 438(2): 114061, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692345

RESUMO

Acute myocardial infarction (AMI) is a prevalent cardiovascular disease with high morbidity and mortality rates worldwide. Pyroptosis is an inflammatory form of programmed cell death that has been linked to various pathological conditions. However, its exact contribution to the onset and progression of heart injury in AMI has not yet fully elucidated. Herein, we established mouse AMI model by ligating the left anterior descending artery and performed transcriptome analysis during the early phase of AMI. Mouse HL-1 and human AC-16 cardiomyocytes were subjected to hypoxia to simulate ischemic injury in vitro. Our results revealed a significant activation of the inflammatory response at 3 h post-ligation, as confirmed by RNA sequencing. We identified the occurrence of NLRP3 inflammasome-mediated pyroptosis in the cardiac tissues of human cases with AMI, as well as in mouse models of AMI and hypoxia-induced cardiomyocytes, using immunohistochemistry staining and Western blotting assays. Concurrently, pharmacological inhibition of NLRP3 inflammasome-mediated pyroptosis with MCC950 and VX-765 effectively decreased hypoxia-induced cardiomyocytes injury, while mitigating myocardial oxidative stress, apoptosis and inflammation caused by hypoxia. Moreover, the circulating levels of gasdermin D (GSDMD), the pyroptosis executor, were remarkably elevated in the plasma of mice with early AMI and in the supernatant of hypoxia-exposed cardiomyocytes in a time-dependent manner using ELISA and Western blotting. Furthermore, the change in circulating GSDMD positively correlated with Creatine Kinase-MB (CK-MB) in the plasma of early-stage AMI mouse. In summary, these findings indicated a critical role for NLRP3 inflammasome-mediated pyroptosis in the progression of AMI, the administration of MCC950 and VX-765 may be attractive candidate therapeutic approaches for cardiac injury caused by acute hypoxia or even AMI. Additionally, the circulating GSDMD exhibits potential as a newly diagnostic biomarker for AMI.


Assuntos
Apoptose , Furanos , Inflamação , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Miócitos Cardíacos , Estresse Oxidativo , Piroptose , Sulfonamidas , Piroptose/efeitos dos fármacos , Animais , Camundongos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sulfonamidas/farmacologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Masculino , Furanos/farmacologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/tratamento farmacológico , Indenos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , para-Aminobenzoatos/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Modelos Animais de Doenças , Miocárdio/metabolismo , Miocárdio/patologia , Hipóxia/metabolismo , Hipóxia/complicações , Dipeptídeos
9.
Am J Respir Cell Mol Biol ; 70(5): 351-363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38271683

RESUMO

N6-methyladenosine (m6A) plays a role in various diseases, but it has rarely been reported in acute lung injury (ALI). The FTO (fat mass and obesity-associated) protein can regulate mRNA metabolism by removing m6A residues. The aim of this study was to examine the role and mechanism of the m6A demethylase FTO in LPS-induced ALI. Lung epithelial FTO-knockout mice and FTO-knockdown/overexpression human alveolar epithelial (A549) cell lines were constructed to evaluate the effects of FTO on ALI. Bioinformatics analysis and a series of in vivo and in vitro assays were used to examine the mechanism of FTO regulation. Rescue assays were conducted to examine whether the impact of FTO on ALI depended on the TXNIP/NLRP3 pathway. In LPS-induced ALI, RNA m6A modification amounts were upregulated, and FTO expression was downregulated. In vivo, lung epithelial FTO knockout alleviated alveolar structure disorder, tissue edema, and pulmonary inflammation and improved the survival of ALI mice. In vitro, FTO knockdown reduced A549 cell damage and death induced by LPS, whereas FTO overexpression exacerbated cell damage and death. Mechanistically, bioinformatics analysis revealed that TXNIP was a downstream target of FTO. FTO deficiency mitigated pyroptosis in LPS-induced ALI via the TXNIP/NLRP3 pathway. Rescue assays confirmed that the impact of FTO on the TXNIP/NLRP3 pathway was significantly reversed by the TXNIP inhibitor SRI-37330. Deficiency of FTO alleviates LPS-induced ALI via TXNIP/NLRP3 pathway-mediated alveolar epithelial cell pyroptosis, which might be a novel therapeutic strategy for combating ALI.


Assuntos
Lesão Pulmonar Aguda , Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Células Epiteliais Alveolares , Proteínas de Transporte , Lipopolissacarídeos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Humanos , Lipopolissacarídeos/farmacologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Piroptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Camundongos , Células A549 , Camundongos Endogâmicos C57BL , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Masculino , Transdução de Sinais
10.
J Cell Mol Med ; 28(10): e18280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758159

RESUMO

Acute lung injury (ALI) is featured with a robust inflammatory response. Angiopoietin-like protein 2 (ANGPTL2), a pro-inflammatory protein, is complicated with various disorders. However, the role of ANGPTL2 in ALI remains to be further explored. The mice and MH-S cells were administrated with lipopolysaccharide (LPS) to evoke the lung injury in vivo and in vitro. The role and mechanism of ANGPTL was investigated by haematoxylin-eosin, measurement of wet/dry ratio, cell count, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling, reverse transcription quantitative polymerase chain reaction, immunofluorescence, enzyme-linked immunosorbent assay, detection of autophagic flux and western blot assays. The level of ANGPTL2 was upregulated in lung injury. Knockout of ANGPTL2 alleviated LPS-induced pathological symptoms, reduced pulmonary wet/dry weight ratio, the numbers of total cells and neutrophils in BALF, apoptosis rate and the release of pro-inflammatory mediators, and modulated polarization of alveolar macrophages in mice. Knockdown of ANGPTL2 downregulated the level of pyroptosis indicators, and elevated the level of autophagy in LPS-induced MH-S cells. Besides, downregulation of ANGPTL2 reversed the LPS-induced the expression of leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) and triggering receptor expressed on myeloid cells 2 (TREM2), which was reversed by the overexpression of LILRB2. Importantly, knockdown of TREM2 reversed the levels of autophagy- and pyroptosis-involved proteins, and the contents of pro-inflammatory factors in LPS-induced MH-S cells transfected with si ANGPTL2, which was further inverted with the treatment of rapamycin. Therefore, ANGPTL2 silencing enhanced autophagy to alleviate alveolar macrophage pyroptosis via reducing LILRB2-mediated inhibition of TREM2.


Assuntos
Lesão Pulmonar Aguda , Proteína 2 Semelhante a Angiopoietina , Autofagia , Lipopolissacarídeos , Macrófagos Alveolares , Glicoproteínas de Membrana , Piroptose , Receptores Imunológicos , Animais , Piroptose/genética , Piroptose/efeitos dos fármacos , Autofagia/genética , Camundongos , Macrófagos Alveolares/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Técnicas de Silenciamento de Genes , Masculino , Camundongos Endogâmicos C57BL , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Camundongos Knockout
11.
J Cell Mol Med ; 28(10): e18239, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774996

RESUMO

The occurrence and development of diabetic vascular diseases are closely linked to inflammation-induced endothelial dysfunction. Puerarin (Pue), the primary component of Pueraria lobata, possesses potent anti-inflammatory properties. However, its vasoprotective role remains elusive. Therefore, we investigated whether Pue can effectively protect against vascular damage induced by diabetes. In the study, Pue ameliorated lipopolysaccharide-adenosine triphosphate (LPS-ATP) or HG-primed cytotoxicity and apoptosis, while inhibited reactive oxygen species (ROS)-mediated NLR family pyrin domain containing 3 (NLRP3) inflammasome in HUVECs, as evidenced by significantly decreased ROS level, NOX4, Caspase-1 activity and expression of NLRP3, GSDMD, cleaved caspase-1, IL-1ß and IL-18. Meanwhile, ROS inducer CoCI2 efficiently weakened the effects of Pue against LPS-ATP-primed pyroptosis. In addition, NLRP3 knockdown notably enhanced Pue's ability to suppress pyroptosis in LPS-ATP-primed HUVECs, whereas overexpression of NLRP3 reversed the inhibitory effects of Pue. Furthermore, Pue inhibited the expression of ROS and NLRP3 inflammasome-associated proteins on the aorta in type 2 diabetes mellitus rats. Our findings indicated that Pue might ameliorate LPS-ATP or HG-primed damage in HUVECs by inactivating the ROS-NLRP3 signalling pathway.


Assuntos
Trifosfato de Adenosina , Células Endoteliais da Veia Umbilical Humana , Inflamassomos , Isoflavonas , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Transdução de Sinais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ratos , Masculino , Trifosfato de Adenosina/metabolismo , Inflamassomos/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Piroptose/efeitos dos fármacos , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Glucose/metabolismo , Apoptose/efeitos dos fármacos
12.
J Am Chem Soc ; 146(26): 17854-17865, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38776361

RESUMO

Pancreatic cancer is a highly fatal disease, and existing treatment methods are ineffective, so it is urgent to develop new effective treatment strategies. The high dependence of pancreatic cancer cells on glucose and glutamine suggests that disrupting this dependency could serve as an alternative strategy for pancreatic cancer therapy. We identified the vital genes glucose transporter 1 (GLUT1) and alanine-serine-cysteine transporter 2 (ASCT2) through bioinformatics analysis, which regulate glucose and glutamine metabolism in pancreatic cancer, respectively. Human serum albumin nanoparticles (HSA NPs) for delivery of GLUT1 and ASCT2 inhibitors, BAY-876/V-9302@HSA NPs, were prepared by a self-assembly process. This nanodrug inhibits glucose and glutamine uptake of pancreatic cancer cells through the released BAY-876 and V-9302, leading to nutrition deprivation and oxidative stress. The inhibition of glutamine leads to the inhibition of the synthesis of the glutathione, which further aggravates oxidative stress. Both of them lead to a significant increase in reactive oxygen species, activating caspase 1 and GSDMD and finally inducing pyroptosis. This study provides a new effective strategy for orthotopic pancreatic cancer treatment by dual starvation-induced pyroptosis. The study for screening metabolic targets using bioinformatics analysis followed by constructing nanodrugs loaded with inhibitors will inspire future targeted metabolic therapy for pancreatic cancer.


Assuntos
Glucose , Glutamina , Neoplasias Pancreáticas , Piroptose , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos , Glutamina/química , Glutamina/metabolismo , Glucose/metabolismo , Piroptose/efeitos dos fármacos , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Nanopartículas/química , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/antagonistas & inibidores , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema y+ de Transporte de Aminoácidos
13.
Anal Chem ; 96(16): 6381-6389, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38593059

RESUMO

Pyroptosis is closely related to the development and treatment of various cancers; thus, comprehensive studies of the correlations between pyroptosis and its inductive or inhibitive factors can provide new ideas for the intervention and diagnosis of tumors. The dysfunction of mitochondria may induce pyroptosis in cancer cells, which can be reflected by the fluctuations of the microenvironmental parameters in mitochondria as well as the changes of mitochondrial DNA level and morphology, etc. To precisely track and assess the mitochondria-associated pyroptosis process, simultaneous visualization of changes in multiphysiological parameters in mitochondria is highly desirable. In this work, we reported a nonreaction-based, multifunctional small-molecule fluorescent probe Mito-DK with the capability of crosstalk-free response to polarity and mtDNA as well as mitochondrial morphology. Accurate assessment of mitochondria-associated pyroptosis induced by palmitic acid/H2O2 was achieved through monitoring changes in mitochondrial multiple parameters with the help of Mito-DK. In particular, the pyroptosis-inducing ability of an antibiotic doxorubicin and the pyroptosis-inhibiting capacity of an anticancer agent puerarin were evaluated by Mito-DK. These results provide new perspectives for visualizing mitochondria-associated pyroptosis and offer new approaches for screening pyroptosis-related anticancer agents.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Piroptose , Piroptose/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/química
14.
Biochem Biophys Res Commun ; 720: 150118, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776757

RESUMO

Tectorigenin (TEC) as a plant extract has the advantage of low side effects on metabolic dysfunction-associated steatohepatitis (MASH) treatment. Our previous study have shown that tRNA-derived RNA fragments (tRFs) associated with autophagy and pyroptosis in MASH, but whether TEC can mitigate MASH through tRFs-mediated mitophagy is not fully understood. This study aims to investigate whether TEC relies on tRFs to adjust the crosstalk of hepatocyte mitophagy with pyroptosis in MASH. Immunofluorescence results of PINK1 and PRKN with MitoTracker Green-labeled mitochondria verified that TEC enhanced mitophagy. Additionally, TEC inhibited pyroptosis, as reflected by the level of GSDME, NLRP3, IL-1ß, and IL-18 decreased after TEC treatment, while the effect of pyroptosis inhibition by TEC was abrogated by Pink1 silencing. We found that the upregulation expression of tRF-3040b caused by MASH was suppressed by TEC. The promotion of mitophagy and the suppression of pyroptosis induced by TEC were abrogated by tRF-3040b mimics. TEC reduced lipid deposition, inflammation, and pyroptosis, and promoted mitophagy in mice, but tRF-3040b agomir inhibited these effects. In summary, our findings provided that TEC significantly reduced the expression of tRF-3040b to enhance mitophagy, thereby inhibiting pyroptosis in MASH. We elucidated a powerful theoretical basis and provided safe and effective potential drugs for MASH with the prevention and treatment.


Assuntos
Regulação para Baixo , Isoflavonas , Camundongos Endogâmicos C57BL , Mitofagia , Piroptose , Piroptose/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Animais , Camundongos , Masculino , Isoflavonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Humanos
15.
Biochem Biophys Res Commun ; 704: 149688, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38387327

RESUMO

BACKGROUND: Multi-territory perforator flap reconstruction has been proven effective in treating large skin and soft tissue defects in clinical settings. However, in view of that the multi-territory perforator flap is prone to partial postoperative necrosis, increasing its survival is the key to the success of reconstruction. In this study, we aimed to clarify the effect of emodin on multi-territory perforator flap survival. METHODS: Flap survival was assessed by viability area analysis, infrared laser imaging detector, HE staining, immunohistochemistry, and angiography. Western blotting, immunofluorescence assays, and real-time fluorescent quantitative PCR were performed to detect the indicators of oxidative stress, pyroptosis and autophagy. RESULTS: After emodin treatment, the multi-territory perforator flap showed a significantly increased survival rate, which was shown to be closely related to the inhibition of oxidative stress and pyroptosis and enhanced autophagy. Meanwhile, the use of autophagy inhibitor 3 MA was found to reverse the inhibitory effects of emodin on oxidative stress and pyroptosis and weaken the improving effect of emodin on flap survival, suggesting that autophagy plays a critical role in emodin-treated flaps. Interestingly, our mechanistic investigations revealed that the positive effect of emodin on multi-territory perforator flap was attributed to the mTOR-ULK1 signaling pathway activation. CONCLUSIONS: Emodin can inhibit oxidative stress and pyroptosis by activating autophagy via the mTOR-ULK1 pathway, thereby improving the multi-territory perforator flap survival.


Assuntos
Emodina , Retalho Perfurante , Autofagia/efeitos dos fármacos , Emodina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Transdução de Sinais , Serina-Treonina Quinases TOR/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/efeitos dos fármacos
16.
Biochem Biophys Res Commun ; 724: 150140, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38852506

RESUMO

Sepsis is a severe inflammatory disease characterized by cytokine storm, often accompanied by disseminated intravascular coagulation (DIC). PANoptosis is a novel form of cell death triggered by cytokine storms, characterized by a cascade reaction of pyroptosis, apoptosis, and necroptosis. It exists in septic platelets and is closely associated with the onset and progression of DIC. However, there remains an unmet need for drugs targeting PANoptosis. The anti-PANoptosis effect of myricetin was predicted using network pharmacology and confirmed through molecular docking. In vitro platelet activation models demonstrated that myricetin significantly attenuated platelet particle release, integrin activation, adhesion, spreading, clot retraction, and aggregation. Moreover, in a sepsis model, myricetin reduced inflammatory infiltration in lung tissue and platelet activation while improving DIC. Additionally, whole blood sequencing samples from sepsis patients and healthy individuals were analyzed to elucidate the up-regulation of the PANoptosis targets. Our findings demonstrate the inhibitory effect of myricetin on septic platelet PANoptosis, indicating its potential as a novel anti-cellular PANoptosis candidate and therapeutic agent for septic DIC. Furthermore, our study establishes a foundation for utilizing network pharmacology in the discovery of new drugs to treat various diseases.


Assuntos
Plaquetas , Coagulação Intravascular Disseminada , Flavonoides , Sepse , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Sepse/tratamento farmacológico , Sepse/sangue , Humanos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Coagulação Intravascular Disseminada/tratamento farmacológico , Coagulação Intravascular Disseminada/etiologia , Coagulação Intravascular Disseminada/patologia , Coagulação Intravascular Disseminada/sangue , Animais , Masculino , Simulação de Acoplamento Molecular , Ativação Plaquetária/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos , Piroptose/efeitos dos fármacos
17.
Cancer Immunol Immunother ; 73(9): 177, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954046

RESUMO

Paclitaxel and anthracycline-based chemotherapy is one of the standard treatment options for breast cancer. However, only about 6-30% of breast cancer patients achieved a pathological complete response (pCR), and the mechanism responsible for the difference is still unclear. In this study, random forest algorithm was used to screen feature genes, and artificial neural network (ANN) algorithm was used to construct an ANN model for predicting the efficacy of neoadjuvant chemotherapy for breast cancer. Furthermore, digital pathology, cytology, and molecular biology experiments were used to verify the relationship between the efficacy of neoadjuvant chemotherapy and immune ecology. It was found that paclitaxel and doxorubicin, an anthracycline, could induce typical pyroptosis and bubbling in breast cancer cells, accompanied by gasdermin E (GSDME) cleavage. Paclitaxel with LDH release and Annexin V/PI doubule positive cell populations, and accompanied by the increased release of damage-associated molecular patterns, HMGB1 and ATP. Cell coculture experiments also demonstrated enhanced phagocytosis of macrophages and increased the levels of IFN-γ and IL-2 secretion after paclitaxel treatment. Mechanistically, GSDME may mediate paclitaxel and doxorubicin-induced pyroptosis in breast cancer cells through the caspase-9/caspase-3 pathway, activate anti-tumor immunity, and promote the efficacy of paclitaxel and anthracycline-based neoadjuvant chemotherapy. This study has practical guiding significance for the precision treatment of breast cancer, and can also provide ideas for understanding molecular mechanisms related to the chemotherapy sensitivity.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Piroptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Humanos , Piroptose/efeitos dos fármacos , Feminino , Terapia Neoadjuvante/métodos , Camundongos , Animais , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Gasderminas
18.
Small ; 20(23): e2308749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161265

RESUMO

Monosodium urate (MSU) crystal deposition in joints can lead to the infiltration of neutrophils and macrophages, and their activation plays a critical role in the pathological progress of gout. However, the role of MSU crystal physicochemical properties in inducing cell death in neutrophil and macrophage is still unclear. In this study, MSU crystals of different sizes are synthesized to explore the role of pyroptosis in gout. It is demonstrated that MSU crystals induce size-dependent pyroptotic cell death in bone marrow-derived neutrophils (BMNs) and bone marrow-derived macrophages (BMDMs) by triggering NLRP3 inflammasome-dependent caspase-1 activation and subsequent formation of N-GSDMD. Furthermore, it is demonstrated that the size of MSU crystal also determines the formation of neutrophil extracellular traps (NETs) and aggregated neutrophil extracellular traps (aggNETs), which are promoted by the addition of interleukin-1ß (IL-1ß). Based on these mechanistic understandings, it is shown that N-GSDMD oligomerization inhibitor, dimethyl fumarate (DMF), inhibits MSU crystal-induced pyroptosis in BMNs and J774A.1 cells, and it further alleviates the acute inflammatory response in MSU crystals-induced gout mice model. This study elucidates that MSU crystal-induced pyroptosis in neutrophil and macrophage is critical for the pathological progress of gout, and provides a new therapeutic approach for the treatment of gout.


Assuntos
Gota , Macrófagos , Neutrófilos , Piroptose , Ácido Úrico , Gota/patologia , Gota/metabolismo , Animais , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Camundongos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo
19.
J Med Virol ; 96(5): e29643, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695269

RESUMO

Severe pneumonia caused by respiratory viruses has become a major threat to humans, especially with the SARS-CoV-2 outbreak and epidemic. The aim of this study was to investigate the universal molecular mechanism of severe pneumonia induced by multiple respiratory viruses and to search for therapeutic strategies targeting this universal molecular mechanism. The common differential genes of four respiratory viruses, including respiratory syncytial virus (RSV), rhinovirus, influenza, and SARS-CoV-2, were screened by GEO database, and the hub gene was obtained by Sytohubba in Cytoscape. Then, the effect of hub genes on inflammasome and pyrodeath was investigated in the model of RSV infection in vitro and in vivo. Finally, through virtual screening, drugs targeting the hub gene were obtained, which could alleviate severe viral pneumonia in vitro and in vivo. The results showed that CMPK2 is one of the hub genes after infection by four respiratory viruses. CMPK2 activates the inflammasome by activating NLRP3, and promotes the releases of inflammatory factors interleukin (IL)-1ß and IL-18 to induce severe viral pneumonia. Z25 and Z08 can reduce the expression level of CMPK2 mRNA and protein, thereby inhibiting NLRP3 and alleviating the development of severe viral pneumonia. In conclusion, the inflammatory response mediated by CMPK2 is the common molecular mechanism of severe pneumonia induced by viral infection, and Z25 and Z08 can effectively alleviate viral infection and severe pneumonia through this mechanism.


Assuntos
Inflamassomos , Piroptose , Piroptose/efeitos dos fármacos , Humanos , Animais , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Interleucina-18/metabolismo , Interleucina-18/genética , SARS-CoV-2 , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia
20.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715043

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Fibrose , Fatores de Diferenciação de Crescimento , Inflamassomos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Piroptose , Transdução de Sinais , Animais , Piroptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Linhagem Celular , Inflamassomos/metabolismo , Masculino , Fatores de Diferenciação de Crescimento/metabolismo , Ratos , Glicemia/metabolismo , Camundongos , Glucose/metabolismo , Glucose/toxicidade , Proteínas Morfogenéticas Ósseas , PPAR alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA